## ОТЗЫВ

| официального | оппонента | Манусова | Вадима |
| :--- | :---: | :---: | ---: | Зиновьевича при коммутации элегазовых выключателей высокого напряжения», представленную на соискание ученой степени кандидата технических наук по специальности 2.4.2. Электротехнические комплексы и системы

## На отзыв представлены:

- Диссертация «Синтез математических моделей дуги отключения при коммутации элегазовых выключателей высокого напряжения», содержащая введение, четыре главы, заключение, перечень сокращений и условных обозначений, список литературы из 237 наименований, общим объемом 118 страниц, включая 38 рисунков и 12 таблиц;
- Автореферат диссертации.


## Актуальность темы диссертации

Разработка компьютерных моделей для расчета физических процессов в дугогасительном устройстве элегазовых выключателей при отключении токов короткого замыкания является актуальной задачей из-за высоких затрат на создание или модернизацию таких выключателей.

Проблема разработки автоматизированных систем мониторинга остаточного эксплуатационного ресурса коммутационного оборудования связана со сложностью физических процессов в дугогасительном устройстве элегазовых выключателей при различных режимах работы электроэнергетической системы. Исследование математической модели взаимодействия дуги отключения с потоком элегаза и ее влияния на компоненты дугогасительного устройства является ключевым аспектом при создании автоматизированных систем мониторинга коммутационного ресурса выключателей.

Цель исследования - разработать математическую модель взаимодействия потока элегаза с дугой отключения с использованием ALEподхода в программном комплексе Comsol Multiphysics 6.0.

В рамках работы рассматриваются и решаются задачи: анализ существующих моделей гашения дуги в элегазовых выключателях, разработка математической модели дуги отключения с учетом турбулентных потоков по

модели $k-\varepsilon$ и сравнение расчетных параметров с экспериментальными данными. Исследование проводится на примере автокомпрессионного дугогасительного устройства элегазового выключателя 110 кВ.

## Оценка содержания и оформления диссертации

Диссертация написана технически грамотным языком, выводы и перспективы дальнейших исследований изложены аргументировано.

Во введении представлена актуальность диссертационного исследования, описание поставленных целей и задач.

В первой главе дается описание существующих математических моделей и подходов к моделированию дуги отключения при коммутации элегазовых выключателей.

Во второй главе создана математическая модель взаимодействия дуги и потока элегаза в автокомпрессионном дугогасительном устройстве элегазового выключателя 110 кВ с двусторонним дутьем при отключении токов короткого замыкания. Модель основана на экспериментальных данных и описывает процессы температурного нагрева при горении дуги в межконтактном промежутке.

Третья глава посвящена описанию и анализу результатов численного моделирования процессов отключения токов короткого замыкания элегазового выключателя 110 кВ с учетом и без учета взаимодействия дуги и потока элегаза. Результаты представлены в виде полей скоростей, давлений и температуры при движении контактной системы дугогасительного устройства на основе кривой хода.

Четвертая глава содержит результаты использования математической модели для расчета остаточного коммутационного ресурса при отключении элегазового выключателя 110 кВ на основе реальных данных с осциллограмм тока и сигнала с электромагнита отключения.

В заключении представлены основные выводы и перспективные направления исследований в области математического моделирования процессов дуги отключения при коммутации высоковольтных элегазовых выключателей.

## Научная новизна

1. Сформулирован подход к моделированию взаимодействия потока газа с дугой отключения в дугогасительном устройстве элегазового выключателя при отключении токов короткого замыкания с помощью метода подвижной сетки для учета динамики изменения протекающих физических процессов.
2. Разработана новая математическая модель дуги в форме источника температурного нагрева в межконтактном промежутке автокомпрессионного дугогасительного устройства элегазового выключателя по замеру температуры ствола дуги при отключении симметричного тока короткого замыкания на основе метода подвижной сетки.
3. Обосновано применение разработанной соискателем модели взаимодействия потока элегаза с дугой отключения в автокомпрессионном дугогасительном устройстве элегазового выключателя для оценки его остаточного коммутационного ресурса.

Теоретическая и практическая значимость работы проявляется в создании численной модели, которая описывает взаимодействие потока элегаза с дугой отключения в элегазовом выключателе напряжением 110 кВ. Разработанная математическая модель может быть использована для оптимизации конструкции дугогасительного устройства высоковольтного элегазового выключателя.

