ОТЗЫВ

на автореферат диссертации Поповцева Владислава Викторовича

 «Синтез математических моделей дуги отключения при коммутации элегазовых выключателей высокого напряжения», представленной на соискание ученой степени кандидата технических наук по специальности 2.4.2. Электротехнические комплексы и системыРазработка математических моделей физических процессов, происходящих в дугогасительном устройстве элегазовых выключателей при отключении токов короткого замыкания, имеет важное значение для повышения коммутационной способности элегазовых выключателей и оптимизации временных и финансовых ресурсов на этапе проектирования. Модель взаимодействия дуги отключения с потоком элегаза может быть представлена в различных уровнях сложности. Однако моделирование усложняется тем, что образование дуги в промежутке между контактами напрямую зависит от движения подвижных частей контактной системы, которое, в свою очередь, определяется зависимостью хода подвижной системы контактов от времени.

Физическое описание взаимодействия направленного потока элегаза и плазменного канала дуги во время дугогашения представляет собой сложную задачу из-за двух основных причин. Во-первых, моделирование течения элегаза под высоким давлением часто аналитически возможно только в ограниченных случаях, и большинство методов расчета газодинамики основаны на численных подходах. Во-вторых, отсутствует универсальный подход к математическому моделированию взаимодействия дуги отключения с потоком элегаза в дугогасительном устройстве элегазовых выключателей высокого напряжения при отключении токов короткого замыкания. Такой подход должен одновременно описывать физику низкотемпературной плазмы и быть вычислительно эффективным. Это требует поиска новых методов решения уравнений газодинамики и совершенствования математических моделей для оптимизации процессов коммутации в элегазовых выключателях высокого напряжения.

В диссертации Поповцева Владислав Викторовича разработана расчетная численная модель взаимодействия дуги отключения с обдувающим ее

неизотермическим потоком элегаза в автокомпрессионном дугогасительном устройстве элегазового выключателя 110 кВ с учетом турбулентных потоков по модели $k-\varepsilon$ с использованием Arbitrary Lagrangian - Eulerian (ALE)подхода (подвижной сетки). Данный подход, позволяет изменять положение и форму сеточных элементов в близлежащих доменах пространственной системы координат, реализуемый в программном комплексе COMSOL Multiphysics 6.0. Другими словами, двигается расчетная область - при решении газодинамических уравнений подвижной сетки ее узлы плавно смещаются в рассматриваемом объеме газа.

По материалам диссертационного исследования автором опубликованы результаты в 7 научных работах, 4 из которых - в рецензируемых научных изданиях, определенных ВАК РФ и Аттестационным советом УрФУ, в том числе 3 статьи в изданиях, входящих в международные базы цитирования Scopus и WoS.

По автореферату имеются следующие вопросы и замечания:

1. Почему не учитывалось «западание» кривой хода контактов при отключении токов короткого замыкания элегазовым выключателем?
2. Чем обоснован выбор параметров решателя расчетной модели на основе ALE-подхода (качество сетки, максимальное число итераций и т.д.)? Были ли промежуточные расчеты с их вариацией?
3. Как моделируется работа клапана между подпоршневой и надпоршневой областями.
4. Как учитывался процесс автогенерации при моделировании?
5. Отсутствует обоснование неучета радиационного излучения от дуги при расчете процесса дугогашения. При отключении тока в 25 кА оно значительное.
6. Из текста автореферата не ясно, как производилась адаптация измерения температуры ствола дуги с 10 кА до 25 кА.
7. Для более детального анализа разработанной модели необходимо сравнивать с экспериментом не только давление, но и массовый расход элегаза из сечения подпоршневого объема в область межконтактного промежутка.
8. Диссертантом рассматривается «температурная» модель дуги, которую рационально сравнить с моделью на основе Джоулева тепловыделения. В чем их принципиальное отличие?
9. Из текста автореферата не ясно, как разработанную модель можно применять для рассмотрения процессов при переходе тока через нуль. Кроме того, в модели не учитывается процесс восстановления электрической прочности после погасания дуги - с чем это связано и как в дальнейшем это можно реализовать?

Указанные замечания не снижают научной ценности и практической значимости диссертационной работы Поповцева Владислав Викторовича.

Диссертация удовлетворяет всем требованиям, установленным в пункте 9 Положения о присуждении ученых степеней в ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», предъявляемым к кандидатским диссертациям, а ее автор Поповцев Владислав Викторович заслуживает присуждения ученой степени кандидата технических наук по специальности 2.4.2. Электротехнические комплексы и системы.

Руководитель направления ООО «Эйч Энерджи», кандидат технических наук (кандидатская диссертация защищена по специальностям 05.09.01 «Электромеханика и электрические аппараты» и 05.14.12 «Техника высоких напряжений»)
 Ильин Александр Сергеевич

Филиал Общества с ограниченной ответственностью «Эйч Энерджи» в
г. Екатеринбурге

620137, ул. Бархотская, д. 1
Тел.: +7 (343) 378-78-78
e-mail: alexander.ilyin@energy-h.ru
Дата составления отзыва «25» марта 2024 г.

Подпись Ильина А. С. заверяю:

