Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина» Химико-технологический институт Кафедра органической и биомолекулярной химии

На правах рукописи

Мошкина Татьяна Николаевна

СИНТЕЗ НОВЫХ ФЛУОРОФОРОВ НА ОСНОВЕ АРИЛ(ГЕТАРИЛ)-ЗАМЕЩЁННЫХ ХИНАЗОЛИНОВ, ХИНАЗОЛИН-4(*3H*)-ОНОВ И ХИНОКСАЛИНОВ

1.4.3. Органическая химия

диссертация на соискание учёной степени кандидата химических наук

> Научный руководитель доктор химических наук, доцент, Носова Эмилия Владимировна

Екатеринбург – 2022

Введение						
1	Литературный обзор. Бензодиазиновые структуры – перспективные					
люмі	инесцентные материалы и компоненты оптоэлектронных устройств	. 8				
1.1	Донорно-акцепторные системы бензодиазиновой природы	. 8				
1.1.1	2,4-Дизамещённые хиназолины	.9				
1.1.2	2,3-Бис(арил/гетарил)хиноксалины	16				
1.2	Аннелированные производные хиназолин-4(3 <i>H</i>)-она	25				
1.3	2-(2-Гидроксифенил)хиназолин-4(3H)-оны и BF2 комплексы на основе бензодиазинов .2	27				
Выво	ды по литературному обзору	33				
2	Обсуждение результатов. Новые производные хиназолинов, хиназолин-4(3H)-онов	И				
хино	ксалинов: синтез и исследование фотофизических свойств	36				
2.1	Донорно-акцепторные системы на основе хиназолина	36				
2.1.1	2-(5-Арил(гетарил)тиофен-2-ил)-хиназолины	36				
2.1.2	2-(4-Арилфенил)- и 2-(3-арилфенил)хиназолины	45				
2.1.3	2-(4-Дифениламинофенил)хиназолины	19				
2.1.4	Сравнение фотофизических свойств 4-(морфолин-4-ил)-, 4-цианохиназолинов и					
хиназ	золин-4(3 <i>H</i>)-онов	51				
2.1.5	Влияние рн среды на фотофизические свойства 4-(морфолин-4-ил)хиназолинов	54				
2.1.6	АІЕ/АІЕЕ – эффект 4-(морфолин-4-ил)хиназолинов	59				
2.1.7	2-Фенил-, 2-флуоренил- и 2-цимантренил-замещённые 4-арилхиназолины	50				
2.1.8	2-(4-Цианофенил)- и 2-(4-трифторметилфенил)-замещённые 4-арилхиназолины	52				
2.1.9	2-Азинил-4-аминофенилхиназолины	55				
2.1.10) Фотофизические исследования 2-азинил-4-аминофенилхиназолинов в присутствии					
катис	онов металлов	59				
2.1.11	Электрохимические, нелинейно-оптические свойства и теоретические исследования					
соеди	инений 11a-с, 40a-f	70				
2.2	Донорно-акцепторные системы на основе 2,3-бис(5-арилтиофен-2-ил)хиноксалина	72				
2.2.1	2,3-Бис(5-арилтиофен-2-ил)хиноксалины	72				
2.2.2	2,3-Бис-(арилтиенил)дибензо[<i>f</i> , <i>h</i>]хиноксалины	74				
2.2.3	Теоретические исследования 2,3-бис(арилтиенил)хиноксалинов и					
дибен	нзо[<i>f</i> , <i>h</i>]хиноксалинов	76				
2.2.4	Влияние рН-среды на фотофизические свойства 2,3-бис(арилтиенил)хиноксалинов и					
дибен	нзо[<i>f</i> , <i>h</i>]хиноксалинов	77				
2.2.5	Изучение способности хиноксалинов детектировать нитросодержащие вещества	79				
2.3	Полициклические производные хиназолинонов 8	30				
2.4	Замещённые 2-(2-гидроксифенил)хиназолин-4(3Н)-оны, дифторборатные комплексы на	Ļ				
основ	зе бензодиазиновых N,O-лигандов	35				
2.4.1	2-(2-Гидроксифенил)хиназолин-4(3 <i>H</i>)-оны и BF ₂ комплексы на их основе	35				
2.4.2	ВF2 Комплексы 2-(2-гидроксифенил)-4-арилхиназолина) 1				
3	Экспериментальная часть) 4				
3.1	Методы и приборы) 4				
3.2	Методики синтеза и характеристики соединений) 5				
Заключение141						
Список условных обозначений и сокращений142						
Список литературы						
Приложения						

Введение

Актуальность и степень разработанности темы исследования. Азины, диазины и их бензоаннелированные аналоги – широко известные структуры среди природных и синтетических биологически активных веществ. В последние десятилетия интерес к азотсодержащим гетероциклическим соединениям связан с их перспективами применения как люминесцентных материалов для оптоэлектронных устройств. Благодаря структурным особенностям данные гетероциклы представляют собой удобную основу для синтеза различных типов хромофоров. Так, π -дефицитный характер шестичленных азотсодержащих гетероциклов позволяет применять их в качестве акцепторных фрагментов для построения донорно-акцепторных систем с внутримолекулярным переносом заряда (ВПЗ). Наличие неподелённой электронной пары на атомах азота обуславливает возможность протонирования, образования водородных связей, а также комплексообразования. Важным преимуществом бензодиазиновых структур является относительная простота и вариативность синтеза, а также лёгкость модификации, что даёт возможность тонкой настройки желаемых характеристик.

В литературе описано множество подходов к синтезу бензодиазинового ядра и представлены различные классы арилзамещённых диазинов с привлекательными фотофизическими свойствами, перспективными для прикладного применения. Тем не менее некоторые бензодизазиновые производные ряда хиноксалина, хиназолина и хиназолин-4(*3H*)-она, в частности, с 2,5тиениленовым фрагментом, ещё мало изучены, а также нет подробной систематизации данных по влиянию структурных особенностей на фотофизические свойства рассматриваемого ряда соединений.

Целью диссертационной работы является: разработка методов синтеза новых хромофоров на основе бензодиазинов, установление взаимосвязи структуры и фотофизических свойств и оценка перспектив практического применения.

Для достижения поставленной цели необходимо решить следующие задачи:

- ✓ Выбрать наиболее эффективные методы получения 2-арил(гетарил)-бензодиазиновых интермедиатов – хиназолинов, хиноксалинов, хиназолин-4(3*H*)-онов;
- Осуществить модификацию бензодиазинов путём введения электронодонорных фрагментов, построения полициклических структур, дифторборатных комплексов;
- ✓ Подтвердить строение синтезированных гетероциклических соединений физико-химическими методами анализа (ФХМА);
- ✓ Изучить фотофизические свойства синтезированных соединений, установить влияние электронных эффектов заместителей и их расположения в молекуле на оптические свойства;

3

- ✓ Сравнить экспериментально полученные результаты с данными квантово-химических расчётов, а также с литературными данными для близких структурных аналогов;
- ✓ Рассмотреть перспективы практического применения полученных соединений.

Научная новизна и теоретическая значимость работы. Получен широкий ряд новых гетероциклических соединений донорно-акцепторного типа – 2,4-дизамещённых хиназолинов и 2,3-дизамещённых хиноксалинов. Изучены фотофизические свойства в растворах и в порошке, чувствительность к полярности растворителя и кислотности среды. Проведён анализ влияния различных структурных фрагментов (электроноакцепторного, электронодонорного заместителя и *π*-спейсера) на фотофизические свойства в ряду хиназолинов. Для производных 4-цианохиназолинов, а также 2-(4-цианофенил)- и 2-(4-трифторметилфенил)хиназолинов оценены нелинейно-оптические свойства в торого порядка. Отмечена хорошая чувствительность 2,3-бис(арилтиенил)хиноксалинов к нитросоединениям как ароматической, так и алифатической природы.

Синтезирована серия полициклических соединений Rh(III)-катализируемым аннелированием дифенилацетилена к 2-(тиофен-2-ил)хиназолин-4(3*H*)-онам, содержащим различные заместители в тиофеновом кольце. Показано, что в случае 2-фенилхиназолин-4(3*H*)-она в тех же условиях реакции образуется производное бензонафтиридина в результате алкоголиза амидной группы и двойного аннелирования дифенилацетилена. Для полициклических структур выявлено явление усиления/возникновения люминесценции, вызванной агрегацией (AIEE/AIE).

Разработаны синтетические подходы к 2-(2-гидроксифенил)хиназолин-4(3*H*)-онам и 2-(2-гидроксифенил)-4-арилхиназолинам и построены дифторборатные комплексы на их основе. Изучено влияние заместителей в фенольном кольце на процесс фотоиндуцированного внутримолекулярного переноса протона в 2-(2-гидроксифенил)хиназолин-4(3*H*)-онах, а также показано возникновение/усиление люминесценции в результате агрегации (AIE/AIEE эффект) в данном ряду. Изучены фотофизические свойства дифторборатных комплексов в растворах и твёрдом состоянии; отмечены большие значения сдвига Стокса, а также высокая интенсивность люминесценции в случае метокси-, *трет*-бутокси- и диэтиламино- производных в толуоле; выявлено положительное влияние атома хлора на значение квантового выхода в твёрдом состоянии.

Практическая значимость работы. Расширен ряд π -коньюгированных флуорофоров Д- π -А и Д- π -А- π -Д типа с хиназолиновым, хиназолин-4(*3H*)-оновым или хиноксалиновым остовом. Показана применимость 4-(морфолин-4-ил)хиназолинов в качестве люминесцентных pHсенсоров, а также возможность генерирования белого излучения путём частичного протонирования. Продемонстрирована способность V-образных люминофоров на основе хиноксалина и дибензохиноксалина детектировать различные по природе нитросоединения. Отмечено усиление интенсивности люминесценции раствора 4,5-дифенил-7*H*-тиено[2',3':3,4]пиридо[2,1*b*]хиназолин-7-она при добавлении катионов Fe³⁺. Выявлено, что все полученные 2-(2гидроксифенил)хиназолин-4(3*H*)-оны обладают AIE/AIEE эффектом, с усилением интенсивности люминесценции до 202 раз. Предложены структуры BF₂ комплексов N,O-бензазиновых лигандов, характеризующиеся большими значениями сдвига Стокса.

Методология и методы диссертационного исследования. Для проведения исследования был применён широкий набор методов органического синтеза: реакции конденсации, нуклеофильного замещения, кросс-сочетания Сузуки и Соногаширы, а также реакции Rh(III)катализируемой С–Н-функционализации, построения координационных соединений и другие. Для установления структурных особенностей соединений использован комплекс ФХМА: спектроскопия ЯМР ¹H, ¹³C, ¹⁹F, ¹¹B, масс-спектрометрия, ИК/КР-спектроскопия, элементный и рентгеноструктурный анализ. Фотофизические, электрохимические свойства, а также исследования сольватохромии, галохромии, NLO-свойств, AIE/AIEE-эффекта проведены в соответствии со стандартными методиками. Для анализа геометрии и электронной структуры основного и возбуждённого состояния молекулы использованы квантово-химические расчёты.

Положения, выносимые на защиту.

1. Дизайн и синтез 2-(тиофен-2-ил)хиназолинов, а также их 2-фенильных аналогов, содержащих различные электронодонорные заместители в тиениленовом/фениленовом фрагменте, с использованием для модификации реакций Pd-катализируемого кросс-сочетания.

2. Синтез 2,4-дизамещённых хиназолинов, содержащих электронодонорный фрагмент в положении 4. Изучение влияния природы электроноакцепторного заместителя в положении 2 хиназолинового ядра на фотофизические свойства.

3. Получение 2,3-бис(5-аминоарилтиофен-2-ил)хиноксалинов и их бензоаннелированных аналогов. Исследование взаимосвязи «структура-фотофизические свойства» в данном ряду.

4. Построение полициклических структур на основе 2-(тиофен-2-ил)хиназолин-4(3*H*)-она Rh(III)-катализируемым аннелированием дифенилацетилена, изучение оптических свойств полученного ряда соединений.

5. Исследование влияния заместителя в фенольном кольце 2-(2гидроксифенил)хиназолин-4(3*H*)-онов на фотофизические свойства и эффект агрегационноиндуцированной эмиссии, а также анализ влияния структуры хиназолинового лиганда на свойства дифторборатных комплексов.

6. Оценка перспектив практического использования модифицированных хромофоров бензодиазинового ряда.

Личный вклад соискателя. Автор осуществил сбор, систематизацию и анализ литературных данных, постановку цели и задач исследования, планирование и проведение синтеза

5

структур, участвовал в изучении фотофизических и других свойств, а также обработке и обсуждении полученных результатов, подготовке публикаций.

Степень достоверности результатов подтверждена экспериментальными данными. Все новые химические соединения охарактеризованы комплексом ФХМА. Спектроскопические, фотофизические, электрохимические исследования, а также анализ состава и структуры соединений были проведены на сертифицированном оборудовании.

Апробация работы. Результаты работы были доложены (с опубликованием тезисов) на международных конференциях: Международной конференции по инновациям в химическом и биохимическом оптическом детектировании, XV EUROPT(R)ODE 2021 (Варшава, 2021 г.), «Актуальные проблемы органической химии и биотехнологии, OrgChemBioTech» (Екатеринбург, 2020 г.), «Современные синтетические методологии для создания лекарственных препаратов и функциональных материалов, MOSM» (Екатеринбург, 2020 г.), Международной осенней школе по органической электронике, IFSOE (Москва, 2020 г.), Международном симпозиуме по красителям и пигментам (Испания, Севилья, 2019 г.), Пятой международной научной конференции «Достижения в синтезе и комплексировании» (Москва, 2019 г.).

Публикации. Основное содержание диссертационного исследования опубликовано в 11 статьях, входящих в международные базы Scopus и Web of Science, а также в 6 тезисах материалов конференций международного и российского уровня.

Структура и объем работы. Диссертационная работа выполнена на 162 листах машинописного текста, состоит из введения, литературного обзора (*Paзdeл 1*), обсуждения результатов (*Paзdeл 2*), экспериментальной части (*Paзdeл 3*), списка сокращения и условных обозначений, заключения, списка литературы и 5 приложений. Работа содержит 38 схем, 58 рисунков и 28 таблиц. Библиографический список включает 170 ссылок на литературные источники.