Достоверность основных выводов и результатов работы обеспечивается путем сопоставления газодинамических параметров (давления в подпоршневой зоне), полученных с использованием разработанной математической модели, с данными эксперимента.

Соответствие диссертации паспорту научной специальности

### 2.4.2. Электротехнические комплексы и системы:

- п. 1 «Развитие общей теории электротехнических комплексов и систем, анализ системных свойств и связей, физическое, математическое, имитационное и компьютерное моделирование компонентов электротехнических комплексов и систем, включая электромеханические, электромагнитные преобразователи энергии и электрические аппараты, системы электропривода, электроснабжения и электрооборудования промышленного назначения»;
- п. 2 «Разработка научных основ проектирования, создания и эксплуатации электротехнических комплексов, систем и их компонентов»;
-п. 4 «Исследование работоспособности и качества функционирования электротехнических комплексов, систем и их компонентов в различных режимах, при разнообразных внешних воздействиях, диагностика электротехнических комплексов».

Основные результаты по теме диссертации изложены в 7 научных работах, 4 из которых опубликованы в рецензируемых научных изданиях,

определенных ВАК РФ и Аттестационным советом УрФУ, в том числе 3 статьи в изданиях, входящих в международные базы цитирования Scopus и WoS

Соответствие автореферата содержанию диссертации. Содержание диссертации полностью отражено в опубликованных статьях и автореферате.

В качестве замечаний по работе можно отметить следующие:

1. Используемая кривая хода контактов представляет собой кривую, снятую на «холостом ходу». Сильно ли изменятся результаты расчетов при учете «западания» кривой хода при отключении токов короткого замыкания?
2. В Главе 4, посвященной анализу результатов исследований модели процесса дугогашения на примере расчета остаточного эксплуатационного ресурса на мой взгляд неудачно выбран объект исследования, т.к. в основном рассматриваемый выключатель отключал однофазные короткие замыкания с маленьким значением тока отключения.
3. Как на основе разработанной модели может быть учтен процесс восстановления электрической прочности в межконтактном промежутке после погасания дуги?
4. В тексте диссертации точность модели оценена через коэффициент детерминации $R^{2}$. Следовало бы расширить набор показателей точности, используя, например, среднеквадратическое отклонение расчетных результатов от экспериментальных данных.
5. В чем преимущество разработанной модели при расчете остаточного ресурса выключателя и насколько данная модель может быть применена в качестве системы онлайн-мониторинга остаточного эксплуатационного ресурса элегазовых выключателей?

Сделанные замечания носят частный характер и не снижают в целом высокой положительной оценки диссертационной работы.

## Заключение

Учет кривой хода контактов на основе применения ALE-подхода позволяет рассмотреть процесс дугогашения (в рамках представленной диссертантом модели) в динамике. Это может служить отправной точкой для развития математических моделей дуги отключения, учитывающих более детальное протекание физических процессов в дугогасительном устройстве при коммутации элегазовых выключателей. Рассматриваемая диссертационная работа «Синтез математических моделей дуги отключения при коммутации элегазовых выключателей высокого напряжения» соответствует паспорту научной специальности 2.4.2. Электротехнические комплексы и системы.

Диссертация удовлетворяет всем требованиям, установленным в пункте 9 Положения о присуждении ученых степеней в ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», предъявляемым к кандидатским диссертациям, а ее автор - Поповцев Владислав Викторович - заслуживает присуждения ученой степени кандидата технических наук по специальности 2.4.2. Электротехнические комплексы и системы.

## Официальный оппонент

доктор технических наук (докторская диссертация защищена по специальности 2.4.3 Электроэнергетика), профессор, профессор Политехнической школы федерального государственного бюджетного образовательного учреждения высшего образования «Югорский государственный университет»


628011, Россия, г. Ханты-Мансийск, ул. Чехова, д. 16
Телефон: +7-346-737-70-00
e-mail: manusov36@mail.ru
Я, Манусов Вадим Зиновьевич, даю согласие на включение своих персональных данных в документы, связанные с работой Диссертационного совета, и их дальнейшую обработку.


