ОТЗЫВ
официального оппонента, кандидата технических наук, доцента
Матвеева Андрея Валентиновича
на диссертацию Сироткина Евгения Анатольевича
«Система аварийного торможения ветроэнергетической установки», представленную на соискание ученой степени кандидата технических наук по специальности 05.14.08 – Энергоустановки на основе возобновляемых видов энергии.

На отзыв представлена диссертационная работа, состоящая из введения, четырех глав, заключения, списка литературы.

1. Актуальность темы диссертации
В настоящее время наблюдается повышенное внимание мирового сообщества к возобновляемым источникам энергии, в частности к ветроэнергетике. Расширяется география применения ветроэнергетических установок. Вместе с этим повышаются требования к надежности и автономности ветроэнергетического оборудования. Для безопасной эксплуатации ветроэнергетических установок при высокой скорости ветра требуются системы, которые были бы способны предотвратить чрезмерное увеличение частоты вращения ветроколеса, перегрев обмоток электрического генератора и распространение по конструкции повышенных вибрационных колебаний. Для решения данной проблемы может быть использована система аварийного торможения ветроэнергетической установки.

2. Анализ содержания диссертации
Диссертация состоит из введения, четырех глав, заключения, списка литературы, включающего 133 наименования, и содержит 141 страницу, 65 рисунков и 9 таблиц.

Во введении дана общая характеристика работы, обоснована ее актуальность, представлены цели, задачи, выносимые на защиту положения, описана научная новизна и практическая значимость результатов.

В первой главе приведен обзор существующих систем, направленных на обеспечение безопасной эксплуатации ветроэнергетических установок,
рассмотрены их преимущества и недостатки. Проведен анализ статистической информации по авариям ветроэнергетических установок, выявлены причины и последствия аварий, определен экономический ущерб от аварий ветроэнергетических установок. Сформированы требования к системам аварийного торможения ветроэнергетических установок.

Во второй главе предложена новая концепция системы аварийного торможения, ее теоретическое описание. Приведена математическая модель системы аварийного торможения ветроэнергетической установки. Разработан алгоритм работы системы аварийного торможения ветроэнергетической установки. На основе математической модели и алгоритма работы построена компьютерная модель системы аварийного торможения ветроэнергетической установки.

Третья глава посвящена разработке системы аварийного торможения для малой вертикально-осевой ветроэнергетической установки. Приведены характеристики ветроэнергетической установки, сформированы численные требования к параметрам системы аварийного торможения для выбранной ветроэнергетической установки. Разработана конструкция исполнительного механизма системы аварийного торможения. Параметры ветроэнергетической установки и разработанной системы аварийного торможения внесены в компьютерную модель и проведено компьютерное моделирование работы ветроэнергетической установки с системой аварийного торможения при различных скоростях ветра. Проведен анализ полученных результатов компьютерного моделирования. Для оценки корректности результатов компьютерного моделирования проведено экспериментальное исследование на стенде, имитирующем работу ветроэнергетической установки и системы торможения. Приведена оценка и сравнение результатов компьютерного моделирования и эксперимента.

В четвертой главе представлена разработка аппаратно-программной части системы аварийного торможения ветроэнергетической установки. Выбраны электронные компоненты системы, разработано программное обеспечение для управления микроконтроллером.

В заключении приведены основные выводы и обобщены полученные в диссертационной работе результаты.

В приложениих содержатся данные по расчету редуктора системы аварийного торможения, листинг программы управления для
микроконтроллера и документы, подтверждающие внедрение результатов диссертационного исследования на коммерческих предприятиях.

3. Соответствие диссертации паспорту специальности

Содержание диссертации соответствует следующим пунктам паспорта научной специальности 05.14.08 — Энергоустановки на основе возобновляемых видов энергии:

П.2. Теоретический анализ, экспериментальные исследования, физическое и математическое моделирование энергоустановок, электростанций и энергетических комплексов на основе возобновляемых видов энергии с целью оптимизации их параметров и режимов использования.

П.4. Разработка научных подходов, методов, алгоритмов и программ, информационного обеспечения для контроля и диагностики, оценки надежности оборудования, энергоустановок, электростанций и энергетических комплексов в целом.

4. Методы исследования

В работе применялись методы математического моделирования. Выполнялось моделирование в среде MATLAB. При расчете параметров редуктора использовалась методика проектирования передач с зацеплением с применением ЭВМ.

5. Степень обоснованности положений и достоверности полученных результатов

Обоснованность и достоверность результатов подтверждается их убедительной физической интерпретацией, корректным использованием методов математического моделирования, выполнением моделирования с сопоставлением его результатов с данными, полученными экспериментальным путем.