Автор выражает благодарность коллективу кафедры Органической и биомолекулярной химии, в частности, научному руководителю д.х.н., проф. Носовой Э.В. за научное руководство и помощь в выполнении работы, к.х.н. Тание О.С., Садиевой Л.К., Савчук М.И. и к.х.н. Никонову И.Л. за изучение фотофизических свойств, Копотиловой А.Е. и Пермяковой Ю.В. за помощь в синтезе; а также профессору S. Ashelle (Университет Ренн 1, Ланьон, Франция) за помощь в изучении электрохимических и нелинейно-оптических свойств; профессору B. Ośmiałowski (Университет Николая Коперника, Торунь, Польша) за помощь в теоретических исследованиях; сотрудникам Института органического синтеза Уральского отделения РАН (г. Екатеринбург): к.х.н. Слепухину П.А. за проведение рентгеноструктурного анализа, к.х.н. Валовой М. С. и к.х.н. Жилиной Е.Ф. за помощь в изучении фотофизических свойств; академику РАН Чарушину В.Н., д.х.н. Липуновой Г.Н. и д.х.н. Копчуку Д.С. за помощь в подготовке публикаций; сотрудникам и заведующему лабораторией Комплексных исследований и экспертной оценки органических материалов Центра коллективного пользования УрФУ к.х.н. Ельцову О.С. за проведение спектральных исследований.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты 14-03-00340, 18-03-00112, 19-33-90014 Аспиранты), Российского научного фонда (гранты 19-73-10144, 21-13-00304, 22-23-0006).

1 Литературный обзор. Бензодиазиновые структуры – перспективные люминесцентные материалы и компоненты оптоэлектронных устройств

Бензодиазины (хиназолин, хиноксалин) – π-дефицитные гетероциклы, содержащие два атома азота (Рисунок 1), широко применяются в качестве акцепторных фрагментов при построении донорно-акцепторных систем с внутримолекулярным переносом заряда (ВПЗ). Наличие аннелированного бензольного кольца способствует лучшей делокализации заряда по сравнению с диазиновыми аналогами и смещению полосы поглощения в красную область. Благодаря структурным особенностям и химическим свойствам бензодиазины нашли широкий спектр применения как люминесцентные материалы для оптоэлектроники. Повсеместное исследование не только оптических, но и биологических свойств производных бензодиазинов способствовало широкому развитию синтетических подходов к построению рассматриваемых структур.

хиназолин

хиназолин-4(3*H*)-он

хиноксалин

Рисунок 1 – Структуры бензодиазинов, рассматриваемые в обзоре

В данной работе проанализировано три направления создания люминесцентных структур на основе бензодиазинов (хиназолина, хиноксалина и хиназолин-4(3*H*)-она):

- донорно-акцепторные системы бензодиазиновой природы;

- аннелированные производные хиназолин-4(3H)-она;

- 2-(2-гидроксифенил)хиназолин-4(3*H*)-оны и N–B–O координированные BF₂ комплексы на основе азот-содержащих шестичленных гетероциклов.

1.1 Донорно-акцепторные системы бензодиазиновой природы

Органические донорно-акцепторные молекулы представляют собой подкласс *π*сопряженных систем, которые содержат в структуре электронодонорный Д и электроноакцепторный А фрагменты, соединённые *π*-спейсером. В таких структурах реализуется внутримолекулярный перенос заряда (ВПЗ) между донорным и акцепторным фрагментом, и образуется новая молекулярная орбиталь. Возбуждение электронов в пределах новой орбитали может быть достигнуто с помощью видимого света, что играет ключевую роль в биосенсорике и биовизуализации. Помимо отличных оптических свойств, ВПЗ значительно поляризует всю *π*-систему, а молекулы Д-*π*-А обладают дипольным характером (Рисунок 2).[1] Основное преимущество хромофоров типа Д-*π*-А по сравнению с другими неорганическими и органическими красителями заключается в их четко определенных и настраиваемых структурах и предсказуемых свойствах. В целом фундаментальные особенности биполярных молекул, такие как уровни ВЗМО и НСМО, их разность (запрещенная зона), положение максимума поглощения с наибольшей длиной волны и дипольный момент, можно настраивать путем варьирования природы акцепторной, донорной частей или *π*-спейсера.

Рисунок 2 – Схематичное представление системы Д-π-А и граничных резонансных структур (гетеро)ароматичной «пуш-пульной» молекулы (Х – гетероатом, вовлечённый в π-систему)[1]

Изменение природы электроноакцепторного и электронодонорного фрагментов, модификация π-системы (длина, состав и поляризуемость) и общее расположение хромофора (количество и взаимное расположение фрагментов А и Д), а также дальнейшая вспомогательная функционализации в настоящее время представляют собой хорошо разработанные инструменты для тонкой настройки Д-π-А ансамблей в соответствии с желаемым применением.[1,2] В обзоре 2019 г [3] систематизированы данные по функциональным бензазиновым производным. В данной главе диссертации приведены сведения о флуорофорах хиназолинового и хиноксалинового ряда, отражающие современное состояние в области выбранных объектов исследования.

1.1.1 2,4-Дизамещённые хиназолины

Интерес к производным хиназолинов как эффективным люминесцентным материалам возник относительно недавно. Так, в 2013 году были получены 4-фенилхиназолны **ЛЗа,b**, содержащие ариламинофенильный заместитель в положении 2, взаимодействием 2аминобензонитрила **Л1а**, фенилмагнийбромида и бензоилхлорида с последующим Pdкатализируемым сочетанием 2-бромфенилхиназолина **Л2** с ариламинами (Схема 1). Полученные соединения **ЛЗа,b** оказались подходящими структурами для реализации твердофазной белой фотолюминесценции и электролюминесценции путем добавления определенного количества твердой камфорсульфоновой кислоты в тонкие пленки хромофоров.[4] Суть метода заключается во взаимодействии исходных молекул, обладающих «синей» люминесценцией, с кислотой и образовании новых протонированных форм с «оранжевой» люминесценцией. Важно, что полоса эмиссии исходной молекулы и полоса абсорбции протонированной формы должны перекрываться для возможности переноса энергии. Благодаря этому, при возбуждении исходных молекул в условиях частичного протонирования наблюдается одновременное свечение в синей и оранжевой областях спектра, приводящее к генерации белого излучения.

Ряд полизамещённых хиназолинов (Схема 2) был получен из 3,5-дибром-2аминобензамида **Л4** и производного бензальдегида путём многостадийного синтеза, включающего кросс-сочетание Соногаширы для введения арилэтинильного остатка в положение 4 и кросс-сочетание Сузуки-Мияуры с арилбороновыми кислотами по положениям 6 и 8 хиназолинового ядра.[5]

Схема 2

Л8-Л10: $\mathbf{R} = H(\mathbf{a}), F(\mathbf{b}), Cl(\mathbf{c}), OMe(\mathbf{d}).$

Соединения продемонстрировали абсорбцию с максимумами при 273–298 нм и люминесценцию в диапазоне от 454 до 480 нм в хлороформе с квантовым выходами до 11 %. При переходе к полярному растворителю (ДМФА) метокси-замещённые производные **Л10а-d** проявили батохромное смещение максимумов эмиссии на 17–49 нм.

Позднее были получены арилзамещённые хиназолиновые хромофоры Л13 и Л14, содержащие донорные диэтиламино- и дифениламино-фрагменты в положении 4 или в положениях 2 и 4 хиназолинового ядра путём реакций кросс-сочетания Сузуки-Мияуры из соответствующего моно- или дихлорпроизводного (Схема 3).[6]

Показано, что арилзамещённые хиназолины Л13 и Л14 люминесцируют в зелёной области с квантовыми выходами выше 30 % и характеризуются большими значениями сдвига Стокса (Таблица 1).

Соед.а	$λ_{abs}$, HM (ε, mM ⁻¹ cm ⁻¹)	λem, HM	$\Phi_{\mathrm{F}}{}^{\mathrm{b}}$	$\Delta v_{\rm St}, {\rm cm}^{-1}$
Л13а	264 (13.8), 380 (16.4)	490	0.93	5908
Л13b	293 (16.7), 384 (16.6)	528	0.80	7102
Л14а	341 (36.3), 370 (33.3)	530	0.30	8159
Л14b	296 (34.7), 384 (37.0)	534	0.34	6474

Таблица 1 – Фотофизические свойства производных хиназолина Л13 и Л14.

^aИзмерения сделаны в растворе CH₂Cl₂ при к.т. с концентрацией с = $(1.0-6.0) \times 10^{-5}$ M для абсорбции и с = $(1.0-6.0) \times 10^{-6}$ M для эмиссии. ^bКвантовый выход люминесценции (±10 %) определяли относительно сульфата хинина в 0.1 M H₂SO₄ ($\Phi_F = 0.54$) и 9,10-дифенилантрацена в циклогексане ($\Phi_F = 0.90$) в качестве стандарта.

Структуры **Л13** и **Л14** характеризуются высокой полярностью молекул в возбуждённом состоянии и внутримолекулярным переносом заряда от донорной аминоарильной к акцепторной хиназолиновой части, что проявляется в выраженном положительном сольватохромизме эмиссии. Кроме того, соединения продемонстрировали резкое и обратимое изменение цвета эмиссии при добавлении кислоты в результате протонирования атомов азота хиназолинового кольца и перспективны для создания колориметрических pH сенсоров.

Использование галогенпроизводных хиназолинов – довольно частый подход в реакциях кросс-сочетания с целью формирования С–С связи и построения донорно-акцепторных систем. В зависимости от положения галогена в хиназолиновом ядре могут быть получены 2-замещённые, 4-замещённые или 2,4-дизамещённые производные хиназолина. Стоит отметить, что реакция кросс-сочетания 2,4-дихлорпроизводого протекает селективно, преимущественно по положению 4 как наиболее электрофильному центру[7,8], благодаря чему могут быть получены 2,4-дизамещённые хиназолины, содержащие различные по природе заместители. Например, авторами работы [9] были синтезированы производные хиназолина Л15, Л17 (Схема 4), содержащие бензимидазольный, карбазольный или трифениленовый фрагменты. Красные фосфоресцентные органические светоизлучающие диоды (ОСИД/OLED), сконструированные на основе полученных структур в качестве хост-материалов, проявили высокую внешнюю квантовую эффективность (EQE до 19.2 %).

Хромофоры на основе 2-фенилхиназолина **Л20а,b** и **Л21**, полученные модификацией 2фенил-4-хлорхиназолина **Л18** за счёт введения бензокарбазольного или бензокарбазолфенильного заместителя (Схема 5), оказались перспективными хост-материалами при конструировании оранжевых фосфоресцентных органических светодиодов благодаря продолжительному времени жизни, превышающему время жизни устройств на основе 1,3-бис(N-карбазол)бензола (CBP) в 30 раз.[10] Стабильность люминесценции полученных ОСИД на основе хиназолиновых хромофоров **Л20а,b** и **Л21** обусловлена жёсткостью ароматических фрагментов (бензокарбазола и хиназолина). Кроме того, согласно результатам исследования, присутствие фениленового спейсера в структуре препятствует перекрыванию молекулярных орбиталей основного и возбуждённого состояний, что положительно влияет на срок службы устройств.

Хромофоры Л22–Л26, полученные из соответствующих моно- или дихлор-производных в результате Pd-катализируемых реакций кросс-сочетания, также представляют большой интерес в области разработки ОСИД–материалов (Рисунок 3).[11–13]

Рисунок 3 – Хиназолиновые производные – компоненты материалов ОСИД

Создание структур типа Д-л-А, имеющих скрученное строение, с небольшими значениями синглет-триплетной энергетической щели (ΔE_{ST}) является фундаментальным принципом при создании хромофоров с термически активированной задержанной флуоресценцией (ТАЗФ). Стоит отметить, что ТАЗФ-материалы представляют большой интерес в области разработки ОСИД благодаря возможности получения 100 % внутренней квантовой эффективности (IQE). Показано, что феноксазин-содержащие хиназолины **Л22**, **Л23**, **Л23а**, **Л24а** характеризуются низкими значениями энергетической щели (0.09–0.22 eV) между триплетным и синглетным состояниями ${}^{3}LE^{-1}CT$, что отражается в проявлении ТАЗФ. Материалы на их основе люминесцируют в зеленой/желто-зеленой области спектра с высокими квантовыми выходами, составляющими 67.5–81.0 % в 1,3-бис(N-карбазол)бензоле в качестве хост-материала.[11] Карбазолил-содержащие хиназолины **Л24b**, **Л25b**, **Л26** оказались эффективными компонентами для создания стабильных синих органических светодиодов ($\lambda_{em} < 450$ нм) с координатой цветности Y менее 0.10.[12] Функционализация хиназолинового остова фенотиазиновым заместителем (соединения **Л24c**, **Л25c**) способствовала не только проявлению ТАЗФ-характеристик, но и позволила получить хромофоры, генерирующие белую люминесценцию вследствие одновременной эмиссии различных конформеров. Отмечено, что введение фенотиазинфенильного заместителя в положение 4 хиназолинового ядра оказалось более выгодным для проявления данных свойств по сравнению с 2-замещёнными аналогами (структура **Л24c** в сравнении с **Л25c**).[13]

Одно из основных преимуществ органических материалов – возможность тонкой настройки фотофизических свойств путём варьирования природы и положения заместителей. С этой целью были получены 2-(3,5-бис(трифторметил)фенил)-хиназолины **Л29** и **Л30** путём трёхкомпонентного Pd-катализируемого взаимодействия 2-аминобензонитрила **Л1**, ароматического альдегида **Л27** и арилбороновой кислоты с последующей реакцией Бухвальда-Хартвига с соответствующим ариламином (Схема 6).[14]

Исследование фотофизических свойств новых классов хромофоров **Л29** и **Л30** показало, что соединения люминесцируют в диапазоне от 414 до 597 нм в циклогексане с квантовым выходом до 88 %. Большинство соединений данного ряда проявили явление усиления эмиссии в агрегированном состоянии. Кроме того, соединения **Л29а,b,d** и **Л30b** характеризуются обратимым изменением люминесцентных свойств при механическом воздействии.

Хромофоры другого типа, незамещённые по положению 2 хиназолинового ядра – 4арил- и 4,7-диарил- производные **Л32** и **Л33** (Схема 7) – проявляют длинноволновый максимум абсорбции в диапазоне 335–370 нм и люминесценции в сине-зелёной области спектра (λ_{em} = 443–503 нм) с квантовыми выходами 10–77 % в CH₂Cl₂. Реализация внутримолекулярного переноса заряда подтверждена ярко выраженным положительным сольватохромизмом эмиссии. Показано, что соединения легко протонируются по гетерокольцу: в случае соединений **Л32b** и **Л33b** наблюдалось практически полное тушение люминесценции при добавлении кислоты, однако остальные соединения испускали и в протонированной форме со смещением полос абсорбции и эмиссии в красную область. Данные структуры, подобно описанным выше аналогам **Л3а,b**, способны генерировать белое излучение как в растворе, так и в твёрдом состоянии в результате частичного протонирования.[15]

14

Схема 6

Хиназолин-4(3*H*)-он является структурным аналогом хиназолина и также характеризуется выраженными электроноакцепторными свойствами. Между тем, в литературе практически отсутствуют данные по построению молекул донорно-акцепторного типа на основе хиназолинона. Однако, стоит отметить применимость карбазолил-замещённых хиназолинов **Л34а-е** в качестве фосфоресцентных материалов для ОСИД (Рисунок 4).[16]

Схема 7

Также хиназолин-4-он-содержащие красители Л35-37 (Рисунок 4) были использованы в разработке селективных и чувствительных флуоресцентных датчиков распознавания свойств G4 ДНК как *in vitro*, так и в клетках.[17]

Рисунок 4 – Структуры хромофоров на основе хиназолинонов

1.1.2 2,3-Бис(арил/гетарил)хиноксалины

Структуры с внутримолекулярным переносом заряда на основе хиноксалина изучены более детально по сравнению с хиназолиновыми хромофорами. V-Образные 2,3-дизамещёные арил/гетарилхиноксалины зарекомендовали себя как эффективные люминесцентные молекулы с различными областями применения. [18,19] Например, были получены V-образные хиноксалины Л39–41, содержащие 1,4-фениленовый π-спейсер между терминальным арильным фрагментом и хиноксалиновым ядром, с использованием реакций кросс-сочетания 2,3бис(бромфенил)хиноксалина Л38 или 2,3-бис(бромфенил)-6-бромхиноксалина (в синтезе хромофоров Л41) и соответствующих арилбороновых кислот (Схема 8).[20,21] Соединения Л39а**d,f,g** и Л40,41 проявили синюю люминесценцию с максимумами в диапазоне от 411 до 451 нм. Согласно данным рентгеноструктурного анализа, синтезированные хромофоры имеют скученное строение, что предотвращает π - π стэкинг между молекулами в твёрдом и агрегированном состоянии и приводит к усилению эмиссии. Исследование люминесцентных свойств хромофоров Л39-41 в смеси ТГФ-вода или ацетонитрил-вода, а также в порошке подтвердило усиление люминесцентных свойств в результате агрегации. При этом производные V-образного строения Л40, имеющие два концевых электронодонорных фрагмента, проявили большее усиление эмиссии по сравнению с разветвлёнными аналогами Л41. Кроме того, некоторые соединения данного ряда оказались перспективными люминесцентными хемосенсорами на пары кислоты благодаря способности хиноксалинового ядра к обратимому протонированию. Для хромофоров Л41а-d предел детектирования трифторуксусной кислоты составил от 5.17 до 99.09 миллионных долей. Также отмечено, что контролируемое протонирование соединения **Л41с** в хлороформе приводит к генерации белой фотолюминесценции.[20]

Модификация цианофенильных заместителей, а именно формирование бензотиазольных колец путём конденсации исходных молекул **Л39а-с** с 2-аминобензотиофенолом в присутствии карбоната натрия в толуоле (Схема 9), позволила получить структуры **Л42а-с**, чувствительные к присутствию пикриновой кислоты в растворе.[22]

Структуры Л45а, b и Л46а, b с уменьшенной цепью сопряжения синтезировали по реакции Фриделя-Крафтца из оксалилхлорида и этоксибензола (либо ди(*n*-толил)аминобензола) и последующей конденсации с *o*-фенилендиамином (соединения Л45а, b) или 2,3диаминонафталином (соединения Л46а, b) (Схема 10).[23] Авторами работы показано, что увеличение конъюгированной цепи (бензохиноксалиновое ядро по сравнению с хиноксалиновым) приводит к батохромному смещению полос абсорбции и эмиссии. Тот же эффект наблюдается при переходе от этокси-группы к (дитолил)амино-заместителю. Производные хиноксалина **Л45а,b** проявили более интенсивную люминесценцию в хлороформе по сравнению с аналогами **Л46а,b**, что объясняется бо́льшей акцепторной способностью хиноксалинового ядра относительно конденсированного аналога. Дитолил-производные **Л45b** и **Л46b** проявили высокие значения двухфотонного поперечного сечения δ_{2PA} 163 и 159 GM (в диапазоне длин волн от 780 до 820 нм), соответственно, и могут применяться в качестве фотоинициатора в двухфотонной полимеризации.[23]

Производные хиноксалина **Л47** (Схема 11), содержащие трифениламинофенильные остатки в положениях 2 и 3, получали аналогично производным **Л45**.[24]

Схема 11

Незамещённый по хиноксалиновому ядру хромофор **Л47а** характеризуется длинноволновым максимумом абсорбции при 401 нм в CH₂Cl₂. При введении акцепторных заместителей (F, CF₃ и NO₂) в бензольное кольцо отмечено смещение полосы абсорбции в красную область на 9, 19 и 59 нм, соответственно, что связано с увеличением электроноакцепторного характера хиноксалинового ядра. Полученные на основе **Л47** тонкие полимерные плёнки **Л48** продемонстрировали обратимые окислительно-восстановительные свойства и зависимое от напряжения изменение цвета люминесценции.

Для получения незамещённого 2,3-бис(4-дифениламинофенил)хиноксалина **Л47а** был применён синтетический подход (Схема 12), заключающийся во взаимодействии 2,3-бис(4-бромфенил)хиноксалина **Л50а** с дифениламином путём реакции Бухвальда-Хартвига[25].

Синтон **Л47а** превращали в тетрайод-производное **Л51** для последующего кросссочетания по реакции Хека и получения донорно-акцепторных систем на основе стильбена **Л52** (Схема 13). Согласно фотофизическим исследованиям, структуры **Л52а-d** люминесцируют в зелёной области спектра ($\lambda_{em} = 515-548$ нм) с квантовыми выходами в диапазоне 55–72 % в ТГФ. Хромофоры проявили высокую термическую стабильность и хорошую растворимость в органических растворителях.

Поскольку несимметричная структура молекулы способствует формированию кристалла с нецентросимметричной пространственной группой, что положительно влияет на нелинейнооптические свойства[26], были получены 6-трифторметил-замещённые хиноксалины Л53 и Л54 (Рисунок 5). Оба хромофора проявили люминесцентные свойства в растворе ТГФ, а также в твёрдом и агрегированном состоянии.

Рисунок 5 – 6-Трифторметилхиноксалиновые хромофоры

Согласно исследованиям [27,28], введение феноксазинового остатка в хиноксалиновое ядро (Схема 14) путём Pd-катализируемого С–N сочетания привело к формированию ТАЗФ-хромофоров Л55а-с. Для незамещённого производного Л55а было выявлено, что при температуре ниже 170 К доминирующим является прямое триплетное излучение (фосфоресценция), а выше этого температурного порога активируется и постепенно становится доминирующим процесс обратного интеркомбинационного перехода (ТАЗФ).[28]

Интерес к введению атома фтора в структуры люминофоров обусловлен его слабыми электронодонорными свойствами и способностью формировать межмолекулярные связи. Полученные фтор-замещённые производные **Л55b,с** проявили как ТАЗФ, так и АІЕ свойства. Лигированные и нелигированные устройства на основе люминогенов **Л55b,с** характеризуются эффективной жёлтой или оранжевой электролюминесценцией (EQE до 24 %) при откате с низкой эффективностью, причём наличие только одного атома фтора в структуре хиноксалина **Л55b** оказалось более выгодным для свойств (в сравнении с дифтор-аналогом **Л55с**).[27] Хиноксалины **Л56–58**, замещённые по положению 6 акридиновым или феноксазиновым остатком, также оказались эффективными хромофорами, проявляющими ТАЗФ и АІЕ свойства, для создания оранжево-красных эмиттеров (Рисунок 6).[29,30] Кроме того, циано-производные **Л58а,b** проявили механохромные свойства и полиморфизм в кристаллической форме, что открывает дополнительные возможности применения V-образных хиноксалин-содержащих соединений в качестве эмиттеров.[29]

Рисунок 6 – Хиноксалин-содержащие хромофоры, проявляющие ТАЗФ

В ряду 2,3-бисфенилхиноксалинов Л60 и Л61 проанализировано влияние заместителя аминной природы на фотофизические свойства.[31,32] Введение электронодонорных заместителей осуществляли путём реакции Бухвальда-Хартвига в толуоле с добавлением Pd₂(dba)₃ в качестве катализатора и *t*-BuONa в качестве основания (Схема 15). Некоторые целевые продукты проявили интенсивную люминесценцию в твёрдом состоянии и усиление эмиссии при формировании агрегированной формы в смеси вода/ТГФ.

Хромофоры Л64, не содержащие в структуре π-спейсер, получали конденсацией офенилендиамина с щавелевой кислотой, обработкой тионилхлоридом и последующей реакцией нуклеофильного ароматического замещения (S_NAr) дихлорхиноксалина Л63 на остаток карбазола или его замещённые производные (Схема 16).[33,34] Введение карбазольных заместителей в положения 2 и 3 хиноксалинового ядра способствует локализации ВЗМО и НСМО на акцепторном и донорном фрагменте, соответственно, и уменьшению перекрывания орбиталей. Было показано, что биполярные структуры находят применение в качестве хост-материалов в конструкции ОСИД, например, материал, содержащий карбазольное производное хиноксалина Л64а, проявил высокую квантовую эффективность (24.6 %) в составе жёлтого фосфоресцентного ОСИД.[33] Более того, все соединения Л64а-d проявили ТАЗФ свойства, причём не только как добавочные компоненты (с содержанием 1–5 %), но и в виде чистых плёнок и порошков.[34] Показана хорошая растворимость хромофоров Л64а-d в толуоле, что позволяет использовать технологию нанесения из раствора при создании ТАЗФ-ОСИД, обладающих эффективностью до 10.9 %. Отмечено, что с увеличением электронодонорных свойств карбазольных заместителей (соединения Л64a-d) снижается время жизни ТАЗФ и увеличивается контрастность излучения.

i: NaH, ДМФА, 110 °C, 3 дня, N₂ [33]; K₂CO₃ в ДМСО или *t*-BuONa в ДМФА, 90 °C, 7 ч.[34]

Для материалов на основе хиноксалинов **Л64а-d** характерно не только изменение цвета эмиссии, но и обратимое включение/выключение свойств ТАЗФ под действием внешних механических воздействий. К примеру, материал на основе *трет*-бутил-замещённых бис(карбазолил)хиноксалинов проявляют замедленную флуоресценцию в аморфной пленке, в то время как при кристаллизации наблюдается тушение ТАЗФ. Это связано с большей щелью между синглетным и триплетным состояниями в кристаллической форме по сравнению с аморфной из-за увеличения энергии синглетного состояния.

Асимметричные структуры Л64е,f, полученные путём последовательного добавления различных производных карбазола (по 1 моль) к дихлорхиноксалину Л63 в условиях, аналогичных получению симметричных аналогов Л64а-d, проявили ТАЗФ, механохромные свойства с изменением цвета эмиссии от зелёного до оранжевого, и усиление люминесцентных свойств в агрегированном состоянии.[35] Внешняя квантовая эффективность полученных на основе асимметричных Л64е,f ОСИД (10.5 %) сопоставима с симметричными аналогами Л64а-d.

Некоторые другие производные V-образных хиноксалинов представлены на Рисунок 7.

Рисунок 7 – Другие V-образные хромофоры хиноксалина

Структуры Л65 и Л66 на основе 2,3-бис(пиридин-2-ил)- или 2,3-бис(хинолин-2ил)хиноксалина оказались селективными детекторами к катионам цинка.[36] 2-((2,3-Бис(4бромфенил)хиноксалин-6-ил)(фенил)метилен)малононитрил Л67 проявил изменения в спектрах абсорбции и эмиссии в результате протонирования/депротонирования в дихлорметане и может применятся как колориметрический индикатор pH среды.[37] Для производных хиноксалина Л68а, содержащих трифениламино-группу, выявлены механохромные свойства[38], карбазолил-содержащие производные Л68b-d интересны для создания красных фосфоресцентных органических светодиодов.[39] V-Образные структуры хиноксалина Л69 и фенантрохиноксалина Л70, содержащие трифениламиновый остаток, проявили максимумы эмиссии в оранжево-красной области спектра с высокими значениями квантовых выходов в неполярных и слабополярных растворителях, а также изменение люминесцентных свойств в агрегированном состоянии.[40]

Известно, что материалы, содержащие тиофеновый остаток, обладают высокой подвижностью заряда благодаря высокой поляризуемости атомов серы, приводящей к сильным межмолекулярным взаимодействиям S...S и S...*π*, что важно для дизайна органических полупроводников.[41–44] В литературе описаны амино-производные 2,3-бис(тиофен-2-ил)хиноксалина **Л71** (Рисунок 8), характеризующиеся максимумами абсорбции в диапазоне 390–461 нм, синежёлтой эмиссией, сольватохромными и AIE свойствами.[45]

Рисунок 8 – Другие производные хиноксалина, содержащие 2,5-тиофениленовый спейсер

Наибольшие значения квантового выхода отмечены для тиофен-содержащих 3этинилхиноксалинов **Л72** и **Л73** по сравнению с их арильными аналогами.[46] Расширение πсистемы позволило получить хромофоры с максимумами поглощения в области 395–457 нм и широким диапазоном эмиссии, некоторые образцы оказались AIE-активными.[47] Также примечательно, что монозамещённые 2-(тиофен-2-ил)хиноксалины **Л74** проявили сенсорные свойства к различным нитросоединениям и алифатическим аминам, а также значительное изменения цвета эмиссии при варьировании полярности среды.[48]

1.2 Аннелированные производные хиназолин-4(3H)-она

Как известно, полициклические производные хиназолин-4(3*H*)-она представляют важный класс соединений, которые являются структурной основой алкалоидов, биологически и терапевтически активных веществ (Рисунок 9).[49,50] Если исследования в области биологической активности конденсированных соединений хиназолинона довольно обширны, их фотофизические свойства изучены крайне мало. Между тем, показан потенциал применения полициклических производных как фотолюминесцентных материалов в оптоэлектронике, сенсорике и других прикладных областях (Рисунок 10).

Рисунок 9 – Примеры биологически активных полициклических производных хиназолинона

К примеру, полученные изохинолин-конденсированные хиназолиноны **Л75** проявили максимум поглощения при 393–394 нм и максимум эмиссии в диапазоне от 437 до 444 нм с квантовыми выходами 6–13 % в хлороформе.[51] Конденсированные производные хиназолинохиназолинона **Л76** и **Л77** оказались перспективными люминофорами в области создания биомолекулярных проб[52], также было разработано наноэлектронное устройство на основе графена, содержащего полицикл **Л78**, для детектирования катионов Hg^{2+} в водном растворе в режиме реального времени.[53] Как известно, наличие в структуре фенильных фрагментов способствует усилению эмиссии в агрегированном и/или твёрдом состоянии, поэтому создание таких арилзамещённых структур как 5,6-дифенил-8*H*-изохинолино[1,2-*b*]хиназолин-8-он и его гетероаналогов является перспективным направлением исследования.

Формирование конденсированной структуры на основе 2-(арил/гетарил)хиназолинона может происходить за счёт аннелирования дополнительного кольца к исходной молекуле хиназолинона путём катализируемой переходными металлами С–Н-функцианализации.[53–56] Преимущество реакции С–Н-активации заключается в её простоте и малостадийности, доступности реагентов, атомной экономии, высоких выходах и экологической безопасности. В частности, Ru(II)-катализируемое[57] или Co(III)-катализируемое[58] С–H/N–H-аннелирование дифенилацетилена к 2-арил(гетерил)хиназолинам **Л79**, содержащим в структуре различные донорные или акцепторные заместители, открывает широкие возможности для формирования полициклических структур **Л81** (Схема 17).

Рисунок 10 – Примеры полициклических люминесцентных структур на основе хиназолинона

Примечательно, что гетероарены **Л81** могут быть получены путём [RuCl₂(*n*-цимол)]₂катализируемого окислительного дегидрирования дигидрохиназолинона **Л80** и последующей реакции кросс-сочетания/аннелирования алкина в одноступенчатом процессе без выделения промежуточного продукта и добавления солей меди.[59]

Л79-81: $\mathbf{R} = H$, Hal, Me; $\mathbf{R}^1 = H$, Me, OMe, NMe₂, Hal и др.

Показано, что катализ палладием тех же исходных хиназолин-4(3*H*)-онов **Л79** в присутствии кислорода воздуха в кислых условиях приводит к формированию конденсированных гетероциклов **Л82**, содержащих в структуре дигидрофурановое кольцо (Схема 18).[60]

Л79, Л82, Л83: R = H, Hal, Me; **R**¹ = H, Me, OMe, NMe₂, Hal и др.

Комплексы [Cp·RhCl₂]₂ также являются высокоактивными катализаторами в синтезе полициклических гетероциклов путём аннелирования дифенилацетилена и активации C–H связи.[61–66] Например, с использованием родиевого катализатора были получены замещённые по положению 6 изохинолино[1,2-*b*]хиназолины **Л83** (Схема 18).[67]

1.3 2-(2-Гидроксифенил)хиназолин-4(3*H*)-оны и BF₂ комплексы на основе бензодиазинов

Согласно литературным данным, люминофоры на основе 2 - (2 гидроксифенил)хиназолин-4(3H)-онов проявляют большие значения сдвига Стокса, интенсивную люминесценцию в твёрдом состоянии и хорошую фотостабильность. [68] Выявлено, что для данной структуры характерно явление внутримолекулярного фотопереноса протона (ВФПП)[69–71] между протоно-донорной ОН и протоно-акцепторной –N= группой. В основном состоянии 2-(гидроксифенил)хиназолин-4(3H)-он находится в енольной форме, стабилизированной за счёт формирования водородной связи между ОН группой и атомом азота N1 (Рисунок 11), и имеет плоское строение. Переход исходного енола в возбуждённое состояние сопровождается ВФПП и образованием более стабильной кето-формы, при этом образовании кетотаутомера сопровождается скручиванием арильного заместителя.[69,70,72]

Структурные особенности хиназолинона способствуют усилению люминесцентных свойств в твёрдом и/или агрегированном состоянии, и такие соединения могут применяться как флуоресцентные сенсоры, визуализирующие агенты, а также материалы для оптоэлектронных устройств.[73–77] Механизм детектирования может быть как по типу «включения» люминесценции, так и наоборот «выключения». В ранних работах описаны различные флуоресцентные пробы на основе хиназолинона,[78] в том числе вышедшая на рынок проба "ELFTM 97

27

Phosphate" на действие щелочной фосфатазы, содержащая в структуре 2-(5-хлорфенил)-6-хлор-4-(3*H*)-хиназолинон (Рисунок 12).[79]

Рисунок 11 – Процесс фотоиндуцированного переноса протона в хиназолинонах

Механизм действия хиназолинон-содержащих флуоресцентных проб основан на разрыве связи между кислородом и блокирующей группой, образовании хиназолинона и регистрации люминесцентного отклика (Рисунок 12). За последние десять лет было предложено использование проб на основе хиназолинона для флуоресцентных детекторов на пероксид водорода[80,81], фторид анион[82,83], пары аммиака[84], цистеин[85], маркеров на β-галактозидазу[76], γ-глутамитранспептидазу в различных биосистемах и других аналитов. Также в литературе показаны перспективы применения хиназолинон-содержащих структур как фотоактивных зондов в биовизуализации.[86]

Рисунок 12 – Химическая формула коммерческой пробы и механизм действия проб на основе хиназолинона

Наличие координационного центра в структуре 2-(2-гидроксифенил)хиназолинонов (Рисунок 13) способствует образованию комплексных соединений с катионами металлов. Часто формирование металлокомплексов сопровождается тушением люминесценции, что позволяет использовать данные структуры в качестве сенсоров по типу «выключение». Так, в работе 2007 года показана применимость незамещённого хиназолинона **Л84a** в качестве флуороионофора на катион Fe³⁺ в оптохимическом сенсоре[69], позднее отмечена селективность той же структуры **Л84a** к катионам Zn²⁺ и Cd²⁺ в ДМФА[87]; дигидроксифенилхиназолин **Л84b** оказался селективным хемосенсором на катионы Hg²⁺[88] (Рисунок 13).

Рисунок 13 – Сенсоры на катионы металлов на основе хиназолинона и механизм их действия

Внутримолекулярный перенос протона также реализуется в системах на основе 4-фенилхиназолина, что было показано для ряда соединений **Л88а-f** (Рисунок 14).[75] Хиназолины оказались эффективными люминофорами в агрегированном состоянии с максимумами эмиссии в диапазоне 450–701 нм и большими значениями сдвига Стокса (до 314 нм). Кроме того, полученные структуры характеризуются эмиссией в твёрдом состоянии ($\lambda_{em} = 455-704$ нм).

Рисунок 14 – Процесс фотоиндуцированного переноса протона в соединениях Л88

Один из синтетических подходов к целевому 2-(2-гидроксифенил)хиназолин-3(4*H*)-ону **Л87** и его замещённым аналогам заключается в конденсации 2-аминобензамида **Л85** и салицилового альдегида **Л86** путём двухстадийного или одностадийного процесса, с участием окислителя (Схема 19).[88,89]

С целью получения замещённого по гидроксильной группе соединения сначала выполняют модификацию салицилового альдегида, после чего проводят реакцию конденсации с 2аминобензамидом.[80–82,85]

Борорганические комплексы представляют собой важный класс флуоресцинтных красителей. В последние десятилетия интенсивно изучаются не только комплексы на основе N,Nлигандов, такие как бородипиррометен (BODIPY)[90], 2-(хинолин-2-ил)-1*H*-фенантро[9,10d]имидазол [91], но и комплексы на основе N,O-лигандов.[92] Среди шестичленных N–B–O координированных BF₂ комплексов можно выделить структуры на основе пиридина, пиразина, пиримидина и их бензоаннелированных аналогов. В частности, дифторборатные комплексы на основе хиноксалин- β -кетоимината **Л90а-е**, полученные обработкой соответствующего лиганда **Л89а-е** эфиратом трёхфтористого бора в дихлорметане с добавлением триэтиламина (Схема 20), проявили высокие квантовые выходы люминесценции в растворе CHCl₃, а также обратимое переключение люминесценции в твёрдом состоянии под действием кислотных/основных паров.[93]

Также описаны структуры **Л91–Л93** (Рисунок 15), характеризующиеся интенсивной флуоресценцией в растворах, органогелях и в пленках на основе ксерогеля.[94] Более того, некоторые комплексы продемонстрировали способность к гелеобразованию и сенсорные свойства к кислоте.

Дифторборатные комплексы хинолина **Л94** также оказались структурами с высокими квантовыми выходами (свыше 42 %) в хлороформе, для которых показана зависимость фотофизических свойств от природы заместителя в фениленовом фрагменте.[95] Анализ бензоаннелирования пиридинового кольца (соединения **Л94–96**) показал, что положение бензольного кольца имеет важное значение для проявления фотофизических свойств[96,97], и наибольшую ин-

тенсивность продемонстрировали структуры на основе хинолина. Также выявлено, что наличие диметиламино-группы в *пара*-положении фениленового фрагмента значительно увеличивает сдвиг Стокса в каждой серии соединений. Позднее было подробно изучено влияние природы амино-группы на максимумы абсорбции, эмиссии, а также значения квантового выхода для дифторборатных комплексов пиридина **Л97**. Соединения **Л97а-g** продемонстрировали интенсивную флуоресценцию ($\varphi > 54$ %) с максимумами в диапазоне от 490 до 525 нм в хлороформе, при этом длинноволновая полоса абсорбции проявилась в области 400–450 нм.[98]

Рисунок 15 – Структуры BF2 комплексов на основе β-кетоиминатов

ВF₂ комплексы 3-(2-оксо-2-арилэтилиден)-3,4-дигидро-1*H*-хиноксалин-2-она **Л100** и 3-(2-оксо-2-арилэтилиден)-3,4-дигидробензо[1,4]оксазин-2-она **Л101** продемонстрировали интенсивную жёлто-зелёную люминесценцию при 481–521 нм ($\varphi = 0.59-0.87$) в растворе ТГФ.[99] Стоит отметить, что для формирования комплексов **Л100** и **Л101** применили кипячение исходного лиганда **Л98** или **Л99** с эфиратом трёхфтористого бора в смеси толуола и уксусной кислоты в течение 5–10 минут (Схема 21). Кроме того, была получена серия дифторборатных комплексов **Л102a-f** на основе N,O-бидентатных лигандов различной природы, используя условия аналогичные синтезу структур **Л90**, с увеличением продолжительности реакции до 12 часов. [100] Фотофизические и электрохимические исследования показали перспективы применения полученных комплексов **Л102** как электроно-транспортных слоёв. Схема 21

Соединения, содержащие 2-гидроксифениленовый фрагмент в положении 2 азинового кольца подобно β -кетоиминатам могут формировать N,O-координированные комплексы бора, при обработке эфиратом трёхфтористого бора (Рисунок 16). Для BF₂ комплексов **Л103а-і**, на основе (2-хинолин-2-ил)фенольных лигандов была показана интенсивная люминесценция как в растворе (λ_{em} 441–492 нм в CHCl₃ при комнатной температуре, ϕ до 86 %), так и в твёрдом сотоянии (λ_{em} 454–502 нм).[101] Авторами работы [102] выявлено, что введение фенильного заместителя в положение 4 хинолинового ядра (соединения Л104a-I) приводит к батохромному смещению полосы эмиссии как в растворе (467-538 нм), так и в твёрдом состоянии (481-597 нм), и к уменьшению интенсивности флуоресценции в растворе хлороформа (ф до 22 %). Согласно электрохимическим расчётам, значения B3MO лежат в диапазоне от -3.10 до -3.94 eV и НСМО - от -5.74 до -6.48 eV. Полученные результаты сопоставимы со значениями энергий B3MO/HCMO для электрон-транспортного материала на основе Alg3.

 $R = R^1 = R^2 = H, R^3 = OMe(i).$

Л104а-к $\mathbf{R}^4 = \mathbf{R}^5 = H(\mathbf{a}); \ \mathbf{R}^4 = H, \ \mathbf{R}^5 = 3$ -OMe (b); $\mathbf{R} = \mathbf{R}^1 = OMe, \ \mathbf{R}^2 = \mathbf{R}^3 = H(\mathbf{a}); \ \mathbf{R} = \mathbf{R}^2 = \mathbf{R}^3 = H, \ \mathbf{R}^1 = Cl(\mathbf{b});$ $R^4 = H, R^5 = 3$ -OEt (c); $R^4 = H, R^5 = 5$ -Br (d); $\mathbf{R} = \mathbf{R}^1 = \mathbf{R}^2 = \mathbf{R}^3 = H$ (c); $\mathbf{R} = \mathbf{R}^1 = H$, $\mathbf{R}^2 = NO_2$, $\mathbf{R}^3 = H$ (d); $\mathbf{R}^4 = 7$ -Cl, $\mathbf{R}^5 = H$ (e); $\mathbf{R}^4 = 6$ -Cl, $\mathbf{R}^5 = H$ (f); $\mathbf{R} = \mathbf{R}^1 = \mathbf{R}^3 = \mathbf{H}, \ \mathbf{R}^2 = \mathbf{Cl} \ (\mathbf{e}); \ \mathbf{R} = \mathbf{R}^1 = \mathbf{OMe}, \ \mathbf{R}^2 = \mathbf{NO}_2, \ \mathbf{R}^3 = \mathbf{H} \ (\mathbf{f});$ $\mathbf{R}^4 = 6$ -F, $\mathbf{R}^5 = H(\mathbf{g})$; $\mathbf{R}^4 = 6$ -Br, $\mathbf{R}^5 = H(\mathbf{h})$; $R = R^{1} = R^{3} = H, R^{2} = Me(g); R = R^{1} = R^{2} = H, R^{3} = Me(h);$ $R^4 = 6$ -OMe, $R^5 = H$ (i); $R^4 = 6$ -Me, $R^5 = H$ (j); $R^4 = 6,7-Me, R^5 = H(k).$

Рисунок 16 – BF2 комплексы 2-(2-гидроксифенил)хинолинов

ВF₂ комплексы на основе 2-(2-гидроксифенил)хиназолин-4(3*H*)-онов и 2-(2гидроксифенил)хиназолинов ранее не были описаны, однако стоит отметить комплексы 2-(пиридин-2-ил)хиназолина **Л105а-е** (Рисунок 17), которые проявили интенсивную люминесценцию с квантовым выходом до 99 % в растворе и до 60 % в твёрдом состоянии, а также большие значения сдвига Стокса.[103] Введение метокси-группы в бензольное кольцо (серия **Л106а-d**) таких комплексов проявилось в батохромном смещении полосы эмиссии в результате усиления переноса заряда.[104]

Рисунок 17 – Применение 2-арил/пиридилхиназолина для построения BF2 комплексов

Кроме того, 2-(2-гидроксифенил)хиназолин был встроен в структуры ВОDIРУ **Л107** и **Л108**, и была установлена ключевая роль 4-фенилхиназолинового фрагмента в AIEE-эффекте и в формирование агрегатов J-типа между молекулами.[105]

Выводы по литературному обзору

Таким образом, анализ литературных данных показывает:

- Построение молекул с 2-(арил/гетарил)бензодиазиновым остовом, в частности производных хиназолина, хиназолинона и хиноксалина, является перспективным подходом для дизайна различных типов флуоресцентных структур: линейных Д-л-А и V-образных Д-л-А л-Д хромофоров, полициклических производных, а также дифторборатных комплексов. Бензодиазин-содержащие хромофоры могут быть применены в качестве компонентов датчиков, сенсоров и флуоресцентных материалов.
- Широкое разнообразие методов синтеза и модификации бензодиазинового ядра открывает возможности тонкой настройки фотофизических свойств и получения желаемых характеристик. Среди описанных в литературе структур найдены люминофоры, проявляющие высокие квантовые выходы в растворе и твёрдом состоянии, нелинейно-оптические свойства, агрегационно-индуцированную эмиссию, механохромный отклик, а также термически задержанную флуоресценцию и другие. Часто структура сочетает несколько характеристик, что делает её многофункциональной и расширяет спектр применения.

