Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

На правах рукописи

Hoto

Мошкина Татьяна Николаевна

СИНТЕЗ НОВЫХ ФЛУОРОФОРОВ НА ОСНОВЕ АРИЛ(ГЕТАРИЛ)-ЗАМЕЩЁННЫХ ХИНАЗОЛИНОВ, ХИНАЗОЛИН-4(*3H*)-ОНОВ И ХИНОКСАЛИНОВ

1.4.3. Органическая химия

АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата химических наук

Екатеринбург – 2022

Работа выполнена на кафедре органической и биомолекулярной химии Химикотехнологического института ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Научный руководитель:

Официальные оппоненты:

доктор химических наук, доцент, НОСОВА Эмилия Владимировна

ФЕДОРОВА Ольга Анатольевна,

доктор химических наук, профессор, ФГБУН Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук, г. Москва, заместитель директора;

РОЗЕНЦВЕЙГ Игорь Борисович,

доктор химических наук, доцент ФГБУН Иркутский институт химии им. А.Е. Фаворского Сибирского отделения Российской академии наук, г. Иркутск, заместитель директора по научной работе;

РУБЦОВ Александр Евгеньевич,

кандидат химических наук, доцент, ФГАОУ ВО «Пермский государственный национальный исследовательский университет», г. Пермь, заведующий научно-исследовательской лабораторией органического синтеза

Защите диссертации состоится «20» июня 2022 г. в 16:30 ч на заседании диссертационного совета УрФУ 1.4.03.09 по адресу: 620002, г. Екатеринбург, ул. Мира 19, ауд. И-420 (зал Учёного совета)

С диссертацией можно ознакомиться в библиотеке и на сайте ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»:

https://dissovet2.urfu.ru/mod/data/view.php?d=12&rid=3530

Автореферат разослан «____» ____ 2022 г.

Учёный секретарь диссертационного совета

Tocues

Поспелова Татьяна Александровна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность и степень разработанности темы исследования. Азины, диазины и их бензоаннелированные аналоги – широко известные структуры среди природных и синтетических биологически активных веществ. В последние десятилетия интерес к азотсодержащим гетероциклическим соединениям связан с их перспективами применения как люминесцентных материалов для оптоэлектронных устройств. Благодаря структурным особенностям данные гетероциклы представляют собой удобную основу для синтеза различных типов хромофоров. Так, π-дефицитный характер шестичленных азотсодержащих гетероциклов позволяет применять их в качестве акцепторных фрагментов для построения донорно-акцепторных систем с внутримолекулярным переносом заряда (ВПЗ). Наличие неподелённой электронной пары на атомах азота обуславливает возможность протонирования, образования водородных связей, а также комплексообразования. Важным преимуществом бензодиазиновых структур является относительная простота и вариативность синтеза, а также лёгкость модификации, что даёт возможность тонкой настройки желаемых характеристик.

В литературе описано множество подходов к синтезу бензодиазинового ядра и представлены различные классы арилзамещённых диазинов с привлекательными фотофизическими свойствами, перспективными для прикладного применения. Тем не менее некоторые бензодизазиновые производные ряда хиноксалина, хиназолина и хиназолин-4(3*H*)-она, в частности, с 2,5тиениленовым фрагментом, ещё мало изучены, а также нет подробной систематизации данных по влиянию структурных особенностей на фотофизические свойства рассматриваемого ряда соединений.

Целью диссертационной работы является: разработка методов синтеза новых хромофоров на основе бензодиазинов, установление взаимосвязи структуры и фотофизических свойств и оценка перспектив практического применения.

Для достижения поставленной цели необходимо решить следующие задачи:

- ✓ Выбрать наиболее эффективные методы получения 2-арил(гетарил)-бензодиазиновых интермедиатов – хиназолинов, хиноксалинов, хиназолин-4(3*H*)-онов;
- Осуществить модификацию бензодиазинов путём введения электронодонорных фрагментов, построения полициклических структур, дифторборатных комплексов;
- ✓ Подтвердить строение синтезированных гетероциклических соединений физико-химическими методами анализа (ФХМА);
- ✓ Изучить фотофизические свойства синтезированных соединений, установить влияние электронных эффектов заместителей и их расположения в молекуле на оптические свойства;
- ✓ Сравнить экспериментально полученные результаты с данными квантово-химических расчётов, а также с литературными данными для близких структурных аналогов;

✓ Рассмотреть перспективы практического применения полученных соединений.

Научная новизна и теоретическая значимость работы. Получен широкий ряд новых гетероциклических соединений донорно-акцепторного типа – 2,4-дизамещённых хиназолинов и 2,3-дизамещённых хиноксалинов. Изучены фотофизические свойства в растворах и в порошке, чувствительность к полярности растворителя и кислотности среды. Проведён анализ влияния различных структурных фрагментов (электроноакцепторного, электронодонорного заместителя и π -спейсера) на фотофизические свойства в ряду хиназолинов. Для производных 4-цианохиназолинов, а также 2-(4-цианофенил)- и 2-(4-трифторметилфенил)хиназолинов оценены нелинейно-оптические свойства второго порядка. Отмечена хорошая чувствительность 2,3-бис(арилтиенил)хиноксалинов к нитросоединениям как ароматической, так и алифатической природы.

Синтезирована серия полициклических соединений Rh(III)-катализируемым аннелированием дифенилацетилена к 2-(тиофен-2-ил)хиназолин-4(3*H*)-онам, содержащим различные заместители в тиофеновом кольце. Показано, что в случае 2-фенилхиназолин-4(3*H*)-она в тех же условиях реакции образуется производное бензонафтиридина в результате алкоголиза амидной группы и двойного аннелирования дифенилацетилена. Для полициклических структур выявлено явление усиления/возникновения люминесценции, вызванной агрегацией (AIEE/AIE).

Разработаны синтетические подходы к 2-(2-гидроксифенил)хиназолин-4(3*H*)-онам и 2-(2-гидроксифенил)-4-арилхиназолинам и построены дифторборатные комплексы на их основе. Изучено влияние заместителей в фенольном кольце на процесс фотоиндуцированного внутримолекулярного переноса протона в 2-(2-гидроксифенил)хиназолин-4(3*H*)-онах, а также показано возникновение/усиление люминесценции в результате агрегации (AIE/AIEE эффект) в данном ряду. Изучены фотофизические свойства дифторборатных комплексов в растворах и твёрдом состоянии; отмечены большие значения сдвига Стокса, а также высокая интенсивность люминесценции в случае метокси-, *трет*-бутокси- и диэтиламино- производных в толуоле; выявлено положительное влияние атома хлора на значение квантового выхода в твёрдом состоянии.

Практическая значимость работы. Расширен ряд π -коньюгированных флуорофоров Д- π -А и Д- π -А- π -Д типа с хиназолиновым, хиназолин-4(3*H*)-оновым или хиноксалиновым остовом. Показана применимость 4-(морфолин-4-ил)хиназолинов в качестве люминесцентных pHсенсоров, а также возможность генерирования белого излучения путём частичного протонирования. Продемонстрирована способность V-образных люминофоров на основе хиноксалина и дибензохиноксалина детектировать различные по природе нитросоединения. Отмечено усиление интенсивности люминесценции раствора 4,5-дифенил-7*H*-тиено[2',3':3,4]пиридо[2,1*b*]хиназолин-7-она при добавлении катионов Fe³⁺. Выявлено, что все полученные 2-(2гидроксифенил)хиназолин-4(3*H*)-оны обладают AIE/AIEE эффектом, с усилением интенсивности люминесценции до 202 раз. Предложены структуры BF2 комплексов N,O-бензазиновых лигандов, характеризующиеся большими значениями сдвига Стокса.

Методология и методы диссертационного исследования. Для проведения исследования был применён широкий набор методов органического синтеза: реакции конденсации, нуклеофильного замещения, кросс-сочетания Сузуки и Соногаширы, а также реакции Rh(III)катализируемой С–H-функционализации, построения координационных соединений и другие. Для установления структурных особенностей соединений использован комплекс ФХМА: спектроскопия ЯМР ¹H, ¹³C, ¹⁹F, ¹¹B, масс-спектрометрия, ИК/КР-спектроскопия, элементный и рентгеноструктурный анализ. Фотофизические, электрохимические свойства, а также исследования сольватохромии, галохромии, NLO-свойств, AIE/AIEE-эффекта проведены в соответствии со стандартными методиками. Для анализа геометрии и электронной структуры основного и возбуждённого состояния молекулы использованы квантово-химические расчёты.

Положения, выносимые на защиту.

1. Дизайн и синтез 2-(тиофен-2-ил)хиназолинов, а также их 2-фенильных аналогов, содержащих различные электронодонорные заместители в тиениленовом/фениленовом фрагменте, с использованием для модификации реакций Pd-катализируемого кросс-сочетания.

2. Синтез 2,4-дизамещённых хиназолинов, содержащих электронодонорный фрагмент в положении 4. Изучение влияния природы электроноакцепторного заместителя в положении 2 хиназолинового ядра на фотофизические свойства.

3. Получение 2,3-бис(5-аминоарилтиофен-2-ил)хиноксалинов и их бензоаннелированных аналогов. Исследование взаимосвязи «структура-фотофизические свойства» в данном ряду.

4. Построение полициклических структур на основе 2-(тиофен-2-ил)хиназолин-4(3*H*)-она Rh(III)-катализируемым аннелированием дифенилацетилена, изучение оптических свойств полученного ряда соединений.

5. Исследование влияния заместителя в фенольном кольце 2-(2гидроксифенил)хиназолин-4(3*H*)-онов на фотофизические свойства и эффект агрегационноиндуцированной эмиссии, а также анализ влияния структуры хиназолинового лиганда на свойства дифторборатных комплексов.

6. Оценка перспектив практического использования модифицированных хромофоров бензодиазинового ряда.

Личный вклад соискателя. Автор осуществил сбор, систематизацию и анализ литературных данных, постановку цели и задач исследования, планирование и проведение синтеза структур, участвовал в изучении фотофизических и других свойств, а также обработке и обсуждении полученных результатов, подготовке публикаций.

Степень достоверности результатов подтверждена экспериментальными данными. Все новые химические соединения охарактеризованы комплексом ФХМА. Спектроскопические, фотофизические, электрохимические исследования, а также анализ состава и структуры соединений были проведены на сертифицированном оборудовании.

Апробация работы. Результаты работы были доложены (с опубликованием тезисов) на международных конференциях: Международной конференции по инновациям в химическом и биохимическом оптическом детектировании, XV EUROPT(R)ODE 2021 (Варшава, 2021 г.), «Актуальные проблемы органической химии и биотехнологии, OrgChemBioTech» (Екатеринбург, 2020 г.), «Современные синтетические методологии для создания лекарственных препаратов и функциональных материалов, MOSM» (Екатеринбург, 2020 г.), Международной осенней школе по органической электронике, IFSOE (Москва, 2020 г.), Международном симпозиуме по красителям и пигментам (Испания, Севилья, 2019 г.), Пятой международной научной конференции «Достижения в синтезе и комплексировании» (Москва, 2019 г.).

Публикации. Основное содержание диссертационного исследования опубликовано в 17 научных работах, из них 11 статей, опубликованных в рецензируемых научных изданиях, определённых ВАК РФ и Аттестационным советом УрФУ и входящих в международные базы Scopus и Web of Science, а также 6 тезисов в материалах конференций международного и российского уровня.

Структура и объем работы. Диссертационная работа выполнена на 162 листах машинописного текста, состоит из введения, литературного обзора (*Paзdeл 1*), обсуждения результатов (*Paзdeл 2*), экспериментальной части (*Paзdeл 3*), списка сокращения и условных обозначений, заключения, списка литературы и 5 приложений. Работа содержит 38 схем, 58 рисунков и 28 таблиц. Библиографический список включает 170 ссылок на литературные источники.

Автор выражает благодарность коллективу кафедры Органической и биомолекулярной химии, в частности, научному руководителю д.х.н., проф. Носовой Э.В. за научное руководство и помощь в выполнении работы, к.х.н. Тание О.С., Садиевой Л.К., Савчук М.И. и к.х.н. Никонову И.Л. за изучение фотофизических свойств, Копотиловой А.Е. и Пермяковой Ю.В. за помощь в синтезе; а также профессору S. Achelle (Университет Ренн 1, Ланьон, Франция) за помощь в изучении электрохимических и нелинейно-оптических свойств; профессору B. Ośmiałowski (Университет Николая Коперника, Торунь, Польша) за помощь в теоретических исследованиях; сотрудникам Института органического синтеза Уральского отделения РАН (г. Екатеринбург): к.х.н. Слепухину П.А. за проведение рентгеноструктурного анализа, к.х.н. Валовой М. С. и к.х.н. Жилиной Е.Ф. за помощь в изучении фотофизических свойств; академику РАН Чарушину В.Н., д.х.н. Липуновой Г.Н. и д.х.н. Копчуку Д.С. за помощь в подготовке публикаций; сотрудникам и заведующему лабораторией Комплексных исследований и экспертной оценки органических материалов Центра коллективного пользования УрФУ к.х.н. Ельцову О.С. за проведение спектральных исследований.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты 14-03-00340, 18-03-00112, 19-33-90014 Аспиранты), Российского научного фонда (гранты 19-73-10144, 21-13-00304, 22-23-0006).

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1 Литературный обзор. Бензодиазиновые структуры – перспективные люминесцентные материалы и компоненты оптоэлектронных устройств

Представлен обзор литературы по различным типам хромофоров на основе хиназолинов, хиназолин-4(3*H*)-онов и хиноксалинов.

2 Обсуждение результатов. Новые производные хиназолинов, хиназолин-4(*3H*)-онов и хиноксалинов: синтез и исследование фотофизических свойств

2.1 Донорно-акцепторные системы на основе хиназолина

2.1.1 2-(5-Арил(гетарил)тиофен-2-ил)-хиназолины

Поскольку производные диазинов зарекомендовали себя в качестве перспективных компонентов оптоэлектронных устройств, была проведена модификация 2-тиенилхиназолинового остова и получена серия 2-(тиофен-2-ил)-4-(морфолин-4-ил)хиназолинов **8а-i**, содержащих различные широко применяемые донорные арильные и арилэтинильные фрагменты в положении 5 тиофенового кольца (Схема 1). Синтетический подход к ключевому интермедиату 7 включал конденсацию 2-амино-бензамида 1 и тиофен-2-карбальдегида 2 в этаноле, окислительное дегидрирование интермедиата 3 хлоридом меди (II), реакцию хлордезоксигенирования по положению 4 хиназолинового ядра, реакцию нуклеофильного замещения атома хлора на остаток морфолина и бромирование тиофенового кольца N-бромсукцинимидом.

8: $\mathbf{R} = H(\mathbf{a})$, 4-OMe (c), 3,4,5-OMe (d), 4-N(Et)₂ (e), 4-N(Ph)₂ (f), 4-(9*H*-карбазол-9-ил) (g), $\mathbf{R}^1 = H(\mathbf{h})$, OMe (i).

Целевые продукты **8а-і** получали Pd-катализируемой реакцией кросс-сочетания Сузуки или Cu/Pd-катализируемой реакцией Соногаширы. Структуры целевых продуктов, а также ранее неописанных интермедиатов **6** и **7** подтверждены ФХМА, в том числе PCA (Рисунок 1).

Исследование фотофизических свойств интермедиата **6** и целевых продуктов **8** проводили в двух растворителях, а именно, в толуоле ($\varepsilon_r = 2.38$) и ацетонитриле ($\varepsilon_r = 36.64$) (Таблица 1).

Показано, что хиназолин 6 имеет длинноволновый максимум абсорбции при 335 нм в ацетонитриле, положение которого смещается в красную область при введении электронодонорных арильных заместителей (соединения 8b-i), что связано с увеличением цепи сопряжения. Незамещённый хиназолин 6 проявляет люминесценцию при 502 нм в ацетонитриле. Введение (9H-карбазол-9-ил)фенильного, фенильного, метоксифенильного, тиенильного или арилэтинильного остатков (8a-d,g-i) приводит к смещению максимума эмиссии в синюю область, а 4-(диэтиламино)фенильного или 4-(дифениламино)фенильного (8e,f) фрагментов – в красную относительно 6 (Рисунок 2 (а)). Выявлено, что для соединений 8a,с-g полярность растворителя оказывает большее влияние на полосы эмиссии (смещение на 16-68 нм в красную область), чем абсорбции (смещение на 4-16 нм в синюю область).

Соед.	Раств-ль	λ _{abs} , нм	λ_{em} , нм	$\Phi_{\rm F}{}^{\rm a}$, %	Δv_{St} , cm ⁻¹
6	MeCN	335	502	< 1	9930
9	толуол	345	418	12	5062
ða	MeCN	329	440	< 1	7667
0L	толуол	358	434	20	4891
90	MeCN	352	438	15	5578
P _a	толуол	355	430	37	4368
ðC	MeCN	346	446	24	6480
L O	толуол	362	436	49	4689
80	MeCN	346	471	36	7670
P _a	толуол	405	476	71 ^b	3683
oe	MeCN	402	544	22 ^b	6493
90	толуол	398	462	60 ^b	3481
01	MeCN	391	524	66 ^b	6491
8	толуол	366	441	45	4647
ðg	MeCN	352	466	53	6950
8h	MeCN	360	474	4	6681
8 i	MeCN	353	440	20	5601

Таблица 1 – Фотофизические свойства соединений 6, 8а-і.

^аОтносительно бисульфата хинина. ^ьОтносительно 3-аминофталимида.

Результаты свидетельствуют о большем дипольном моменте хромофора в возбуждённом состоянии по сравнению с основным и стабилизацией молекул вещества молекулами полярного растворителя (Рисунок 2(b)). Введение заместителя в тиофеновое кольцо (соединения **8а-і** относительно **6** приводит к увеличению квантового выхода, значение которого зависит как от природы донорного фрагмента, так и от полярности растворителя и достигает 71 %.

Сравнение спектров соединений **8a** и **8h** позволяет заключить, что введение этинильного фрагмента приводит к батохромному сдвигу максимума эмиссии и к увеличению интенсивности люминесценции.

Рисунок 2 – (а) Нормализованные спектры эмиссии хиназолинов **6**, **8** в MeCN. (b) Спектры возбуждения (2,4) и эмиссии (1,3) соединения **8е** в толуоле (сплошная линия) и MeCN (пунктирная линия)

С целью усиления акцепторных свойств бензодиазинового фрагмента была проведена модификация хиназолинового ядра по положению 4, а именно введение цианогруппы путём нуклеофильного замещения атома хлора в 4-хлорпроизводном 5 (Схема 2).

Схема 2

арилбороновая кислота/пинаколовый эфир CN CN арилбороновой кислоты, PdCl₂(PPh₃)₂, PPh₃, KCN, TsONa NBS K2CO3, H2O, толуол, EtOH, аргон, 85 °C, 7 ч 5 ДМФА, ЛМФА. 95 °С, 3 ч 80 °C Br 9 (66 %) 10 (63 %) CN $R = 4 - NEt_2(a),$ 4-NPh₂ (**b**), 4-(9*Н*-карбазол-9-ил) (с). 11a 11a-c (28-56 %)

Для синтеза хромофоров **13а-с** на основе хиназолин-4(3*H*)-она целесообразным оказалось применение 5-бромтиофен-2-карбальдегида **2b** в качестве исходного реагента (Схема 3). Длинноволновый максимум поглощения хромофоров **11а-с** и **13а-с** находится в диапазоне от 363 до 404 нм в толуоле и смещается на 5–9 нм при переходе к ацетонитрилу (Таблица 2); максимумы абсорбции соединений с одинаковыми донорными заместителями близки. Интенсивность эмиссии цианохиназолинов 11 низкая (кроме карбазолил-производного 11с, для которого $\Phi_F = 22$ % в толуоле), однако соединения 13а-с люминесцируют с квантовыми выходами от 26 % до 82 %.

2. CuCl₂, EtOH, кипячение, 5 ч

Стоит отметить наличие полосы абсорбции в виде плеча в области 440-470 нм в спектрах соединений 11а, в толуоле и соединения 11b в ацетонитриле, а также двух пиков в спектре эмиссии в непорастворителях лярных (Рисунок 3 (а)), что, вероятно, объясняется образованием димеров или агрегатов молекул 11 с растворителем.

Таблица 2 – Фотофизические свойства хиназолинов 11а-с и 13а-с.

1001000000000000000000000000000000000							
Соед.	Раств-ль	$λ_{abs}$, HM (ε, MM ⁻¹ ·cm ⁻¹)	λ_{em} , нм	Φ_{F} , %	$\Delta v_{St}, cm^{-1}$		
11.	толуол	475 пл (-) ^а , 402 (-) ^а	485, 670	< 1°	9950		
11a	MeCN	397 (-) ^a	564	< 1°	7458		
11L	толуол	440 пл (18.3), 397 (28.3)	485, 623	5°	6171		
110	MeCN	450 пл (16.7), 391 (29.8)	532	<1°	3425		
11.	толуол	365(-) ^a	452, 538	22°	8810		
110	MeCN	356 (-) ^a	494	8°	7847		
120	толуол	410 (-) ^b	490	71 ^d	3982		
15a	MeCN	404 (-) ^b	541	28 ^d	6268		
12h	толуол	405 (35.8)	470	82 ^d	3415		
13b	MeCN	398 (-) ^b	545	50 ^d	6777		
120	толуол	370 (-) ^b	430, 456	26 ^e	5097		
130	MeCN	363(-) ^b	490	43 ^e	7140		

^аНе рассчитывали. ^bОграниченная растворимость. Относительно ^c9,10бис(фенилэтинил)антрацена, ^d3-аминофталимида, ^ебисульфата хинина.

Более того, хиназолины **11** характеризуются смещёнными в красную область полосами излучения (при 550–700 нм) в неполярных или малополярных растворителях относительно полярных (Рисунок 3 (b)), что также возможно из-за образования димеров.

Рисунок 3 – (а) Спектр абсорбции и эмиссии соединения **11b** в толуоле. (b) Нормализованные спектры эмиссии соединения **11c** в апротонных растворителях. (c) Эмиссия соединений **8e-g**, **11a-c**, **13a-c** в порошке

В твёрдом виде хромофоры 8е-g, 11а-с, 13а-с люминесцируют от голубого цвета (13с) до красного (11а) в интервале длин волн 476–661 нм, при этом интенсивность люминесценции значительно ниже по сравнению с растворами.

2.1.2 2-(4-Арилфенил)-, 2-(3-арилфенил)- и 2-(4-дифенилминофенил)хиназолины

Чтобы изучить влияние π-спейсера между донорным и акцепторным остатками на фотофизические свойства, была проведена замена тиофениленового фрагмента на фениленовый, с *пара-* и *мета*-расположением заместителей (Схема 4). 2-(4-Бромфенил)- или 2-(3бромфенил)хиназолин-4(3*H*)-оны **14а,b** синтезировали конденсацией 2-аминобензамида и соответствующего бромбензальдегида аналогично 2-тиенилхиназолин-4(3*H*)-онам **4** и **12**. Для получения соединений **15а,b** или **16а,b** оптимальным оказалось хлордезоксигенирование хиназолинона 14а, b оксихлоридом фосфора и последующее нуклеофильное замещение атома хлора на остаток морфолина или СN-группу, соответственно. Целевые продукты 17–22, представляющие собой аналоги 2-(тиофен-5-ил)хиназолинов 8, 11 и 14, получали обработкой соответствующих бромпроизводных 14–16 арилбороновыми кислотами по реакции кросс-сочетания (Схема 4).

15а,b; 19а-с; 20а-с: \mathbf{R}^1 = морфолин-4-ил; 16а,b; 21а,b; 22: \mathbf{R}^1 = CN; 17, 18, 19, 20, 21: \mathbf{R} = 4-NEt₂ (a), 4-NPh₂ (b), 4-(9*H*-карбазол-9-ил) (c); 22: \mathbf{R} = 4-NPh₂.

i: арилбороновая кислота/пинаколовый эфир арилбороновой кислоты, PdCl₂(PPh₃)₂, PPh₃, K₂CO₃, H₂O, толуол, EtOH, аргон, 85 °C, 10–20 ч.

2-(4-Дифениламинофенил)хиназолины **24**, **25** и **26** (Схема 5) являются аналогами 4-оксо-, 4-морфолинил- и 4-циано- производных, в которых фрагмент трифениламина непосредственно связан с хиназолиновым ядром, что позволяет изучить влияние длины π-спейсера на фотофизические свойства.

Анализ УФ спектров показал, что хиназолины **17а-с**, **19а-с**, **21а,b** с 1,4-фениленовом спейсером поглощают в диапазоне длин волн от 328 до 425 нм в зависимости от растворителя и природы донорного фрагмента (Таблица 3): значительное батохромное смещение полосы абсорбции характерно для 4-циано-производных **21а,b**. Замена тиофениленового мостика на фениленовый приводит к гипсохромному смещению полос абсорбции, что связано с уменьшением сопряжения в результате скручивания структуры (Рисунок 4 (a,b)). Переход к *мета*замещённым по фениленовому фрагменту хиназолинам **18а-с**, **20а-с**, **22** в большинстве случаев приводит к гипсохромному смещению полосы поглощения, что связано с уменьшением сопряжения, в результате увеличения двугранного угла между заместителями в положении 1,3 по сравнению с положением 1,4-фениленового фрагмента (Таблица 3, Рисунок 4 (b)). 2-Арилхиназолины **17, 19** характеризуются эмиссией с максимумами от 400 до 450 нм и квантовым выходом до 89 % (Таблица 3) в толуоле. 4-Циано-производные **21а,b** проявляют эмиссию в оранжевой области с меньшими значениями Ф_F относительно хиназолин-4(3*H*)-оновых и 4-морфолинилхиназолиновых производных.

Соед	λ _{abs} , нм (ε, мМ ⁻¹ см ⁻¹)	λ _{em} , нм	Фг, % (λех, нм)	$\Delta v_{st}, cm^{-1}$	λет (тв), нм	$\Phi_{\mathrm{F}}(\mathrm{TB}),~\%$
17a	370 (37.1)	450	84 ^b (350)	4895	456	9.8
17b	370 (30.1)	445	89 ^c (380)	4555	468	39.7
17c	342 (36.5)	415	3 ^b (350)	5143	441	9.9
18a	310 (33.6)	460	14 ^b (315)	10519	464	<1
18b	328 (39.3)	430	23 ^b (328)	7232	427	13.1
18c	310 (-) ^а , 340 пл (-) ^а	380,405, 430 , 450	<1 ^b (315)	9002	407	8.9
19a	365 (33.9)	443	69 ^b (350)	4824	460	14.3
19b	363 (35.5)	430	75 ^b (350)	4292	452	26.4
19c	341 (40.7)	400	12 ^b (340)	4326	454	18.9
20a	315 (34.7)	457	8 ^b (340)	9864	461	1.2
20b	325 (26.9)	419	14 ^b (340)	6903	447	3.3
20c	341 (14.8)	429	<1 ^b (340)	6015	405	0.4
21a	370 (21.3), 425 _{пл} (9.3)	460, 600	7° (380)	6863	468, 615	<1
21b	365 (46.6), 415 _{пл} (25.8)	465, 555	23° (380)	6078	451, 596	<1
22	309 (37.0), 337 _{пл} (31.1)	468	15° (380)	8306	437, 642	<1
24	367 (33.9)	430	71°	3992	557	1.4
25	374 (4.48)	427	56 ^b	3319	503	11.2
26	432 (11.2)	570	15°	5604	610	3.2

Таблица 3 – Фотофизические свойства соединений 17–22, 24-26 в растворе толуола и порошке.

^аОграниченная растворимость. ^ьОтносительно бисульфата хинина. ^сОтносительно 3-аминофталимида.

Стоит отметить, что положение максимума люминесценции 1,3-фениленовых производных **18а,с** и **20а,с** смещено батохромно относительно их 1,4-фениленовых аналогов **17а,с** и **19а,с**, соответственно.

Рисунок 4 – (а) Совмещённые спектры абсорбции и эмиссии 4-цианохиназолинов 21a,b, 22, 26 в толуоле. Совмещённые спектры абсорбции (b) и эмиссии (c) 4-морфолинилхиназолинов 8e-g, 19a-c, 20a-c, 25 в толуоле

Уменьшение длины π-спейсера в серии морфолинил- и оксо- производных приводит к гипсохромному смещению максимумов абсорбции и эмиссии и уменьшению квантового выхода относительно аналогов. 4-Циано-хиназолин 25 проявил смещение абсорбции и эмиссии в красную область и увеличение интенсивности люминесценции относительно аналога 21b.

Хромофоры на основе хиназолинона 17а-с, 18а-с и 4-морфолинилхиназолина 19а-с, 20а-с люминесцируют в синей области спектра в твёрдом состоянии, 4-цианопроизводные 21а,b, 22 – в красной (Таблица 3, Рисунок 5).

Рисунок 5 – Эмиссия соединений 17–22, 24–26 в порошке су

Наибольшее значение квантового выхода характерно для дифениламинофенильных производных **17b**, **18b**, **19b**, **20b**, которое достигает 40 % в случае хиназолин-4(3*H*)-она **17b**. В серии соединений **24–26** более интенсивное свечение продемонстрировал 4-морфолинилзамещённый хиназолин **25**. Квантовый выход люминесценции 4-циано-производного **26** выше по сравнению с его аналогами, имеющими дополнительный 2,5-тиениленовый (**11b**) или 1,4фениленовый (**21b**) спейсер (Таблица 3).

2.1.3 Влияние рН среды на фотофизические свойства 4-(морфолин-4-ил)хиназолинов

Установлено, что при добавлении трифторуксусной кислоты (ТФУК) к соединениям 8аg, 19а-с, 20а-с, 25 наблюдается батохромное смещение полос абсорбции и эмиссии (Рисунок 6 (a,b)), вызванное протонированием 4-морфолинил-хиназолинового фрагмента и увеличением его акцепторной способности.

При большом избытке кислоты в случае Et₂N-производных 8е, 19а наблюдается также гипсохромный сдвиг максимума полосы абсорбции, что, вероятно, связано с протонированием диэтиламино-группы и ослаблением её электронодонорной способности (Рисунок 6 (b)). Для протонированных хиназолинов 8а-с, д было отмечено увеличение квантового выхода (например, с 20 % до 73 % для соединения 8b). В остальных экспериментах (соединения 8d-f, 19a-c, 20a-c, 25) интенсивность люминесценции уменьшилась. Линейная зависимость изменения интенсивности люминесценции некоторых хромофоров от количества кислоты (до 50 экв ТФУК, Рисунок 6 (с)), свидетельствует о возможности применения структур для количественного анализа. При добавлении 100 эквивалентов ТФУК к раствору соединения 8е мы наблюдали белую люминесценцию (Рисунок 6 (d)).

Рисунок 6 – Изменения в спектрах абсорбции (а) и эмиссии (b) толуольного раствора **8e** при добавлении ТФУК. (c) Зависимость интенсивности люминесценции от концентрации кислоты. (d) Фотографии хромофора **8e** до и после добавления ТФУК

2.1.4 2-Фенил-, 2-флуоренил- и 2-цимантренил-замещённые 4-арилхиназолины

Чтобы выявить наиболее благоприятное положение электронодонорного заместителя в диазиновом кольце хиназолина, были получены хромофоры с 2-фенильным, 2-флуоренильным и 2-цимантренильным фрагментом акцепторным фрагментом и арильным электронодонорным остатком в положении 4 хиназолинового ядра **29а-f** (Схема 6). 2-Фенилхиназолин-4(*3H*)-он **27а** получали взаимодействием 2-аминобензамида с бензоилхлоридом по методике, описанной ранее. Новые хиназолины **33b,c** синтезировали путём конденсации 2-аминобензамида и соответствующего альдегида в тех же условиях, что и соединения **4**, **12**, **14a,b**. Целевые продукты **29** получали обработкой хиназолиново **27а-с** оксибромидом фосфора (V) и последующим Ракатализируемым кросс-сочетанием.

Согласно данным фотофизических исследований (Таблица 4), хиназолины **29а-f** характеризуются длинноволновым максимумом поглощения в области 339–405 нм в ацетонитриле, положение которого для каждого соединения практически не зависит от полярности растворителя. Природа заместителей в положении 2 хиназолинового ядра в ряду соединений **29а**, **29d** и **29f** оказывает незначительное влияние на максимум абсорбции.

Схема 6

Для карбазолил-производного 29c наблюдается типичное гипсохромное смещение полосы абсорбции по сравнению с 29а, b. Полоса эмиссии соединений 29a-d,f расположена в области $\lambda_{em} = 527 - 535$ нм в ацетонитриле и $\lambda_{em} = 431-459$ нм в толуоле с Ф_F до 82 % (хиназолин **29а**). При переходе от фенильного заместителя в положении 2 (29а) к флуоренильному (29d), а также при замене диэтиламиногруппы (29а) на карбазолильную (29с) наблюдается снижение интенсивности люминесценции.

Таблица 4 – Фотофизические свойства соединений 29.

Соед.	Раств-ль	λ_{abs} , нм	λ_{em} , нм	$\Phi_{\rm F}{}^{\rm a}$, %	$\Delta v_{\rm St}$ (cm ⁻¹)
20.5	толуол	391	448	82	3254
29a	MeCN	393	530	28	6577
2015	толуол	387	468	59 ^b	4472
290	MeCN	382	574	11 ^b	8756
20.5	толуол	341	431	< 1	6124
290	MeCN	339	527	26°	10532
204	толуол	392	459	61	3723
290	MeCN	394	531	21	6548
29e	MeCN	405	-	-	-
20£	толуол	387	446	38	3418
291	MeCN	395	535	5	6625

^аОтносительно 3-аминофталимида. ^bАбсолютный квантовый выход. ^cОтносительно бисульфата хинина.

2.1.5 2-(4-Цианофенил)- и 2-(4-трифторметилфенил)-замещённые 4-арилхиназолины

Поскольку 2-фенилхиназолины **29а-с** продемонстрировали привлекательные фотофизические свойства, была проведена модификация фенильного кольца, а именно введение акцепторного трифторметильного остатка или циано-группы в *пара*-положение. Синтетический подход к хромофорам **32a-f** аналогичен методу получения хиназолинов **29** (Схема 7).

Соединения **32** проявляют полосы абсорбции в ультрафиолетовой и видимой областях спектра с относительно небольшим молярным коэффициентом экстинкции в хлороформе (Таблица 5). В каждой серии карбазольные производные (**32с**, **32f**) характеризуются наиболее смещённой в синюю область полосой абсорбции.

Таблица 5 – Фотофизические свойства соединений **32** в растворе CHCl_{3.}

Соед.	λ_{abs} , нм (ϵ , м M^{-1} ·с m^{-1})	λ_{em} , нм	$\Phi_{\rm F}{}^{\rm a}$, %	Δv_{St} , см ⁻¹
32a	408 (20.4)	496	63	4349
32b	402 (20.2)	531	72	6043
32c	340 (11.4)	486	64	6972
32d	390 (14.5)	474	76	4543
32e	396 (20.9)	517	75	5910
32f	340 (12.3)	474	53	8314

^аОтносительно 9,10-бис(фенилэтинил)антрацена.

Максимум эмиссии растворов хиназолинов 32 наблюдается в сине-зелёной области спектра, значения квантового выхода превышают 50 %. Для циано-производных 32а-с характерно батохромное смещение максимумов абсорбции и эмиссии по сравнению с их трифторметильными аналогами 32d-f.

Дифениламинопроизводные 32b и 32e в каждой серии проявляют максимально смещённую в красноволновую область эмиссию (Рисунок 7(a)), причём такая же закономерность характерна для серии 2-фенилхиназолинов **32а-с**. Все образцы **32а-f** продемонстрировали положительный сольватохромизм эмиссии и незначительный сольватохромизм абсорбции (Рисунок 7 (b)).

Рисунок 7 – (а) Нормализованные спектры абсорбции и эмиссии соединений **32а-с** в CHCl₃. (b) Нормализованные спектры эмиссии соединения 32b в различных растворителях

Выявлено, что циано-производные 32а-с характеризуются более интенсивным внутримолекулярным переносом заряда по сравнению с трифторметильными аналогами 32d-f.

2-Азинил-4-аминофенилхиназолины 2.1.6

2-(Пиридин-2-ил)- и 2-(хинолин-2-ил)-производные хиназолина 35, 36 (Схема 8) были рассмотрены в качестве 2-азинильных аналогов соединений 29а-с.

33, 34: пиридин-2-ил (**a**), хинолин-2-ил (**b**); **36**: **R**¹ = NEt₂ (**a**), NPh₂ (**b**), 9*H*-карбазол-9-ил (**c**)

Производные 35, 36а-с продемонстрировали длинноволновый максимум абсорбции в интервале от 338 до 401 нм в растворе ацетонитрила (Таблица 6).

При переходе от хинолинильного к пиридинильному фрагменту наблюнезначительное далось гипсохромное смещение максимумов абсорбции (соединения 36b и 35, соответственно), из-за уменьшения длины πсопряжённой системы.

Таблиц	аблица 6 – Фотофизические свойства хромофоров для 35, 36а-с .								
Соед.	Раств-ль	$\lambda_{abs, HM}$	λ_{em} , HM	Φ_{F} , ^a %	Δv_{st} , см ⁻¹	29b			
35	толуол	390	472	53.8	4455		S		
	MeCN	385	562	13.2	8180	35			
36a	толуол	398	461	38.5	3434				
	MeCN	401	569	0.2	7363	36a			
36b	толуол	394	472	45.5	4194				
	MeCN	389	574	7.2	8285	36b			
36c	толуол	340	450	0.2	7189				
	MeCN	338	537	16.9	10964	36c			

^аАбсолютный квантовый выход.

В ряду **Зба-с** наблюдались те же закономерности по влиянию природы донорного заместителя на максимумы абсорбции и эмиссии, что и их аналогов 29а-с. При переходе от ацетонитрила к толуолу положение максимума абсорбции изменилось незначительно, в то время как максимум эмиссии сместился в синюю область (461-472 нм) на 87-107 нм (Таблица 6).

При этом соединения **35**, **36а,b**, продемонстрировали увеличение квантового выхода. Только в случае карбазолил-производного **36с** наблюдалось тушение люминесценции, как и в случае 2-фениленового аналога **29с**. Квантовые выходы производных 2-азинил-хиназолина **35**, **36а-с**, до-стигают 6.1 % в порошке, в то время как хромофор **29b** люминесцирует в твердом состоянии с квантовым выходом около 21 %.

2.1.7 Фотофизические исследования 2-азинил-4-аминофенилхиназолинов в присутствии катионов металлов

Для хиназолинов **35**, **36а-с** было проанализировано влияние катионов металлов Cu^{2+} , Cd^{2+} , Ni^{2+} , Co^{2+} , Hg^{2+} , Zn^{2+} и Fe²⁺ (Рисунок 8) на фотофизические свойства.

Рисунок 8 – Изменения цвета раствора хромофоров **35** в присутствии двух эквивалентов различных катионов металлов в CH₃CN под УФ-облучением В эксперименте по титрованию растворов хромофоров **35**, **36а-с** солями Cu²⁺, Ni²⁺, Zn²⁺ и Fe²⁺ в спектрах поглощения наблюдали батохромное смещение максимума абсорбции при добавлении катионов Cu²⁺, Ni²⁺ (во всех случаях) и Zn²⁺ (в случае соединения **35**), что, вероятно, связано с формированием комплексного соединения хиназолина с катионом металла. При этом все рассматриваемые хромофоры **35**, **36а-с** проявляли тушение люминесценции в разной степени в зависимости от

природы и количества катионов. Так присутствие 0.25 экв (для **35**), 0.5 экв (для **36а** или **36b**) и 1 экв (для **36c**) катиона Cu²⁺ привело к полному тушению интенсивности излучения хромофоров, тогда как такое же количество катионов Ni²⁺ или Zn²⁺ вызывало только уменьшение интенсивности в каждом случае.

2.1.8 Электрохимические, нелинейно-оптические свойства и теоретические исследования соединений 11а-с, 32a-f¹

Согласно электрохимическим расчётам (Таблица 7) для карбазольных производных 11с, 32с, 32f наблюдается наибольшая электрохимическая щель, а для диалкиламино- и дифениламино-производных каждой серии (11a,b, 32a,b, 32d,e) значения энергетических переходов близки. В целом результаты электрохимических исследований коррелируют с фотофизическими характеристиками. Стоит отметить, что значения потенциалов восстановления $E_{\rm red}$ соединений 11 больше, чем соединений 32, что свидетельствует о более электроноакцепторной способности 4-цианохиназолинового фрагмента по сравнению с *пара*-замещённым 2фенилхиназолиновым.

Соед.	$E_{1/2}^{ox1}, [B]^a$	$E_{1/2}^{red1}, [B]^a$	$\Delta E, [B]^b$	E_{B3MO} , $[eB]^c$	E _{HCMO} , [eB] ^c	λ_{max}^{A} , [HM] ^d
11a	0.312	-1.581	1.89	-5.09	-3.20	655
11b	0.483	-1.570	2.05	-5.26	-3.21	604
11c	0.553 ^e	-1.863 ^e	2.78	-5.70	-2.92	445
32a	0.553	-2.119	2.67	-5.33	-2.66	464
32b	0.629	-2.053	2.68	-5.41	-2.73	462
32c	0.922 ^e	-2.024	2.95	-5.71	-2.76	419
32d	0.584	-2.372 ^e	2.96	-5.36	-2.40	419
32e	0.624	-2.129	2.75	-5.40	-2.65	450
32f	0.606 ^e	-2.054	2.99	-5.72	-2.73	414

Таблица 7 – Данные электрохимических исследований соединений 11, 32

^aВсе потенциалы приведены относительно ферроцена. ^b $\Delta E = E_{1/2}^{ox1} - E_{1/2}^{red1}$. ^c $E_{HOMO/LUMO} = -(E^{ox1/red1} + 4.8)$. ^dPaccчитанные значения λ_{max} ($\lambda = 1241/\Delta E$). ^eHeoбратимые пики E_p .

Расчётные значения энергий МО согласуются со значениями, полученными в результате электрохимических исследований. Электронная плотность в основном состоянии (B3MO) в соединениях **11** распределена на арилтиофен-2-ильном остатке, в возбуждённом (HCMO) – на (тиофен-2-ил)хиназолиновом фрагменте. В соединениях **32** ВЗМО в большей степени распреде-

¹ Выполнено совместно с Dr. P. Le Poul, Prof. F. Robin-Le Guen, Dr. S. Achelle (Ланньон, Франция), Dr. A. Barsella (Страсбург, Франция), Prof. O. Pytela, Prof. F. Bureš (Пардубице, Чехия).

лена на амино-донорном фрагменте, в то время как НСМО локализуется на 2арилхиназолинильном, а также 1,4-фениленовом остатках (Рисунок 9).

Рисунок 9 – Локализация граничных МО в хромофорах 11а и 32а

Соединения 11а-с, 32а-f продемонстрировали слабый NLO-отклик, с наибольшим значением µβ в случае **11а** (280 esu).

2.2 Донорно-акцепторные системы на основе 2,3-бис(5-арилтиофен-2-ил)хиноксалина 2,3-Бис(5-арилтиофен-2-ил)хиноксалины 2.2.1

V-Образные 2,3-бис(5-арилтиофен-2-ил)хиноксалины 41a-d получали ИЗ 0фенилендиамина 37 и 2,2'-тенила 38 в три стадии (Схема 9).

Длинноволновая полоса абсорбции соединений **41а-d** проявляется в области λ_{abs} 383–439 нм (Таблица 8), положение которой смещается гипсохромно в порядке ($41a \rightarrow 41b \rightarrow 41c \rightarrow 41d$) с ослаблением электронодонорной способности заместителя.

ноксалинов 41а-а находятся в диапазоне $\lambda_{em} = 480-557$ нм в толуоле, квантовый выход достигает 14 %. При переходе к ацетонитрилу полоса эмиссии значительно смещается в красную область (λ_{em} = 529-629 нм), квантовый выход при этом уменьшается.

Максимумы эмиссии хи- Таблица 8 – Фотофизические свойства соединений 41а-d.

Соед.	Раств-ль	λ _{abs} , нм (ε, мМ ⁻¹ ×см ⁻¹)	λ _{em} , нм	$\Phi_{\mathrm{F}}{}^{\mathrm{a}}$, %	Δv_{St} , cm ⁻¹
41a	толуол	438 (35.7)	557	7	3833
	MeCN	439 (30.4)	-	-	-
41b	толуол	424 (32.0)	519	14	4317
	MeCN	416 (23.9)	629	<1	8140
41c	толуол	418 (43.9)	498	8	2739
	MeCN	409 (42.4)	578	2	7149
41d	толуол	389 (31.5)	480	11	3721
	MeCN	383 (_)	529	5	7687

^аОтносительно 3-аминофталимида.

Введение тиениленового спейсера между хиноксалиновым и дифениламинофенильным фрагментом (соединение **41b**) приводит к батохромному сдвигу в спектрах поглощения и испускания, а также к снижению квантового выхода по сравнению с 2,3-бис(4-дифениламинофенил)хиноксалином, описанным в литературе ($\lambda_{abs} = 403$ нм, $\lambda_{em} = 475$ нм, $\Phi_F = 33$ %).

2.2.2 2,3-Бис-(арилтиенил)дибензо[f,h]хиноксалины

Схема 10 иллюстрирует синтез дибензо-аналогиов 2,3-бис(арилтиофен-2-ил)хиноксалина 45а-с. В спектрах поглощения соединений 45а-с длинноволновая полоса проявляется в видимой области λ_{abs} 412–454 нм. Влияние арильного заместителя на положение максимума поглощения такое же, как и для соединений 41a,b,d. Соединения 45а-с люминесцируют с интенсивностью до 13 % в толуоле (Таблица 9).

Положения максимумов абсорбции аннелированных производных хиноксалина **45а-с** батохромно смещены на 12–23 нм относительно аналогов **41а,b,d**, вероятно, из-за увеличения цепи сопряжения.

При этом положение максимума эмиссии смещается в синюю область на 39, 21 нм или не изменяется (в случае соединения **45b**). Что происходит, по-видимому, в результате ослабления акцепторных свойств дибензохиноксалина относительно

Габлица	9 –	Фотофизические	свойства	соединений
55а-с в ра	аствор	е толуола.		

Соед.	λ _{abs} , нм (ε, мМ ⁻¹ ·см ⁻¹)	λет, нм	$\Phi_{\text{F}}{}^{\text{a}}$, %	Δv_{St} , cm ⁻¹
45a	451 (39.8)	536	8	3516
45b	436 (56.2)	519	13	3668
45c	412 (41.7)	490	13	3864

^аОтносительно 3-аминофталимида.

хиноксалина и, как следствие, более слабого взаимодействия донорного и акцепторного фрагментов. Значения квантовых выходов практически не зависят от природы аминоарильного остатка.

2.2.3 Теоретические исследования дибензо[*f*,*h*]хиноксалинов

2,3-бис(арилтиенил)хиноксалинов и

Высшие занятые молекулярные орбитали соединений **41а,b,d** делокализованы по всей молекуле, в то время как ВЗМО соединений **45а-с** в большей степени локализованы на ариламиновом фрагменте и пиразиновом цикле (практически не наблюдаются на бензольных кольцах) (Рисунок 10).²

Рисунок 10 – Расчётные граничные молекулярные орбитали хиноксалинов 41а и 45а

² Выполнено совместно с Prof. В. Ośmiałowski (Торунь, Польша), Prof. R. Zaleśny (Варшава, Польша).

Электронный переход B3MO \rightarrow HCMO сопровождается значительным переносом электронной плотности от ариламинового фрагмента к хиноксалиновому остову. Вероятность переходов между энергетическими уровнями (сила осциллятора, λ_{calc}) соединений **45а-с** больше в 1.5 раза, чем для **41a,b,d**, что указывает на большую степень делокализации в π -системе дибензохиноксалинов **45а-с**. В целом данные, полученные в результате теоретических расчётов, хорошо согласуются с результатами фотофизических исследований.

2.2.4 Влияние рН-среды на фотофизические свойства 2,3-бис(арилтиенил)хиноксалинов и дибензо[*f*,*h*]хиноксалинов

В зависимости от природы донорного фрагмента и хиноксалинового ядра хромофоры 41a-d и 45a-с продемонстрировали различное поведение при изменении кислотности среды. Например, добавление ТФУК к раствору 41a в толуоле привело к постепенному изменению формы полосы и положения максимумов абсорбции (Рисунок 11 (a)). При этом максимум эмиссии хиноксалина 41a ($\lambda_{em} = 547$ нм) сместился в синюю область ($\lambda_{em} = 461$ нм), затем при 3500 экв. – в красную область ($\lambda_{em} = 601$ нм) с одновременным уменьшением интенсивности (Рисунок 11). Вероятнее всего, рассматриваемая молекула последовательно протонируется сначала по диэтиламиновым фрагментам, затем по хиноксалиновому ядру. В остальных случаях (соединения 41b-d) добавление кислоты привело к батохромному сдвигу полосы абсорбции, связанному с протонированием только хиноксалинового ядра, и тушению люминесценции.

В ряду соединений **45а-с** дибензохиноксалиновое ядро не протонируется, из-за стерических препятствий. Поэтому, только в случае хромофор **45а**, содержащего Et₂N-группы, наблюдали гипсохромное смещение максимумов абсорбции и эмиссии при добавлении ТФУК, связанное с протонированием диэтиламинного остатка.

2.2.5 Изучение способности хиноксалинов детектировать нитросодержащие вещества

Исследования проводили методом Single Point отношению по к 2,4динитротолуолу (ДHT), 2.4.6тринитротолуолу (ТНТ), пентаэритриттетранитрату (ПЭТН) и пикриновой кислоте (ПК) (Таблица 10). Производные хиноксалина 41a,b,d и 45a-с продемонстрировали тушение люминесценции с эффективностью до 40 % (Рисунок 12).

Таблица 10 – Значения K_{SV}/LOD нитросоединений лля сенсоров **41а.с.d. 45а-с**

Caar	K _{sv} , M ⁻¹ / LOD, ppb						
Соед.	ДНТ	THT	M ⁻¹ / LOD, ppb Г ПЭНТ П /78 57800/216 5720 156 14400/135 2610 221 7610/302 2080 /95 21000/93 2750 221 12100/210 1730 405 3160/582 1600	ПА			
41a	48400/32	45800/78	57800/216	57200/56			
41b	16900/134	14800/156	14400/135	26100/98			
41d	9950/168	6480/221	7610/302	20800/133			
45a	21400/60	21000/95	21000/93	27500/73			
45b	12600/97	13100/221	12100/210	17300/240			
45c	5040/219	4440/405	3160/582	16000/195			

Значения константы связывания (K_{SV}) для сенсоров **41а,с,d** и **45а-с** достаточно велики (до 57800 M⁻¹) для данного класса хромофоров. Хиноксалин **41а**, содержащий концевые диэтиламинофенильные заместители, является более эффективным хемосенсором с K_{sv} = $48400-57800 \text{ M}^{-1}$ и пределом обнаружения LOD = 32-216 миллиардных частей. Примечательно, что данное соединение обладает хорошей чувствительностью к нитросоединениям как ароматической, так и алифатической природы.

Рисунок 12 – Эффективность тушения сенсоров **41а, b, d, 45а-с** нитросоединениями

2.3 Полициклические производные хиназолинонов

4,5-Дифенил-7*H*-тиено[2',3':3,4]пиридо[2,1-*b*]хиназолин-7-оны **47а-d** получали аннелированием дифенилацетилена к хиназолин-4(3*H*)-онам **4, 12** или **46а,b**, с использованием [RhCp·Cl₂]₂ в качестве катализатора, CsOAc в качестве основания в гексафторизопропаноле (HFIP) при 60 °C в течение 12 ч (Схема 11).

Было установлено, что бромирование продукта **47a** действием NBS приводит к образованию 4,5-дифенил-7*H*-тиено[2',3':3,4]пиридо[2,1-*b*]хиназолин-7-она **47f**. В случае 2фенилхиазолинона **27a** те же условия аннелирования привели к продукту **49** в качестве основного, формирование которого произошло, вероятно, в результате алкоголиза амидной группы (Схема 12); структура подтверждена РСА.

Согласно фотофизическим исследованиям, соединения **47а-f**, **48**, **49** демонстрируют широкую длинноволновую полосу поглощения в области 346–433 нм (Таблица 11). Соединение **47е** с характеризуется наиболее смещённой в красную область полосой поглощения. Максимум полосы излучения соединения **47а** располагается при 480 нм. Наличие электронодонорной

группы в тиофеновом фрагменте (47b-е) приводит к батохромному смещению максимума эмиссии. Введение атома брома в бензольное кольцо тиенопиридохиназолин-7-она даёт противоположный эффект. Основной максимум эмиссии фенилсодержащего соединения 48 (510 нм) смещён на 30 нм в красную область по сравнению с тиофенильным аналогом 47а.

Для 47е полоса испускания смещается батохромно на 80 нм при увеличении полярности растворителя, что подтверждает высокую эффективность ВПЗ. Из серии соединений 47а-f, 48, 49 только дифениламинофенил-замещенный хиназолинон 47е продемонстрировал умеренный квантовый выход (15 % в толуоле и 29 % в MeCN).

1		1	/ (
Соед.	Раств-ль	λ _{abs} , нм	λ _{em} , нм	$\Phi_{\mathrm{F}}{}^{\mathrm{a}},$ %	v_{st} (cm ⁻¹)
		(є, мМ ⁻¹ ·см ⁻¹)			
47a	толуол	383 (13.3)	480	< 1	5267
47b	толуол	415 (9.2)	485	1	5221
47c	толуол	385 (20.1)	485	1	5355
47d	толуол	419 (12.9)	485	2	4634
47e	толуол	423 (32.5)	470 , 500	15	3640
	MeCN	417 (19.3)	550	29	5799
47f	толуол	392 (19.7)	475	1	4458
48	толуол	392 (13.6)	430, 510	< 1	5902
49	толуол	433 (5.4)	560	< 1	5238
	MeCN	346 (14.2)	520	< 1	8594
Этносите	пьно З-амин	офталимила			

Таблица 11 – Фотофизические свойства соединений 47-49.

Все соединения 47–49 проявляют люминесцентные свойства в твёрдом состоянии (Φ_F до 4.5 %), обусловленные ограничением внутримолекулярного вращения фенильных групп и уменьшением безызлучательных потерь энергии. Изучение АІЕЕ-эффекта (Рисунок 13 (a,b)) показало, что усиление эмиссии наблюдается при доле воды, превышающей 70 % в случае соединений **47а-d**, **48** и 60 % для образца **49**.

Рисунок 13 – (а) Спектры флуоресценции соединения 47с в смеси MeCN/H₂O с различной долей воды (f_w , %). (b) График зависимости I/I₀ при 475 нм от доли соотношения MeCN/H₂O для

соединения **47с** ($\lambda_{ex} = 385$ нм). (с) Спектры флуоресценции раствора **49** в ацетоне с различными катионами. Вставка: фотография раствора 49 в ацетоне без (1) или с (2) добавлением Fe^{3+} .

Для ряда соединений **47a-d,f**, **49** исследована способность детектировать катионы железа Fe³⁺. При добавлении катионов Fe³⁺ к раствору **49** интенсивность флуоресценции увеличилась в 100 раз по сравнению с чистым растворителем (Рисунок 13(с)). Отмечена селективность хромофора 49 к катиону трёхвалентного железа.

2.4 Замещённые 2-(2-гидроксифенил)хиназолин-4(3Н)-оны, дифторборатные комплексы на основе бензодиазиновых N,О-лигандов

2.4.1 2-(2-Гидроксифенил)хиназолин-4(3H)-оны и BF2 комплексы на их основе

(2-Гидроксифенил)хиназолин-4(3*H*)-оны **52а-h** были получены из 2-аминобензамида **1** и соответствующего производного салицилового альдегида 50а-h в две стадии с выделением 2-(2гидроксибензилиденамино)бензамида 51a-h или без выделения промежуточного соединения (для 52g,h) (Схема 13). Модификацией 2-(2-гидрокси-5-бромфенил)хиназолин-4(3H)-она 52c путём Pd-катализируемой реакции кросс-сочетания получали хиназолинон 52i. Дифторборатые комплексы 53а-і синтезировали обработкой соответствующего лиганда 52а-і эфиратом трёхфтористого бора (BF₃·OEt₂) в смеси толуола и ледяной уксусной кислоты (Схема 13).

50, 51, 52, 53: $\mathbf{R} = \mathbf{R}^1 = \mathbf{R}^2 = \mathbf{H}$ (a); $\mathbf{R} = \mathbf{R}^1 = \mathbf{H}$, $\mathbf{R}^2 = \mathbf{Cl}$ (b); $\mathbf{R} = \mathbf{R}^1 = \mathbf{H}$, $\mathbf{R}^2 = \mathbf{Br}$ (c); $\mathbf{R}^1 = \mathbf{H}$, $\mathbf{R} = \mathbf{R}^2 = \mathbf{Br}$ (d); $\mathbf{R}^1 = \mathbf{H}$, $\mathbf{R} = \mathbf{R}^2 = t$ -Bu (e); $\mathbf{R} = \mathbf{OEt}$, $\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{H}$ (f); $\mathbf{R} = \mathbf{R}^1 = \mathbf{H}$, $\mathbf{R}^2 = \mathbf{OMe}$ (g); $\mathbf{R} = \mathbf{R}^2 = \mathbf{H}$, $\mathbf{R}^1 = \mathbf{NEt}_2$ (h).

Лиганды 52 проявляют максимум длинноволновой полосы абсорбции в диапазоне $\lambda_{abs} = 342-380$ нм в толуоле (Таблица 12).

Таблица 12 – Фотофизические свойства лигандов 52 и комплексов 53, к.т.

Соед.	Раств-ль/	Лиганд				Caar	Комплекс			
	состояние	λ _{abs} , нм	λ _{em} , нм	$\Phi_{\rm F}{}^{\rm a}$, %	Δv_{st} , cm ⁻¹	Соед.	λ _{abs} , нм	λ_{em} , HM	$\Phi_{\rm F}{}^{\rm a}$, %	Δv_{st} , cm ⁻¹
52a	толуол	351 пл, 337	505	1	9872	- 53a	354	423	24	4608
	порошок ^с	-	495	29	-		-	500	19	-
52b	толуол	360 пл, 345	517	2	9643	- 53b	362	434	18	4583
	порошок	-	511	15	-		-	505	11	-
52c	толуол	360 пл, 346	512	3	9370	53c	367	433	2	4153
	порошок	-	502	15	-		-	506	2	-
52d	толуол	352	524	5	9325	53d	370	432	< 1	3879
	порошок	-	529	6	-		-	503	< 1	-
52e	толуол	342	532	< 1	10443	53e	366	441	42	4647
	порошок	-	544	3	-		-	469	66	-
52f	толуол	343 пл, 319 пл	-	-	-	53f	350 пл, 303	466	5	5568
	порошок	-	518	11	-		-	509	1	-
52g	толуол	367	557	< 1	9359	53g	385	474	70	4877
	порошок	-	546	10	-		-	489	4	-
52h	толуол	379	487	< 1 ^b	5851	53h	392	412	62	1238
	порошок	-	446	< 1	-		-	504	2	-
52i	толуол	380	563	3 ^b	12000	53i	405	538	22	6104
	порошок	-	530	2	-		-	563	1	-

Относительно ^абисульфата хинина, ^b3-аминофталимида. ^cАбсолютный квантовый выход.

Значительное смещение в длинноволновую область наблюдается при введении электронодонорного амино-заместителя (соединение **52h**) наряду с расширением сопряжённой π системы (соединение **52i**). Полоса спектров эмиссии соединений **52a-e,g-i** располагается в жёлто-зелёной области с максимумами в диапазоне от 505 до 563 нм и низкой интенсивностью (до 5 %). Введение заместителя в *пара-* или *орто-* положение фенольного кольца (хиназолиноны **52b-e,g,h**) приводит к батохромному смещению полосы эмиссии на 7–58 нм, при этом смещение увеличивалось при усилении электронодонорной способности заместителя (Таблица 12). Диэтиламино-замещённый по *мета-*положению 2-гидроксифенильного кольца хиназолинон **52h** характеризуется гипсохромным сдвигом максимума полосы эмиссии. Все 2-(2гидроксифенил)хиназолин-4(*3H*)-оны **52** характеризуются фотоиндуцированным внутримолекулярным переносом протона, что отражается в появлении длинноволновой полосы эмиссии (> 500 нм) и больших значениях сдвига Стокса (>150 нм) (Таблица 12). Поскольку лиганды **52** обладают более интенсивной люминесценцией в твёрдом состоянии по сравнению с раствором (Рисунок 14, Таблица 12), для данного ряда был изучен эффект усиления эмиссии, вызванного агрегацией. При постепенном увеличении доли воды в кювете во всех экспериментах наблюдали усиление эмиссии от 2 до 202 раз по сравнению с чистым растворителем (Рисунок 15), что подтверждает люминесцентный характер агрегированной формы исследуемых образцов.

При переходе от лигандов **52** к дифторборатным комплексам **53** максимум абсорбции сместился батохромно до 25 нм (Таблица 12) из-за формирования более сопряжённой планарной структуры. Соединения **53а-і** обладают люминесценцией в сине-зелёной области спектра (от $\lambda = 412$ нм до $\lambda = 538$ нм) с

максимумами, смещёнными в область коротких длин волн по сравнению с соответствующими лигандами **52**, что связано с прекращением процесса переноса протона. Показано, что величина квантовых выходов BF₂ комплексов зависит как от структуры, так и от среды. Например, производные **53b,e,g-i**, содержащие донорные заместители, продемонстрировали интенсивную люминесценцию (до 70 %) в толуоле. Значения сдвигов Стокса соединений **53а-g** составляют 4000–5500 см⁻¹ и достигают 6000–8000 см⁻¹ в случае соединения **53i**.

Выявлено, что введение *трет*бутильных групп в фенольный остаток приводит к усилению эмиссии в твёрдом состоянии с 19 % (**53a**) до 66 % (**53e**) (Таблица 12), вероятно, связано с формированием димеров, окружённых неполярными объёмными алкильными остатками, в кристаллическом состоянии (Рисунок 16).

Рисунок 16 – Структура и межмолекулярное N– Н...О взаимодействие хиназолинона **53е** согласно данным РСА

2.4.2 ВF2 комплексы 2-(2-гидроксифенил)-4-арилхиназолина

Лиганды **55а-k** синтезировали путём трёхкомпонентной реакции между 2аминобензофеноном **54а-с**, 2-гидроксибензальдегидом **50а, b, e, g** и ацетатом аммония в этаноле с использованием CuCl₂·2H₂O или I₂ в качестве катализатора (Схема 14).

После обработки хиназолинов 55 избытком эфирата трёхфтористого бора BF₃·OEt₂ получали продукты 56a-k. Комплексы 56 характеризуются максимумами полос абсорбции в диапазоне 386-440 нм (Таблица 13). УФ-спектры соединений 56а, b, j, g смещены на 32-49 нм в красную область по сравнению с BF2 хиназолиноновыми аналогами 53a,b,e,g, что может быть

Таблица 13 – Фотофизические свойства комплексов 56а-к, к. т.

Соед.		Тол	Порошок			
	λ_{abs} , HM	λem, HM	$\Phi_{\rm F}{}^{\rm a}$, %	$\Delta v_{st}, cm^{-1}$	λem, HM	$\Phi_{\rm F}{}^{\rm b}$, %
56a	386	529	1.3	6607	502	0.2
56b	390	541	2.1	7157	500	11.1
56c	395	542	0.8	6866	не измеряли	
56d	395	547	0.7	7035	не изме	ряли
56e	404	04 554		6702	не измеряли	
56f	410	556	0.7	6405	не измеряли	
56g	410	565	0.2	6691	541	1.9
56h	420	552	0.1	5694	540	2.5
56i	424	586	0.1	6520	не измеряли	
56j	434	_	_	_		_
56k	440	_	_	_		_

^аОтносительно 3-аминофталимида. ^ьАбсолютный квантовый выход.

связано с увеличением сопряжения при введении фенильного остатка в хиназолиновое ядро.

Введение атома хлора в структуру хиназолина **56а** приводит к батохромному смещению максимума абсорбции, а также к значительному увеличению флуоресценции в твёрдом состоянии по сравнению с раствором.

ЗАКЛЮЧЕНИЕ

1. Разработаны способы получения широкого ряда π-конъюгированных систем с хиназолиновым, хиназолин-4(3*H*)-оновым или хиноксалиновым остовом, содержащих требуемый для проведения фотофизических исследований набор заместителей с различной электронной природой, пространственным расположением и способностью к комплексообразованию.

2. Получена серия хромофоров типа Д-л-А на основе 2-арил/тиенил-4-(морфолин-4ил)хиназолинов, 2-арил/тиенил-4-цианохиназолинов или 2-арил/тиенилхиназолин-4(3*H*)-онов. Проведён анализ влияния природы донорного и акцепторного фрагментов, а также природы и длины л-спейсера на фотофизические свойства. Выявлены галохромные свойства 4-(морфолин-4-ил)хиназолинов при добавлении трифторуксусной кислоты к раствору хромофора в толуоле.

3. Построены 2,4-диарил-замещённые хиназолины типа Д-π-А, а также их 2-азинильные аналоги. Изучено влияние природы донорного фрагмента и заместителя в положении 2 хиназолинового ядра на положение максимумов абсорбции и эмиссии, а также значение квантового выхода. Отмечены спектральные изменения при добавлении катионов металлов к растворам некоторых хиназолинов, сольватохромные и нелинейно оптические свойства.

4. Синтезированы V-образные хромофоры типа Д-*π*-А-*π*-Д на основе 2,3-бис(арилтиофен-2-ил)хиноксалина и его дибензопроизводного. Продемонстрирована хорошая чувствительность хромофоров данного класса к различным по природе нитросоединениям.

5. Построены полициклические соединения в результате Rh(III)-катализируемого аннелирования дифенилацетилена к 2-(тиофен-2-ил)хиназолин-4(3H)-ону. Показано, что в случае 2фенилхиназолин-4(3H)-она те же самые условия способствуют формированию производного бензонафтиридина в результате алкоголиза амидной группы и двойного аннелирования фенилацетилена. Полициклические производные проявили агрегационно-индуцированную эмиссию в смеси MeCN/вода, для производного бензонафтиридина отмечено усиление интенсивности люминесценции в присутствии катионов Fe³⁺.

6. Получен ряд 2-(2-гидроксифенил)хиназолин-4(3*H*)-онов, содержащих различные заместители в фенольном фрагменте. Изучено влияние природы и расположения заместителя на явление фотоиндуцированного внутримолекулярного переноса протона, а также усиление эмиссии в результате агрегации. Выполнен синтез BF₂ комплексов на основе 2-(2гидроксифенил)хиназолин-4(3*H*)-онов и 2-(2-гидроксифенил)-4-арилхиназолинов, для некоторых хромофоров отмечена интенсивная люминесценция как в растворе, так и в твёрдом состоянии, а также большие значения сдвига Стокса.

Перспективы дальнейшей разработки темы

Представленные в работе различные типы флуорофоров на основе хиназолинов, хиназолинонов и хиноксалинов проявили высокие квантовые выходы в растворах и порошках и имеют значительный интерес для более детального изучения с целью практического применения. Выявленные закономерности позволяют в дальнейшем осуществлять дизайн и направленный синтез флуорофоров, обладающих заданными свойствами, для применения в качестве материалов ОСИД, красителей для биовизуализации, сенсорных устройств и т.д.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи, опубликованные в рецензируемых научных журналах и изданиях, определённых ВАК РФ и Аттестационным советом УрФУ:

1. **Moshkina T.N.** The Rh(III)-catalysed C–H/N–H annulation of 2-thienyl- and 2-phenylquinazolin-4(*3H*)-ones with diphenylacetylene / T.N. Moshkina, E.V. Nosova, G.N. Lipunova, E.F. Zhilina, P.A. Slepukhin, I.L. Nikonov, V.N. Charushin // New J. Chem. – 2021. – Vol. 45. – P. 8456–8466. (0.69/0.10 п.л.). (*Scopus, Web of Science*)

2. **Moshkina T.N.** Substituted 2-(2-hydroxyphenyl)-3*H*-quinazolin-4-ones and their difluoroboron complexes: synthesis and photophysical properties / T.N. Moshkina, E.V. Nosova, G.N. Lipunova, M.S. Valova, E.F. Petrusevich, R. Zaleśny, B. Ośmiałowski, V.N. Charushin // Spectrochim. Acta, Part A. – 2021. – Vol. 252. – P. 119497. (0.69/0.09 п.л). (*Scopus, Web of Science*)

3. **Moshkina T.N.** Electron-withdrawing substituted quinazoline push-pull chromophores: synthesis, electrochemical, photophysical and second-order nonlinear optical properties / T.N. Moshkina, P. Le Poul, A. Barsella, O. Pytela, F. Bureš, F. Robin-Le Guen, S. Achelle, E.V. Nosova, G.N. Lipunova, V.N. Charushin // Eur. J. Org. Chem. – 2020. – Vol. 2020, № 33. – P. 5445–5454. (0.63/0.06 п.л). (*Scopus, Web of Science*)

4. **Moshkina T.N.** Synthesis and photophysical studies of novel V-shaped 2,3-bis{5-aryl-2-thienyl}(dibenzo[*f*,*h*])quinoxalines / T.N. Moshkina, E.V. Nosova, A.E. Kopotilova, G.N. Lipunova, M.S. Valova, L.K. Sadieva, D.S. Kopchuk, P.A. Slepukhin, R. Zaleśny, B. Ośmiałowski, V.N. Charushin // Asian Jour. Org. Chem. – 2020. – Vol. 9, No 4. – P. 673–681. (0.57/0.05 п.л). (*Scopus, Web of Science*)

5. **Moshkina T.N.** Synthesis and luminescent properties of BF₂ complexes with N,O-benzazine ligands / T.N. Moshkina, E.V. Nosova, G.N. Lipunova, M.S. Valova, O.S. Taniya, P.A. Slepukhin, V.N. Charushin // J. Fluorine Chem. – 2019. – Vol. 221. – Р. 17–24. (0.46/0.07 п.л). (*Scopus, Web of Science*)

6. **Moshkina T.N.** New 2,3-Bis(5-arylthiophen-2-yl)quinoxaline derivatives: synthesis and photophysical properties / T.N. Moshkina, E.V. Nosova, G.N. Lipunova, M.S. Valova, V.N. Charushin // Asian Jour. Org. Chem. – 2018. – Vol. 7, № 6. – Р. 1080–1084. (0.23/0.05 п.л). (*Scopus, Web of Science*)

7. Nosova E.V. Synthesis and photophysical studies of novel 2-[5-(4-diethylaminophenyl)thiophen-2-yl]quinazoline derivatives / E.V. Nosova, **T.N. Moshkina**, G.N. Lipunova, I.V. Baklanova, D.S. Kopchuk, P.A. Slepukhin, V.N. Charushin // Mendeleev Commun. – 2018. – Vol. 28, № 1. – Р. 14–16. (0.14/0.02 п.л). (*Scopus, Web of Science*)

8. Nosova E.V. Synthesis and photophysical studies of novel 4-aryl substituted 2-phenyl-, 2-(fluo-ren-2-yl)- and 2-cymantrenylquinazolines / E.V. Nosova, **T. N. Moshkina**, G.N. Lipunova, E. S. Kelbysheva, N.M. Loim, P.A. Slepukhin, V.N. Charushin, I.V. Baklanova // Mendeleev Commun. – 2018. – Vol. 28, № 1. – P. 33–35. (0.14/0.02 п.л). (*Scopus, Web of Science*)

9. Nosova E.V. Cyclometallated PT^{II} complexes of 2-(2-thienyl)-4-(cycloalkylimino)-substituted quinazolines / E.V. Nosova, **T.N. Moshkina**, D.S. Kopchuk, G.N. Lipunova, P.A. Slepukhin, V.N. Charushin // Mendeleev Commun. – 2016. – Vol. 26, № 2. – Р. 129–130. (0.14/0.02 п.л). (*Scopus, Web of Science*)

10. Nosova E.V. Synthesis and photophysical studies of 2-(thiophen-2-yl)-4-(morpholin-4-yl)quinazoline derivatives / E.V. Nosova, **T.N. Moshkina**, G.N. Lipunova, D.S. Kopchuk, P.A. Slep-

ukhin, I.V. Baklanova, V.N. Charushin, // Eur. J. Org. Chem. – 2016. Vol. 2016. № 16. Р. 2876–2881. (0.44/0.06 п.л). (*Scopus, Web of Science*)

11. Nosova E.V. Synthesis, structure and photoluminescent properties of BF₂ and BPh₂ complexes with N,O-benzazine ligands / E.V. Nosova, **T.N. Moshkina**, G.N. Lipunova, I.V. Baklanova, P.A. Slepukhin, V.N. Charushin // J. Fluorine Chem. – 2015. – Vol. 175. – P. 145–151. (0.44/0.07 п.л). (*Scopus, Web of Science*)

Другие публикации:

12. **Moshkina T.N.** 2,3-Bis(arylthienyl)pyrazine derivatives: synthesis, photophysical properties and fluorescence quenching studies towards nitroaromatics / T.N. Moshkina, A.E. Kopotilova, E.V. Nosova, G.N. Lipunova, V.N. Charushin // Book of abstracts. Wordwild conference for the presentation of innovations in chemical and biochemical optical sensing, EUROPT(R)ODE – Warsaw, Poland, 2021. – P.166. (0.03/0.01 п.л).

13. **Moshkina T.N.** New 2-(2-hydroxyphenyl)quinazolinone dyes and their difluoroboron complexes: Synthesys and photophysical properties / T.N. Moshkina, G.N. Lipunova, E.V. Nosova, V.N. Charushin // Book of abstracts. International scientific conference "Actual problems of organic chemistry and Biotechnology" – Екатеринбург: УрФУ, 2020. – С. 282–283. (0.06/0.02 п.л).

14. **Moshkina T.N.** Quinazolinone derivatives: Synthesis and luminescence properties / T.N. Moshkina, E.V. Nosova, G.N. Lipunova, V.N. Charushin // Book of abstracts. IV International conference "Modern Synthetic Methodologies for Creating Drugs and Functional Materials" – Екатеринбург: УрФУ, 2020. – OR-29. (0.03/0.01 п.л).

15. **Moshkina T.N.** Benzodiazine derivatives: synthesis and fluorescence sensory ability / T.N. Moshkina, A.E. Kopotilova, E.V. Nosova, G.N. Lipunova, V.N. Charushin // Book of abstracts. The 6th International Fall School on Organic Electronics – Москва, 2020. – С. 67. (0.03/0.01 п.л).

16. **Moshkina T.N.** Synthesis of 2-thienyl- and 2,4-diaryl-substituted quinazolines as perspective components for organic materials / T.N. Moshkina, E.V. Nosova, G.N. Lipunova, V.N. Charushin // Abstracts of International Symposium on Dyes and Pigments. Modern colorants; the synthesis and application of pi-systems – Seville, Spain, 2019. – P1.18. (0.03/0.01 п.л).

17. **Moshkina T.N**. New 2-thienylbenzodiazines derivatives as perspective components for optical materials / T.N. Moshkina, E.V. Nosova, G.N. Lipunova, V.N. Charushin // The Fifth International Scientific Conference "Advances in Synthesis and Complexing" – Москва, 2019. – С. 194. (0.06/0.02 п.л).