6. Новизна научных положений, выводов и рекомендаций

1. Выявлена аварийность различных классов ветроэнергетических установок.
2. Разработана компьютерная модель, позволяющая исследовать влияние системы аварийного торможения на процесс работы ветроэнергетической установки.

3. Разработана конструкция системы аварийного торможения для малой вертикально-осевой ветроэнергетической установки.

4. Приведена оценка корректности разработанного алгоритма, математической модели, компьютерной модели системы аварийного торможения ветроэнергетической установки.

7. Практическая значимость и использование результатов диссертационной работы

В рамках диссертационной работы были разработаны: конструкция системы аварийного торможения для малой вертикально-осевой ветроэнергетической установки; универсальная компьютерная модель системы аварийного торможения, предназначенная для исследования влияния системы аварийного торможения на процесс работы ветроэнергетической установки на этапе ее проектирования; программное обеспечение для управления микроконтроллером системы аварийного торможения малой вертикально-осевой ветроэнергетической установки. Кроме того, результаты работы были внедрены на трех производственных предприятиях и используются в учебном процессе университета.

8. Отличие выполненных исследований от других работ

Диссертационная работа Сироткина Е.А. отличается от других работ, выполненных в исследуемой области, применением нового набора математических уравнений и уникального алгоритма работы системы аварийного торможения. Уникальной является также конструкция системы аварийного торможения для малой вертикально-осевой ветроэнергетической установки, которая при своих малых габаритах позволяет значительно увеличить безопасный диапазон значений скорости ветра для ветроэнергетической установки.

9. Личный вклад автора

Основные результаты, представленные в диссертационной работе, получены лично автором или при его участии.
10. Публикация основных результатов диссертационной работы

По теме диссертации опубликовано 16 работ в рецензируемых научных журналах и изданиях, определенных ВАК, из них 7 статей индексируется научометрическими базами Scopus и Web of Science, получено 3 патента РФ на полезные модели и 1 свидетельство на программу ЭВМ.

11. Вопросы и замечания по содержанию диссертационной работы

1. В компьютерной модели системы аварийного торможения не учитываются временные задержки при активации системы, вызванные инерционностью механических звеньев. Это искажает результаты компьютерного моделирования влияния системы аварийного торможения на процесс работы ветроэнергетической установки.

2. Выбор состава фрикционного материала для тормозных колодок не обоснован и не подкреплен ссылками на научно-техническую литературу. Кроме того, не ясно каким образом автором получен график зависимости коэффициента терния фрикционного материала тормозных колодок по стали тормозного барабана от температуры нагрева.

3. Механическая конструкция системы аварийного торможения для ВЭУ-3, используемая для проведения компьютерного моделирования, и механическая конструкция тормозного блока на исследовательском стенде СГСУ-3000 существенно различаются – почему этот факт не учитывался при сравнении результатов компьютерного моделирования и экспериментального исследования?

4. Продолжительность экспериментального исследования обоснована лишь субъективным мнением автора.

Представленные замечания касаются частностей и не снижают научной и практической значимости результатов диссертационной работы.

12. Соответствие диссертации критериям Положения о присуждении ученых степеней в УрФУ

Диссертационная работа Сироткина Е.А. в полном объеме отвечает критериям, которые установлены Положением о присуждении ученых степеней в ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина».
В диссертационной работе представлены научно-обоснованные решения, внедрение которых имеет важное значения для развития ветроэнергетической отрасли.

13. Общее заключение
Основываясь на вышеизложенном, считаю, что диссертационная работа «Система аварийного торможения ветроэнергетической установки» является законченной научно-квалификационной работой, выполненной на актуальную тему и содержащей значимые научные и практические результаты. Сироткин Евгений Анатольевич заслуживает присуждения ученой степени кандидата технических наук по специальности 05.14.08 – Энергоустановки на основе возобновляемых видов энергии.

Официальный оппонент,
региональный представитель по Уральскому федеральному округу
ООО «Омский завод инновационных технологий «Энергомаш»,
кандидат технических наук, доцент
Матвеев Андрей Валентинович

Сведения:
Полное наименование организации:
Общество с ограниченной ответственностью «Омский завод инновационных технологий «Энергомаш»
Юридический адрес: 644036, Россия, г. Омск, ул. Мельничная 149 корп.2
Телефон: +7 (3812) 77-80-77
Эл. адрес: sales@omzit.ru

Подпись Матвеева Андрей Валентинович, февраль
Специалист по кадрам — Козлов В. А.