- Ряд известных 2,4-дизамещённых хиназолиновых хромофоров ограничен, и отсутствуют систематические данные о взаимосвязи строения и фотофизических свойств. В частности, введение 2,5-тиофениленового фрагмента в донорно-акцепторные хиназолиновые системы ранее не применялось.
- Несмотря на большой интерес к хиноксалиновым хромофорам, V-образные 2,3-бис(5арилтиофен-2-ил)хиноксалины ранее не были описаны. Между тем, хорошо известно, что введение тиениленового спейсера оказывает влияние на конфигурацию молекулы и, как следствие, на фотофизические свойства.
- Применение сильных электронодонорных ариламино-заместителей является наиболее эффективным методом построения донорно-акцепторных систем с внутримолекулярным переносом заряда. Более того, в данных системах может реализовываться механизм скрученного внутримолекулярного переноса заряда, что открывает дополнительные возможности для практического применения.[106]
- Разработано несколько синтетических подходов к построению полициклических производных 2-арилхиназолин-4(3H)-она аннелированных дифенилацетиленом. Варьирование природы и положения заместителей в бензодиазиновом кольце, а также алкине позволяет получать широкие ряды конденсированных структур. Исследования в области 2-тиенилхиназолин-4(3H)-она ограничены. Более того, полициклические производные хиназолинона, замещенные по тиофенильному остатку, в литературе не найдены. Также, исследование фотофизических свойств полициклов данного типа практически не проводилось, в то время как наличие фенильных фрагментов может способствовать проявлению эмиссии в твёрдом и агрегированном состоянии.
- Наблюдается большой интерес к явлению фотоиндуцированного внутримолекулярного переноса протона в 2-(2-гидроксифенил)хиназолинонах, со стороны как теоретической, так и прикладной химии, однако замещённые по фенольному кольцу производных описано крайне мало, и влияние природы заместителя в фенольном кольце практически не изучено.
- Дифторборатные комплексы с N–B–O координацией могут быть получены путём обработки лигандов эфиратом трёхфтористого бора в относительно мягких условиях. Несмотря на достаточно широкие ряды комплексов на основе β-кетоиминатов, описано лишь несколько примеров построения дифторборатов на основе их структурных аналогов, 2-(2гидроксифенил)бензазинов. 2-(2-Гидроксифенил)хиназолин-4(3*H*)-оны или 2-(2гидроксифенил)-4-фенилхиназолины для построения координированных комплексов бора не применялись.

Поэтому дизайн новых классов хромофоров, в частности, на основе 2-(5-арилтиофен-2ил)хиназолинов, 2,3-бис(5-арилтиофен-2-ил)хиноксалинов и других 2-арил-замещённых бензодиазиновых аналогов, построение полициклических соединений, а также дифторборатных комплексов и систематическое исследование влияния природы и положения заместителей на фотофизические свойства является актуальной **целью** исследования.

2 Обсуждение результатов. Новые производные хиназолинов, хиназолин-4(3*H*)-онов и хиноксалинов: синтез и исследование фотофизических свойств

2.1 Донорно-акцепторные системы на основе хиназолина

2.1.1 2-(5-Арил(гетарил)тиофен-2-ил)-хиназолины

На первом этапе работы была проведена модификация 2-тиенилхиназолинового остова и получена серия 2-(тиофен-2-ил)-4-(морфолин-4-ил)хиназолинов **8а-i**, содержащих различные донорные арильные и арилэтинильные фрагменты в положении 5 тиофенового кольца (Схема 22). Синтетический подход к хиназолинону **4** основан на конденсации 2-аминобензамида **1** и тиофен-2-карбальдегида **2** в этаноле с последующим окислительным дегидрированием интермедиата **3** хлоридом меди (II).[107]

8: R = H (a), 4-OMe (c), 3,4,5-OMe (d), 4-N(Et)₂ (e), 4-N(Ph)₂ (f), 4-(9*H*-карбазол-9-ил) (g), R¹ = H (h), OMe (i).

Структура дигидрохиназолинона **3** подтверждена данными ЯМР ¹Н спектроскопии, согласно которым характерным является сигнал алифатического атома водорода группы NH–CH–
NH в области 5.99 м.д. (Рисунок 18). Было показано, что синтез хиназолин-4(3*H*)-она можно провести в одну стадию с близким по значению выходом продукта. Далее хиназолинон **4** обрабатывали POCl₃ при кипячении в течение 2 часов, и полученное 4-хлорпроизводное **5** превращали в 4-(морфолин-4-ил)-2-(тиофен-2-ил)хиназолин **6** путём реакции нуклеофильного замещения хлора на остаток морфолина в безводном ацетонитриле.

Рисунок 18 – Спектр ЯМР ¹Н дигидрохиназолинона **3**

Ключевой интермедиат **6** бромировали действием N-бромсукцинимидом (NBS) при комнатной температуре в ДМФА в течение 36 часов. Целевые продукты **8а-g** получали на основе 2-(5-бромтиофен-2-ил)-4-(морфолин-4-ил)хиназолина **7** Pd-катализируемой реакцией кросссочетания Сузуки, следуя ранее разработанной методике.[108] Для синтеза арилэтинильных производных **8h,i** применяли Cu/Pd-катализируемую реакцию Соногаширы.[109] Структуры целевых продуктов, а также ранее неописанных интермедиатов **6** и **7** подтверждены ФХМА. Для соединений **8b** и **8f** были получены монокристаллы. Согласно данным РСА, соединение **8b** кристаллизуется в центросиметричной пространственной группе орторомбической системы (Рисунок 19). Гетероароматический фрагмент системы практически плоский с отклонением от плоскости в пределах 0.3 Å. Длина связи C(4)–N(2) хиназолина **8b** равна 1.359 Å, что подтверждает сопряжение между хиназолином и атомом азота морфолинового фрагмента.

Рисунок 19 – Структуры молекул 8b и 8f согласно данным PCA

При медленном упаривании раствора соединения **8f** из смеси хлористого метилена и гексана при комнатной температуре было получено два типа кристаллов, (кристалл **A** и кристалл **B**, Рисунок 19), что, вероятно, связано с различным влиянием полярности растворителей на кристаллизацию соединений. В обоих случаях кристаллы образуют центросимметричную пространственную группу триклинной системы с различными параметрами ячейки и отличаются по расчетной плотности, молекулярным конформациям и молекулярной упаковке. Кристалл **A** сформирован центросимметричными димерами, посредством π -стейкинга между электроноакцепторной и электронодонорной частями. Молекулы планарны только в гетероароматической части, и оба фениленовых фрагмента диариламиногруппы, а также остаток морфолина повёрнуты относительно гетероароматической плоскости. Остаток морфолина имеет конформацию «кресло». Молекулы кристалла **B** не планарны даже в гетероароматической части и, например, атом серы **S**(1) отклонён от плоскости атомов C(6)C(7)C(18) на расстояние 0.8 Å. Остаток морфолина разупорядочен, оба фенильных остатка диариламино-группы значительно отклонены от плоскости хиназолина, однако атом азота N(4) лежит в одной плоскости с соседними атомами углерода. Несмотря на искажения структуры, кристалл **B** упакован более плотно, чем кристалл **A**, и, вероятно, имеет более эффективные неспецифические межмолекулярные контакты, однако никаких π -взаимодействий в кристалле **B** не обнаружено.

Исследование фотофизических свойств ключевого интермедиата **6** и целевых продуктов **8** проводили в двух разных по полярности (ε_r) растворителях, а именно, в толуоле (ε_r = 2.38) и ацетонитриле (ε_r = 36.64)[110] (Таблица 2). Показано, что хиназолины **8а-i**, а также **6**, имеют длинноволновый максимум абсорбции в области λ_{max} = 329–401 нм в растворе ацетонитрила.

В целом введение электронодонорных арильных заместителей в положение 5 тиофенового кольца (соединения **8b-i**) приводит к батохромному смещению полосы абсорбции по сравнению с незамещённым аналогом **6**, что связано с увеличением цепи сопряжения. Смещение в красную область увеличивается с усилением электронодонорной способности заместителя в результате усиления взаимодействия донорной и акцепторной частей.

Соед.	Растворитель	λabs, HM	λem, HM	$\Phi_{\text{F}}{}^{\text{a}}$, %	$\Delta v_{\rm St}, {\rm cm}^{-1}$
(толуол	300, 335 пл	390	< 1	7692
0	MeCN	335	502	< 1	9930
9 0	толуол	345	418	12	5062
ða	MeCN	329	440	< 1	7667
0 L	толуол	358	434	20	4891
00	MeCN	352	438	15	5578
9	толуол	355	430	37	4368
ðC	MeCN	346	446	24	6480
64	толуол	362	436	49	4689
ou	MeCN	346	471	36	7670
0.	толуол	405	476	71 ^b	3683
8e	MeCN	402	544	22 ^b	6493
90	толуол	398	462	60 ^b	3481
81	MeCN	391	524	66 ^b	6491
0	толуол	366	441	45	4647
δg	MeCN	352	466	53	6950
8 f	MeCN	360	474	4	6681
8i	MeCN	353	440	20	5601

Таблица 2 – Фотофизические свойства соединений 6, 8а-і, с = 10^{-4} М, к. т.

^аИзмеряли относительно бисульфата хинина в 0.1 M растворе H₂SO₄ ($\Phi_F = 54$ %, [111]), $\lambda_{ex} = 350$ нм. ^bИзмеряли относительно 3-аминофталимида в этаноле ($\Phi_F = 60$ %), [112]), $\lambda_{ex} = 400$ нм.

Соединения **6**, **8а-і** обладают люминесценцией в сине-зелёной области спектра с максимумами от 438 нм до 544 нм в ацетонитриле. Введение (*9H*-карбазол-9-ил)фенильного, фенильного, метоксифенильного, тиенильного или арилэтинильного остатков (**8а-d,g-i**) приводит к смещению максимума эмиссии в синюю область, а 4-(диэтиламино)фенильного или 4-(дифениламино)фенильного (**8е,f**) фрагментов – в красную по сравнению с соединением **6** (Рисунок 20 (а)). Выявлено, что для соединений **8а,с-g** полярность растворителя оказывает большее влияние на полосы эмиссии, чем абсорбции, что свидетельствует о большем дипольном моменте хромофора в возбуждённом состоянии по сравнению с основным и стабилизацией молекул вещества молекулами растворителя. [113] При этом переход к более полярному растворителю (от толуола к ацетонитрилу) в рассматриваемом ряду соединений сопровождается гипсохромным сдвигом максимума поглощения на 4-16 нм и батохромным смещением максимума полосы эмиссии на 16-68 нм. Смещение полос абсорбции в синюю область при увеличении полярности среды может быть обусловлено образованием стабильной цвиттерионной формы в основном состоянии.[113] В целом, смещение полосы эмиссии в красную область при переходе к ацетонитрилу увеличивается с усилением электронодонорных свойств заместителя в тиофениленовом кольце: максимальные значения характерны для ариламиновых заместителей (соединения 8e, f, g), а также триметоксифенильного аналога 8d. В качестве примера показано влияние полярности растворителя на положение полос абсорбции и эмиссии для соединения 8е (Рисунок 20(b)). Введение заместителя в тиофеновое кольцо (соединения 8а-і относительно 6) приводит к увеличению квантового выхода, значение которого зависит как от природы донорного фрагмента, так и от полярности растворителя и достигает 71 %. Сравнение спектров соединений 8a и 8f позволяет заключить, что введение этинильного фрагмента приводит к батохромному сдвигу максимума эмиссии и к увеличению интенсивности люминесценции.

Рисунок 20 – (а) Нормализованные спектры эмиссии хиназолинов **6**, **8**. (b) Спектры возбуждения (2,4) и эмиссии (1,3) соединения **8**е в толуоле (сплошная линия) и ацетонитриле (пунктирная линия)

С целью усиления акцепторных свойств бензодиазинового фрагмента и увеличения внутримолекулярного переноса заряда была проведена модификация хиназолинового ядра по положению 4 путём введения цианогруппы (Схема 23). 4-Цианохиназолин 9 получали из хлорпроизводного 5 путём нуклеофильного замещения атома хлора на циано-группу с использованием тозилата натрия в качестве вспомогательного реагента, применение которого для синтеза 4-циано-2-фенилхиназолинов было описано ранее.[114–116] Соединение 9, как и его 4морфолинильный аналог **6**, бромировали по положению 5 тиофенового кольца Nбромсукцинимидом в растворе ДМФА, однако, бромирование хиназолина **9** потребовало более жёстких условий (кипячение при 80 °C в течение 6 часов), чем 2-(тиофен-2-ил)-4-(морфолин-4ил)хиназолина **6**, для которого превращение протекало уже при комнатной температуре. На последней стадии была проведена Pd-катализируемая реакция кросс-сочетания и получена серия 4-цианопроизводных хиназолина **11а-с**, содержащих диэтиламино-, дифениламино- или карбазолил- донорный фрагмент. Данные спектроскопии ЯМР, ИК, КР и масс-спектрометрии подтверждают предложенные структуры. Стоит отметить, что в ИК спектрах хиназолинов **9** и **11а** не наблюдалось полосы поглощения в диапазоне 2200–2260 см⁻¹, соответствующей группе CN. Как отмечалось ранее [117,118], подобный результат характерен для циано-группы, расположенной в π -дефицитном пиримидиновом ядре. В спектрах комбинационного рассеяния света соединений **9** и **11а** зарегистрированы малоинтенсивные сигналы группы CN при 2240 см⁻¹.

Согласно результатам РСА (Рисунок 21(а)), соединение **11а** кристаллизуется в центросимметричной пространственной группе моноклинной сингонии. За исключением остатка диэтиламина молекула почти планарная с максимальным отклонением от плоскости в 0.15 Å. В кристалле наблюдается межмолекулярное взаимодействие CN...HC(7) с расстоянием 2.658 Å и образование планарных систем из двух молекул длиной 27 Å (Рисунок 21(b)).

Рисунок 21 – Молекулярная структура хиназолина **11а** согласно данным PCA (a); межмолекулярные взаимодействия молекул **11а** (б)

Также нами получены хромофоры **14а-с** на основе хиназолин-4(3*H*)-она, для синтеза которых первоначально был предложен тот же подход, что и в случае 4-морфолинилхиназолинов **8** (Схема 22), а именно бромирование интермедиата **4** по положению 5 тиофениленового фрагмента. Однако реакция бромирования N-бромсукцинимидом 2-(тиофен-2-ил)хиназолин-4(3*H*)она **4** при комнатной температуре практически не протекала, а при нагревании в ДМФА или в смеси AcOH/Ac₂O происходило образование смеси бромсодержащих продуктов. Вероятно, наряду с бромированием по тиофенильному остатку протекало бромирование и бензольного кольца. Таким образом, для получения целевых продуктов **14а-с** наиболее целесообразным оказалось применение 2-бромтиофен-2-карбальдегида **2b** в качестве исходного реагента (Схема 24), циклоконденсация которого с антраниламидом **1**, последующее дегидрирование и реакции кросс-сочетания привели к желаемому результату. Стоит отметить, что конденсация антраниламида **1** с бром-содержащим альдегидом **2b** также привела к образованию дигидропроизводного хиназолинона **12**, как и в случае синтеза соединения **3**, о чём свидетельствует наличие сигнала при **5**.91 м.д., соответствующего алифатическому водороду группы NH–CH– NH, в спектре ЯМР (см. Раздел 3).

Основные фотофизические свойства (поглощение, испускание, а также квантовый выход) для серии соединений **11**, **14** также измерили в толуоле и ацетонитриле при комнатной температуре (Таблица 3). Длинноволновый максимум поглощения хромофоров расположен в диапазоне от 402 нм до 365 нм для соединений **11а-с** и в диапазоне 404–363 нм для соединений **14а-с** в толуоле, положение которого смещается в синюю область на 5–9 нм при переходе к ацетонитрилу (Таблица 3). Стоит отметить, что в спектрах абсорбции соединений **11а,b** в толуоле и соединения **11b** в ацетонитриле проявляется полоса в виде плеча при 440–470 нм. Кроме того, растворы 4-циано-производных в толуоле характеризуются эмиссией с двумя пиками с максимальным значением в диапазоне 538–670 нм (Рисунок 22 (а)), наличие которых может быть обусловлено образованием специфических агрегатов молекул с растворителем или димеров. Соединения **11а,b** обладают малоинтенсивной люминесценцией в области 494–564 нм в ацетонитриле, что, возможно, связано с возникновением внутримолекулярного переноса заряда или энергии[119]. Только карбазолил-содержащее производное **11с** люминесцирует с интенсивностью около 22 % в толуоле. Соединения **14а-с** люминесцируют в синей области в толуоле и в зелёно-голубой в ацетонитриле с квантовыми выходами от 26 % до 82 %.

Соед.	Раств-ль	λ _{abs} , нм (ε, мМ ⁻¹ ·см ⁻¹)	λem, HM	ΦF, %	Δv_{St} , ^f cm ⁻¹
11.	толуол	475 пл (-) ^а , 402 (-) ^а	485, 670	< 1 ^c	9950 ^g
11a	MeCN	397 (-) ^a	564	< 1 ^c	7458
11h	толуол	440 пл (18.3), 397 (28.3)	485, 623	5 ^c	6171 ^g
110	MeCN	450 пл (16.7), 391 (29.8)	532	<1 ^c	3425
110	толуол	365(-) ^a	452, 538	22 ^c	8810 ^g
IIC	MeCN	356 (-) ^a	494	8 ^c	7847
140	толуол	410 (-) ^b	490	71 ^d	3982
14a	MeCN	404 (-) ^b	541	28 ^d	6268
14b	толуол	405 (35.8)	470	82 ^d	3415
140	MeCN	398 (-) ^b	545	50 ^d	6777
140	толуол	370 (-) ^b	430, 456	26^{e}	5097 ^g
14C	MeCN	363(-) ^b	490	43 ^e	7140

Таблица 3 – Фотофизические свойства хиназолинов **11а-с** и **14а-с**, $c \approx 10^{-5}$ – 10^{-6} М, к. т.

^aНе рассчитывали. ^bОграниченная растворимость. ^cИзмеряли относительно 9,10-бис(фенилэтинил)антрацена в циклогексане ($\Phi_F = 100$ %), возбуждение в максимуме поглощения. ^dИзмеряли относительно 3-аминофталимида в этаноле ($\Phi_F = 60$ %, [112]), $\lambda_{ex} = 400$ нм (для **14a**), $\lambda_{ex} = 380$ нм (для **14a**). ^eИзмеряли относительно бисульфата хинина в 0.1 М растворе H₂SO₄ ($\Phi_F = 54$ %, [111]), $\lambda_{ex} = 350$ нм (для **14c** в толуоле), $\lambda_{ex} = 360$ нм (для **14c** в ацетонитриле). ^fСтоксов сдвиг рассчитывали относительно длинноволновой полосы поглощения. ^gОтносительно основного максимума эмиссии.

Дополнительно для серии соединений **11а-с** изучили влияние полярности растворителя на положение максимума эмиссии (Таблица 4).

Соед.	<i>п</i> -гептан	толуол	1,4-диоксан	ΤΓΦ	CHCl ₃	CH ₂ Cl ₂	MeCN	m ^b	\mathbb{R}^2
	30.9 ^a	33.9 ^a	36.0 ^a	37.4 ^a	39.1 ^a	40.7 ^a	45.6 ^a		
11a	596	485/	501	511	508	528	564	6.93	0,938
		670							
11b	573	485/	490	505	494	517	532	4.23	0,947
		623							
11c	_ ^c	452/	456/	453/	469	478	494	3.71	0,994
		538	562	609					

Таблица 4 – Эмиссия (λ_{em} , нм) соединений **11а-с** в различных растворителях.

^aE_T(30), параметр полярности Димрота-Райхардта в ккал×моль⁻¹.[120] ^bНаклон линии регрессии λ_{em} (нм) относительно E_T(30) в нм×ккал⁻¹.

Оказалось, что в неполярных или малополярных растворителях (*н*-гептан, толуол для всех соединений **11а-с**, а также 1,4-диоксан и ТГФ в случае **11с**) хиназолины характеризуются смещёнными в красную область полосами излучения (при 550–700 нм) относительно полярных растворителей (Рисунок 22 (b,c)), вероятно, из-за образования J-агрегатов.[121,122] Уменьше-

ние значения угла наклона графика зависимости максимума эмиссии от параметр полярности Димрота-Райхардта (E_T(30)) (m, Таблица 4) в порядке **11а**→**11b**→**11с** свидетельствует об уменьшении внутримолекулярного переноса заряда при ослаблении электронодонорной способности арильного заместителя.

Дополнительно эмиссию хромофоров 8е-g, 11а-c, 14а-с изучили в порошке (Таблица 5, Рисунок 23).

Таблица 5 – Сравнение люминесцентных свойств соединений 8е-g, 11а-c, 14а-c в толуоле и порошке.

Саат	В р-ре то	луола	В порошке		
Соед.	λem, HM	Φ _F , %	λem, HM	ΦF, %	
8 e	476	71	513	6.3	
8 f	462	60	512	6.0	
8g	441	45	517	0.7	
11a	485, 670	< 1	485 , 661	<1	
11b	485, 623	5	474, 598	<1	
11c	452, 538	22	435, 557	1.5	
14a	490	71	537	<1	
14b	470	82	497	2.1	
14c	430, 456	26	476	2.0	

Оказалось, что в твёрдом виде изучаемые образцы люминесцируют от голубого цвета (**14c**) до красного (**11a**) в интервале длин волн 476–661 нм, при этом интенсивность люминесценции значительно снижается по сравнению с растворами.

Природа донорного заместителя в меньшей степени влияет на максимум эмиссии соединений **8а-g**, в то время как для серий **11а-c**, **14а-c** наблюдается гипсохромное смещение эмиссии в порядке $\mathbf{a} \rightarrow \mathbf{b} \rightarrow \mathbf{c}$. Различия могут быть связаны с разной упаковкой молекул в твёрдом состоянии.

2.1.2 2-(4-Арилфенил)- и 2-(3-арилфенил)хиназолины

Чтобы изучить влияние природы π-спейсера между электронодонорным и электроноакцепторным остатками на фотофизические свойства, была проведена модификация 2-(5арилтиофен-2-ил)хиназолинов 8, 11, 14, а именно замена тиофениленового фрагмента на фениленовый, с *пара-* и *мета-*расположением заместителей. С этой целью нами синтезирована серия хиназолин-содержащих хромофоров 20, 21, 23-26 (Схема 25, Схема 26). В результате кипячения 2-аминобензамида 1 и соответствующего бромбензальдегида 15а, b (Схема 25) в течение 3 часов получили смесь 2-(бромфенил)-2,3-дигидрохиназолин-4(1H)-она 16а (или 16b) и его изомера 2-(бромбензилиденамино)бензамида 16а' (или 16b') в обоих случаях. Согласно спектроскопическому анализу ЯМР ¹Н смеси (см. Раздел 3), дигидрохиназолиноны 16а, b оказались основными продуктами, сигналы которых коррелируют с данными для индивидуальных продуктов, полученных и описанных ранее.[123] Согласно литературным данным [124], бензамид является продуктом кинетического контроля, в то время как дигидрохиназолинон – продуктом термодинамического контроля. Поскольку реакция протекает при кипячении, преимущественно образуется бициклический интермедиат. Смесь интермедиатов (16 и 16') обработали хлоридом меди (II) в этаноле до образования 2-арилхиназолин-4(3*H*)-онов 17а,b, из которых получили 4хлорпроизводные 18а, b и далее 4-морфолинил- или 4-цианохиназолины (19а, b и 20а, b, соответственно) путём реакций нуклеофильного замещения (Схема 25).

Целевые продукты 20а-с, 21а-с, 22а,b, 23b (Схема 25), а также их аналоги на основе хиназолин-4(3*H*)-она 25а-с, 26а-с (Схема 26) получали обработкой соответствующих бромарилпроизводных 19а,b, 20а,b или 17а,b арилбороновыми кислотами по реакции кросссочетания Сузуки.

Кросс-сочетание: арилбороновая кислота (**20а,b**, **21а,b**, **23а,b**, **24b**)/пинаколовый эфир арилбороновой кислоты (**20с**, **21с**), PdCl₂(PPh₃)₂, PPh₃, K₂CO₃, H₂O, толуол, EtOH, аргон, 85 °C, 10–20 ч.

Выходы 4-цианопроизводных **23**, **24** невелики, возможно, из-за окисления циано-группы и образования побочных продуктов реакции. Структуры полученных соединений подтверждены ФХМА, в том числе двухмерной спектроскопией NOESY и COSY ¹H-¹H для соединения **20а** (Приложение А).

Кросс-сочетание: арилбороновая кислота (25а,b, 26а,b)/пинаколовый эфир арилбороновой кислоты (25с, 26с), PdCl₂(PPh₃)₂, PPh₃, K₂CO₃, H₂O, толуол, EtOH, аргон, 85 °C, 10–20 ч.

Анализ УФ спектров показал, что хиназолины **20**, **23**, **25** с 1,4-фениленовом спейсером поглощают в диапазоне длин волн от 328 до 425 нм в зависимости от растворителя и природы донорного фрагмента (Таблица 6). Значительное батохромное смещение полосы абсорбции характерно для 4-циано-производных **23а,b** в данной серии.

Соед.	Раст-ль	λabs, HM	λem, HM	Φ _F , %	Δv_{st} , ^d	λ_{em} (TB),	$\Phi_{\rm F}$ (tb),
		(ε, мМ ⁻¹ см ⁻¹)		(λex, HM)	см-1	НМ	%
20a	толуол	365 (33.9)	443	69 ^b (350)	4824	460	14.3
	MeCN	354 (25.7)	554	9 ^b (350)	10198		
20b	толуол	363 (35.5)	430	75 ^b (350)	4292	452	26.4
	MeCN	354 (39.8)	522	46 ^b (340)	9091		
20c	толуол	341 (40.7)	400	12 ^b (340)	4326	454	18.9
	MeCN	328 (45.7)	468	27 ^b (340)	9120		
21a	толуол	315 (34.7)	457	8 ^b (340)	9864	461	1.2
	MeCN	313 (35.5)	596	$< 1^{b}(340)$	15170		
21b	толуол	325 (26.9)	419	14 ^b (340)	6903	447	3.3
	MeCN	324 (29.5)	410 , 547	< 1 ^b (340)	6474 ^e		
21c	толуол	341 (14.8)	429	<1 ^b (340)	6015	405	0.4
	MeCN	340 (13.5)	493	1 ^b (340)	9128		
23a	толуол	370 (21.3),	160 600	7° (380)	6863	468, 615	
		425 пл (9.3)	400, 000	7 (380)	0805		<1
	MeCN	365 (21.2)	530	<1° (380)	8529		
23b	толуол	365 (46.6),	A65 555	23° (380)	6078 ^e		
		415 пл (25.8)	+05, 555	23 (300)	0070	451, 596	<1
	MeCN	360 (31.1)	400 , 540	<1° (380)	2777 ^e		
24b	толуол	309 (37.0),	468	$15^{\circ}(380)$	8306	437, 642	<1
		337 пл (31.1)	7.50		1.4000	-	
	MeCN	306 (33.1)	560	$3^{\circ}(380)$	14822	1.7.5	
25a	толуол	3/0 (37.1)	450	84 ⁶ (350)	4895	456	9.8
	MeCN	367 (-)ª	535	49° (360)	8556		
25b	толуол	370 (30.1)	445	89° (380)	4555	468	39.7
	MeCN	360 (-) ^a	535	43° (380)	9086		
25c	толуол	342 (36.5)	415	3 [°] (350)	5143	441	9.9
	MeCN	330 (-) ^a	490	38 ^b (320)	9895		
26a	толуол	310 (33.6)	460	14 ^b (315)	10519	464	<1
	MeCN	310 (34.2)	560	<1 ^b (360)	14401		
26b	толуол	328 (39.3)	430	23 ^b (328)	7232	427	13.1
	MeCN	328 (30.9)	420, 560	2 ^b (328)	12631 ^e	τ21	1.J.1
26c	толуол	310 $(-)^{a}$,	380,405,	<1 ^b (315)	9002 ^e	407	8.9
		340 пл (-) ^а	430 , 450	1			
	MeCN	340 (-) ^a	408	5 ^b (320)	4902		

Таблица 6 – Фотофизические свойства соединений 20-26, к. т.

^аОграниченная растворимость. ^bИзмеряли относительно бисульфата хинина в 0.1 М N растворе H_2SO_4 ($\phi = 54.6$ %, [111]). ^cИзмеряли относительно 3-аминофталимида в этаноле ($\Phi_F = 60$ %, [112]). ^dСтоксов сдвиг рассчитывали относительно длинноволновой полосы поглощения. ^eОтносительно основного максимума эмиссии (выделен жирным шрифтом).

С другой стороны, полоса поглощения карбазольных производных 20с и 25с смещена в синюю область относительно соответствующих диэтиламинофенильных (20а или 25а) и дифениламинофенильных (20b или 25b) аналогов в каждой серии, что, вероятно, связано с уменьшением длины сопряжения. Переход к мета-замещённым по фениленовому фрагменту хиназолинам 21a-с, 24b, 26a-с в большинстве случаев приводит к гипсохромному смещению полосы поглощения, что связано с уменьшением сопряжения в результате увеличения двухгранного угла между заместителями в случае 1,3 по сравнению с 1,4 фениленовым фрагментом.[125] Примечательно, что карбазолил-содержащий хиназолин 21с характеризуется поглощением с наибольшим значением максимума (340 нм в MeCN) по сравнению с его аналогами 21a,b (313 нм и 324 нм, соответственно). Такую же закономерность демонстрирует карбазольное производное 26с в серии мета-фенилен-замещённых хиназолинонов 26. Поскольку полярность растворителя не влияет на положение максимума абсорбции 1,3-фениленовых производных хиназолина 21а-с, 26а, в, можно предположить, что молекулы в основном сотоянии неполярны или малополярны. Все остальные соединения рассматриваемой серии продемонстрировали гипсохромное смещение положения максимума абсорбции при переходе от толуола к ацетонитрилу, как и их тиофениленовые аналоги.

2-Арилхиназолины 20, 25 характеризуются эмиссией с максимумами от 400 до 450 нм и квантовым выходом до 89 % (Таблица 6) в толуоле, положения которых смещаются батохромно в область 468–554 нм при переходе к ацетонитрилу, а интенсивность уменьшается. 4-Цианопроизводные 23а, в проявляют эмиссию в оранжевой области с меньшими значениями Φ_F относительно 4-морфолинилхиназолиновых и хиназолин-4(*3H*)-оновых производных 20a, b, 25a, b, соответственно. Также отмечено более значительное батохромное смещение полос эмиссии (на 68–111 нм) в ряду 1,4-фениленовых производных 20, 25 по сравнению с 2,5-тиофениленовыми аналогами 8, 14 (25–75 нм) при переходе от толуола к ацетонитрилу.

Производные хиназолина **20а-с**, **21а-с**, **25а-с**, **26а-с** люминесцируют в твёрдом состоянии в диапазоне от 405 нм до 468 нм (Таблица 6, Рисунок 24). 4-Цианопроизводные проявили эмиссию с двумя пиками в области 437–468 нм и 615–642 нм, как и в неполярном растворителе, что, возможно, связано с образованием димеров.

48

В сериях соединений **21а-с** и **26а-с** наблюдается последовательное смещение максимума эмиссии в коротковолновую область при уменьшении электронодонорной способности арильного заместителя (в порошке). В каждой серии (за исключением 4-цианопроизводных, которые практически не проявляют люминесценцию) наибольшее значение квантового выхода характерно для дифениламинофенильного производного **b**, которое, достигает 40 % в случае бифенилхиназолин-4(*3H*)-она **25b**.

2.1.3 2-(4-Дифениламинофенил)хиназолины

2-(4-Дифениламинофенил)хиназолины **28**, **29** и **30** (Схема 27) являются аналогами 4оксо-, 4-морфолинил- и 4-циано- производных, в которых фрагмент трифениламина непосредственно связан с хиназолиновым ядром, что позволяет изучить влияние длины π-спейсера на фотофизические свойства.

2-(4-Дифениламино)фенилхиназолин-4(3*H*)-он **28** был получен конденсацией 2-(4дифениламино)бензальдегида **27** и 2-аминобензамида **1** при кипячении в течение 5 ч в этаноле в присутствии CuCl₂. 4-Замещенные хиназолины **29** и **30** синтезировали путём реакции хлордезоксигенирования по положению 4 хиназолинового ядра и последующих реакций нуклеофильного замещения атома хлора на остаток морфолина (соединение **29**) или циано-группу (соединение **30**). Целевые продукты очищали колоночной хроматографией.

Схема 27

Согласно данным РСА (Рисунок 25), геометрии 2-(4-дифениленаминофенил)хиназолиновых фрагментов молекул **29** и **30** схожи: фениленовый фрагмент соединений повернут на угол 20.2° и 21.5°, соответственно, относительно плоскости гетероцикла и примерно на такой же угол относительно плоскости, образованной атомом азота N(4) с соседними атомами углерода.

Рисунок 25 – Молекулярная структура хиназолинов 29, 30 по данным РСА

Фенильные кольца дифениламиногруппы соединения **29** повернуты относительно плоскости C(17)–C(14)–C(23) на углы 63.3° и 60.0°. Для молекулы **30** эти значения также велики и равны 61.0° и 43.8°. Остаток морфолина в структуре **29** имеет конформацию «кресло» с (псевдо) экваториальным положением заместителей при атоме N(2). Существенно укороченных межмолекулярных контактов в кристаллах не обнаружено.

Согласно результатам фотофизических исследований, при переходе от хиназолинона **28** к его морфолинильному **29** и циано-аналогу **30** отмечено батохромное смещение длинноволнового максимума абсорбции (Таблица 7), причём, если введение остатка морфолина приводит к смещению на 7 и 4 нм в толуоле и ацетонитриле, соответственно, то переход к цианохиназолину сопровождается смещением максимума в красную область на 65 и 64 нм в тех же растворителях. Положения максимумов эмиссии соединений **28** и **29** отличаются незначительно; наблюдается гипсохромное смещение на 3 нм как в толуоле, так и ацетонитриле, квантовый выход при этом также сопоставим и варьируется от 45 до 71 %.

Соед.	Раств-ль	λabs, HM	λem, HM	Φ _F , %	Δv_{st} , ^d	λ_{em} (TB),	Φг (тв),
		$(\epsilon, MM^{-1} cM^{-1})$			см-1	HM	%
28	толуол	367 (33.9)	430	71 ^b	3992	557	1.4
	MeCN	359 (-) ^a	500	46 ^b	7855	557	1.4
29	толуол	374 (4.48)	427	56 ^c	3319	503	11.2
	MeCN	355 (4.53)	497	45 ^c	8048		
30	толуол	432 (11.2)	570	15 ^b	5604	610	3.2
	MeCN	415 (10.7)	-	-	-		

Таблица 7 – Фотофизические свойства соединений 28, 29, 30, к. т.

4-Цианохиназолин **30** продемонстрировал значительное батохромное смещение максимума эмиссии на 140 нм в толуоле и уменьшение квантового выхода до 15 % относительно ана-

^aОграниченная растворимость. ^bИзмеряли относительно 3-аминофталимида в этаноле ($\Phi_F = 60$ %, [112]), $\lambda_{ex} = 380$ нм. ^cИзмеряли относительно бисульфата хинина в 0.1 М растворе H₂SO₄ ($\Phi_F = 54.6$ %, [111]), $\lambda_{ex} = 350$ нм. ^dСтоксов сдвиг рассчитывали относительно длинноволновой полосы поглощения.

лога 28. В ацетонитриле соединение 30 не люминесцирует, что объясняется сильной полярностью рассматриваемой молекулы.

Батохромное смещение полос абсорбции и эмиссии соединения **30**, вероятно, связано с расширением цепи сопряжения благодаря включению циано-группы, и усилению взаимодействия между донорной и акцепторной частями.

Рисунок 26 – Эмиссия соединений **28**, **29**, **30** в порошке под УФ-лампой (λ_{ет} = 366 нм)

В твёрдом состоянии все три образца проявили люминесцентные свойства. Наиболее интенсивное свечение продемонстрировал 4-морфолинил-замещённый хиназолин **29**. При этом люминесценция 4-циано-производного **30** более интенсивная по сравнению с его аналогами, имеющими дополнительный 2,5-тиениленовый (**11b**) или 1,4-фениленовый (**23b**) спейсер.

2.1.4 Сравнение фотофизических свойств 4-(морфолин-4-ил)-, 4-цианохиназолинов и хиназолин-4(3*H*)-онов

Для полученных 4-(морфолин-4-ил)-, 4-цианохиназолинов и хиназолин-4(3*H*)-онов проанализировано влияние электронодонорного, электроноакцепторного фрагментов, а также *π*спейсера на фотофизические свойства в толуоле (Приложение А, Рисунок 27).

1. Влияние донорного заместителя.

В серии 8е-g, 11а-c, 20а-c, 23а,b и 25а-с положение максимума абсорбции и эмиссии смещается батохромно при усилении электронодонорных свойств арильного заместителя. В 1,3-фениленовых производных 21 и 26 не наблюдается чёткой закономерности: в серии 21а-с наиболее смещённым в красную область максимумом абсорбции характеризуется производное карбазола 21с, в то время как в серии 26а-с – дифениламинофенильное производное 26b. Эмиссия при этом смещается батохромно в ряду $21b \rightarrow 21c \rightarrow 21a$ и 26b, $c \rightarrow 26a$. В каждой серии квантовый выход значительно меньше в случае карбазольных производных.

2. Влияние акцепторного фрагмента.

При переходе от 4-(морфолин-4-ил)хиназолинов к хиназолин-4(3*H*)-онам (соответствующие пары соединений: **8a-g** и **14a-c**, **20a-c** и **25a-c**, **21b** и **26b**), наблюдается незначительное батохромное смещение длинноволнового максимума абсорбции на 3–7 нм, в то время как максимумы абсорбции соединений **21a,c** (**26a,c**), а также **29** (**28**), смещаются гипсохромно на 5, 21 и 7 нм, соответственно. Пик поглощения 4-цианопроизводных **11a-c**, **23a,b** практически совпадает с максимумами 4-морфолинилхиназолиновых и хиназолин-4(3*H*)-оновых аналогов, но дополнительно в спектрах проявляется малоинтенсивная полоса абсорбции в виде плеча, в обла-

сти более 415 нм. Стоит также отметить, что в случае 4-циано-2-дифениламинофенил)хиназолина **30** длинноволновая полоса поглощения проявляется в виде чёткого максимума при 432 нм.

Рисунок 27 – Максимумы абсорбции и эмиссии производных хиназолина в толуоле

Что касается эмиссии, наличие хиназолин-4(3*H*)-онового акцепторного фрагмента в сравнении с 4-морфолинилхиназолиновым, вероятно, способствует усилению взаимодействия донорной и акцепторной частей, что приводит к батохромному смещению максимума на 7–15 нм в сериях 8e-g (14a-c), 20a-c (25a-c), 21b (26b). На положение максимума эмиссии соединений 21a (26a), 21c (26c), 29 (28) природа заместителя в положении 4 практически не влияет. Введение сильной электроноакцепторной циано-группы приводит к проявлению двух максимумов эмиссии в области 452–465 нм и 538–670 нм (соединения 11a-c, 23a-c), что, возможно, связано с образованием неполярных димеров или ассоциатов с растворителем. Для соединения 24b данное свойство не проявляется, вероятно, из-за пространственных затруднений. Соединение 30 также характеризуется только одним максимумом эмиссии, расположенным в длинноволновой области при 570 нм. Квантовые выходы уменьшаются при введении циано-группы во всех случаях, за исключением производных 11c и 24b, значения Фг которых остаются сопоставимы с их аналогами 14c, 26b.

3. Влияние π-спейсера.

Влияние π -спейсера для ряда 4-морфолинилхиназолинов и 4-OH-хиназолинов показан ниже (Рисунок 27). В каждой серии соединений, отличающихся только природой π -спейсера, максимум абсорбции смещается гипсохромно в порядке от 2,5-тиениленового к 1,4фениленовому и 1,3-фениленовому фрагменту, что может быть связано с менее эффективным сопряжением дифенильного фрагмента в результате скручивания между фениленовой частью и соседними звеньями π -спейсера. Так, тиофениленовый фрагмент в **8е-g** способствует конъюгации из-за высокой поляризуемости и небольшого стерического затруднения с соседними звеньями. [126] Аналогичная закономерность наблюдалась для хромофоров на основе тетразина, содержащих тиофениленовые и фениленовые π -спейсеры.[127,128] Переход к 1,3-фениленовым производным хиназолина **21а-с** приводит к ещё большему гипсохромному смещению полосы поглощения соединений **21а,b**, что связано с уменьшением конъюгации и объясняется большей величиной двухгранного угла между заместителями в *мета*-положении по сравнению *пара*положением.[125]

Уменьшение длины π -спейсера приводит к батохромному смещению полосы абсорбции на 11 нм в серии 4-морфолинилпроизводных (**29** по сравнению с **20b**) и незначительному гипсохромному смещению на 3 нм в серии хиназолин-4(3*H*)-оновых производных (**28** и **26b**, соответственно). Сравнение люминесцентных свойств показало, что хиназолины, имеющие тиофениленовый фрагмент, характеризуются максимумом эмиссии с наибольшим значением длины волны. Стоит отметить, что положение максимума люминесценции 1,3-фениленовых производных **21а,с** и **26а,с** смещено батохромно относительно их 1,4-фениленовых аналогов **20а,с** и **25а,с**, соответственно. Уменьшение π -спейсера приводит к гипсохромному смещению на 3 нм

53

полосы эмиссии соединения **29** относительно **20b** и на 15 нм в случае соединения **28** относительно **25b**. Для 4-цианопроизводного **30** отмечено батохромное смещение полос как абсорбции, так и эмиссии относительно его аналога **23b**.

2.1.5 Влияние рН среды на фотофизические свойства 4-(морфолин-4-ил)хиназолинов

Поскольку атомы азота молекул 4-(морфолин-4-ил)хиназолинов проявляют основные свойства и способны протонироваться, было изучено влияние кислотности среды на фотофизические свойства в данном ряду. При добавлении трифторуксусной кислоты (ТФУК, pKa = 0.3, [129]) к соединениям **8а-g** наблюдался батохромный сдвиг максимума полосы поглощения (Таблица 8), что, вероятно, связано с протонированием атома азота 4-морфолинилхиназолинового фрагмента, увеличением акцепторной способности хиназолинового ядра и усилением процесса ВПЗ. При дальнейшем добавлении кислоты спектры большинства образцов не изменились. Только в случае Et₂N-производного **8e** наблюдали гипсохромный сдвиг максимума полосы абсорбции. По-видимому, в этом случае протонируется не только хиназолиновая система, но и диэтиламинофенильный остаток (pKa₁ = 0.65), электронодонорная способность которого значительно уменьшается и перенос электронов ослабевает.

Соед.	Растворитель	λ _{abs} , нм	λem, HM	$\Phi_{\mathrm{F}}{}^{\mathrm{a}},$ %	$\Delta v_{St}, cm^{-1}$
9 0	толуол	345	418	12	5062
oa	толуол + TFA	383	467	25 ^b	4787
0L	толуол	358	434	20	4891
00	толуол + ТФУК	407	499	73 ^b	4530
80	толуол	355	430	37	4368
oc	толуол + ТФУК	408	504	69 ^b	4668
64	толуол	362	436	49	4689
ðu	толуол + ТФУК	409	549	21	6235
9 0	толуол	405	476	71 ^b	3683
oe	толуол + ТФУК	489	611	<5	4083
Qf	толуол	398	462	60 ^b	3481
01	толуол + ТФУК	460	602	-	5128
8a	толуол	366	441	45	4647
ðg	толуол + ТФУК	411	532	51	5534

Таблица 8 – Фотофизические свойства соединений 6, 8а-g, $c = 10^{-4}$ M, к. т.

^аИзмеряли относительно бисульфата хинина в 0.1 M растворе H₂SO₄ ($\Phi_F = 54$ %, [111]), $\lambda_{ex} = 350$ нм. ^bИзмеряли относительно 3-аминофталимида в этаноле ($\Phi_F = 60$ %, [112]), $\lambda_{ex} = 400$ нм.

Для протонированных форм хиназолинов **8а-g** было отмечено смещение максимума эмиссии в красную область по сравнению с нейтральными молекулами (в наибольшей степени для соединений **8e** и **8f**) и увеличение интенсивности испускания производных **8а-с,g** (например, квантовый выход соединения **8b** увеличился с 20 % до 73 %). В остальных экспериментах (соединения **8d-f**) интенсивность люминесценции уменьшилась. Стоит отметить, что после

нейтрализации растворов триэтиламином спектры имели первоначальный вид, что подтверждает обратимость процесса протонирования и стабильность структур в кислой среде.

На следующем этапе работы было выполнено титрование толуольных растворов соединений **8e-g**, и их аналогов **20a-c**, **21a-c**, **29** трифторуксусной кислотой при комнатной температуре с целью более подробного исследования галохромных свойств. Показано, что постепенное добавление кислоты к соединениям **8e-g 20a-c**, **21a,b**, **29** сопровождается уменьшением значения оптической плотности и появлением нового пика в спектре абсорции, смещённого в красную область на 14–80 нм (Таблица 9). При дальнейшем добавлении кислоты только в случае диэтиламинофенил-производных **8e, 20a** наблюдали гипсохромное смещение максимума абсорбции, вызванное протонированием Et₂N группы (Рисунок 28 (а)).

Соед.	Растворитель	λabs, HM	λem, HM	$\Delta v_{\text{St}}, \text{cm}^{-1}$
8e	толуол + ТФУК (100 экв)	480	611	4467
	толуол + ТФУК (3178 экв)	370	458	5192
8f	толуол + ТФУК (500 экв)	467	592	5121
8g	толуол + ТФУК (750 экв)	406	532	5833
20a	толуол + ТФУК (150 экв)	445	605	5942
	толуол + ТФУК (2000 экв)	295	-	-
20b	толуол + ТФУК (350 экв)	431	596	6423
20c	толуол + ТФУК (700 экв)	390 пл	518	6336
21a	толуол + ТФУК (500 экв)	355	-	-
21b	толуол + ТФУК (520 экв)	339	395	4182
21c	толуол + ТФУК (500 экв)	355 пл	585	11074
29	толуол + ТФУК (200 экв)	426	575	6083

Таблица 9 – Данные поглощения и эмиссии соединений в кислой среде, к. т.

Спектры эмиссии образцов также постепенно изменялись при увеличении кислотности среды. Соединения **8e-g**, **20a-c**, **21c** и **29** продемонстрировали значительное уменьшение интенсивности первоначального пика и появление батохромно-смещённого максимума (Таблица 2). Новые пики Et₂N- и Ph₂N-содержащих хиназолинов **8e,f**, **20a,b** малоинтенсивные (Рисунок 28 (b), Рисунок 29 (a), в то время как протонированные формы карбазолил-содержащих хиназолинов **8g**, **20c** проявили среднюю интенсивность (Рисунок 29). При дальнейшем увеличении концентрации кислоты изменение в спектре (гипсохромное смещение) было отмечено только для хиназолина **8e** (Рисунок 28 (b)). В случае соединения **21b** наблюдали тушение люминесценции со смещением максимума эмиссии в синюю область на 24 нм. Люминесценция соединения **21a** оказалась полностью потушена в кислой среде.

Рисунок 28 – Изменения в спектрах абсорбции (a) и эмиссии (b) толуольного раствора **8e** $(c = 10^{-5} \text{ M u c} = 2 \times 10^{-6}, \text{ соответственно})$ при постепенном добавлении ТФУК

Рисунок 29 – Изменения в спектрах эмиссии толуольного раствора **20a** (a) и **8g** (b) (c = 2×10⁻⁶) при постепенном добавлении ТФУК

Линейная зависимость изменения интенсивности люминесценции от количества кислоты для хромофоров **8e-g**, **20a-c**, **21a-c**, **29** при низких концентрация ТФУК (Рисунок 30(a)), свидетельствует о возможности использования хромофоров для количественного анализа. Более того, при добавлении 100 эквивалентов ТФУК к раствору соединения **8e** мы наблюдали белую люминесценцию (Рисунок 30(b)). Данный подход к генерации белого свечения путём смешивания протонированной и непротонированной форм описан для близких по структуре соединений.[4,15]

1 – нейтральная форма 8е, 2 – с добавлением
100 эквивалентов ТФУК, 3 – с добавлением
15000 эквивалентов ТФУК
b

Рисунок 30 – (а) Изменение интенсивности люминесценции от концентрации кислоты. (b) Цвет раствора хромофора **8e** под УΦ-облучением (λ_{em} = 366 нм)

Чтобы проанализировать взаимодействие хромофоров с трифторуксусной кислотой, для некоторых образцов зарегистрировали спектр ЯМР ¹Н в хлороформе с добавлением ТФУК (Рисунок 31). В целом результаты соответствуют ранее описанным данным для схожих структур.[4,15] При добавлении кислоты сигнал H-8 бензольного кольца хиназолинов **8e** и **20a** смещается в слабое поле на 6 и 5 м.д., соответственно, что указывает на протонирование атома азота N-1 пиримидинового кольца и уменьшение электронной плотности на H-8. Кроме того, протонирование приводит к смещению сигнала атома H-3' тиофениленового фрагмента хромофора **8e** на 5 м.д., в то время как атомы H-2', H-6' фениленового остатка соединения **20a** смещаются в сильное поле на 4 м.д., что подтверждает меньшее сопряжение 2-фенилхиназолинов **20a-с, 21aс** по сравнению с 2,5-тиофениленовыми аналогами и соответствует данным фотофизических исследований.

Рисунок 31 – Спектры ЯМР ¹Н соединений **8e** (а) и **20a** (b) в нейтральной форме (верхняя строка) и с добавлением ТФУК (нижняя строка) в DCCl₃

Также наблюдается смещение в слабое поле сигналов атомов водорода группы N(CH₂)₂морфолина (на 5 и 4 м.д. для 8е и 20а, соответственно) и атомов H-3", H-5" фениленового фрагмента на 4 м.д. в случае соединения 20а.

2.1.6 АІЕ/АІЕЕ – эффект 4-(морфолин-4-ил)хиназолинов

Для изучения AIE/AIEE – эффекта 4-морфолинил-производных **8e-g**, **20a-c**, **21a-c**, **29** была измерена эмиссия образцов в чистом ацетонитриле и в смеси ацетонитрил/вода, с различными объёмными долями воды. В качестве примера ниже показаны изменения в спектре эмиссии соединяя **20a** при различной доле воды в растворе.

Рисунок 32 – (а) Спектр возбуждения (штриховая линия) соединения **20a** в ацетонитриле. Спектры люминесценции в ацетонитриле и в смеси ацетонитрил/вода с различными долями воды (f_w, %); c = 10 мкМ; λ_{ex} = 345 нм. (b) График зависимости интенсивности эмиссии (I/I₀) и длины волны максимума эмиссии соединения **20a** относительно доли воды (vol %), T = 23 °C

При добавлении первых порций воды (до 30 %) к хиназолинам **8e,f**, **20а-с**, **21а,c**, **29** максимум эмиссии незначительно смещается батохромно, а интенсивность уменьшается. Соединение **8g** также продемонстрировало смещение эмиссии в красную область, но с незначительным увеличением интенсивности при доле воды 10 %. Соединения практически потеряло люминесцентные свойства при доле воды 60–70 % (80 % в случае соединения **8e**). Данная закономерность ранее отмечена для различных типов хромофоров и может быть связана со стабилизацией перекрученного состояния переноса заряда (TICT) при увеличении полярности среды.[40,130,131] Дальнейшее добавление воды привело к возникновению гипсохромно-смещённой эмиссии и постепенному увеличению интенсивности. Максимальная интенсивность наблюдалась при доле воды 78–94 %. Вероятно, агрегация хромофоров приводит к уменьшению их полярности, что отражается в смещении эмиссии в синюю область и прекращении дальнейшего тушения.[40] Примечательно, что эмиссия соединений **20а,c**, **21а,c** в агрегированной форме более интенсивная, чем в растворе.

Эмиссия соединения **21b** проявилась в виде двух пиков, при 410 нм (основной пик) и при 547 нм. Добавление воды привело к исчезновению пика в длинноволновой области, при этом

интенсивность эмиссии практически не изменилась до содержания воды 70 %. При увеличении доли воды свыше 74 % наблюдался сдвиг максимума в длинноволновую область и усиление интенсивности по сравнению с первоначальным раствором.

2.1.7 2-Фенил-, 2-флуоренил- и 2-цимантренил-замещённые 4-арилхиназолины

Чтобы выявить наиболее благоприятное положение электронодонорного заместителя в диазиновом кольце хиназолина, на следующем этапе работы были получены донорноакцепторные системы с 2-фенильным, 2-флуоренильным и 2-цимантренильным фрагментом в качестве акцептора и арильным электронодонорным остатком в положении 4 хиназолинового ядра (Схема 28).

2-Фенилхиназолин-4(*3H*)-он **33а** получали взаимодействием 2-аминобензамида **1** с бензоилхлоридом **31а** по методике, описанной ранее.[132] Новые хиназолины **33b,с** синтезировали путём конденсации 2-аминобензамида **1** и соответствующего альдегида **31b,с** в аналогичных условиях, что и соединения **4**, **13**, **17a,b**, через образование промежуточного продукта 2флуоренил- или 2-цимантренил-дигидрохиназолинона **32b,с**. Бромдезоксигенирование хиназолинонов **33а-с** осуществляли с помощью оксибромида фосфора (V) в толуоле в присутствии триэтиламина.[133] Полученные бромпроизводные **34а-с** использовали в Pd-катализируемых реакциях кросс-сочетания для получения хиназолинов **35a-f** с выходами 34–80 % (Схема 28).

Комплекс ФХМА подтверждает структуры целевых и промежуточных продуктов. В двумерном спектре COSY ¹H-¹H соединения **35с** проявляются кросс-пики между соответствующими системами протонов, что позволяет сделать отнесение сигналов (Рисунок 33).

Рисунок 33 – Спектр COSY ¹H-¹Н хиназолина **35с** в CDCl₃

Согласно данным РСА (Рисунок 34), молекула **35b** кристаллизуется в центросимметричной пространственной группе, молекула **35c** – в хиральной пространственной группе.

Рисунок 34 – Молекулярная структура хиназолинов 35b,с согласно данным РСА

2-Фенилхиназолиновый фрагмент молекулы **35b**, а также конфигурация атома N(2) плоская. Заместители при N(2) повернуты под большим углом относительно плоскости N(2)C(17)C(14)C(23). Фениленовое кольцо в структурах **35b** и **35c** повернуто на 43° и 51°, соответственно, относительно плоскости гетероцикла. При этом хиназолиновое кольцо и остаток карбазола соединения **35c** лежат в одной плоскости. Существенно укороченных межмолекулярных контактов в кристаллах **35b** и **35c** не обнаружено.

Хиназолины **35а-f** характеризуются длинноволновым максимумом поглощения в области 339–405 нм в ацетонитриле и 341–392 нм в толуоле, положения которых для каждого соединения практически не зависят от природы растворителя (Таблица 10).

Соед.	Растворитель	λabs, HM	λem, HM	$\Phi_{\rm F}^{\rm a}$, %	$\Delta v_{\rm St}^{\rm d}$ (cm ⁻¹)
250	толуол	391	448	82	3254
358	CH ₃ CN	393	530	28	6577
35b	толуол	387	468	59 ^b	4472
	CH ₃ CN	382	574	11 ^b	8756
35 0	толуол	341	431	< 1	6124
350	CH ₃ CN	339	527	26 ^c	10532
254	толуол	392	459	61	3723
35 0	CH ₃ CN	394	531	21	6548
35e	CH ₃ CN	405	_	-	_
25f	толуол	387	446	38	3418
551	CH ₃ CN	395	535	5	6625

Таблица 10 – Фотофизические свойства производных хиназолина **35а-f**, $c = 10^{-5}$ M, к. т.

^аИзмеряли относительно 3-аминофталимида в этаноле ($\Phi_F = 60$ %), $\lambda_{ex} = 400$ нм. ^bАбсолютный квантовый выход. ^cИзмеряли относительно бисульфата хинина в 0.1 М растворе H₂SO₄ ($\varphi = 54$ %), $\lambda_{ex} = 350$ нм. ^dСтоксов сдвиг рассчитывали относительно длинноволновой полосы поглощения.

Природа заместителей в положении 2 хиназолинового ядра в ряду соединений 35а, 35d и 35f также оказывает незначительное влияние. Для карбазолил-производного 35c наблюдается типичное гипсохромное смещение полосы абсорбции (на 50 нм в толуоле и 54 нм в ацетонитриле) по сравнению с 35а. Примечательно, что влияние карбазола в 2-флуоренилхиназолине 35е отражается в незначительном батохромном смещении максимума абсорбции (на 11 нм) относительно **35d**. Полоса эмиссии соединений **35a-d,f** расположена в области $\lambda_{em} = 527 - 535$ нм в ацетонитриле и $\lambda_{em} = 431-459$ нм в толуоле с Φ_F до 82 % (соединение **35а**). Интенсивность люминесценции значительно зависит от пространственных и электронных эффектов заместителей. Так, введение более объёмного флуоренильного фрагмента в положение 2 хиназолина (соединение 35d) приводит к снижению квантового выхода люминесценции как в ацетонитриле, так и толуоле по сравнению с 2-фенильным аналогом 35а. Резкое снижение интенсивности эмиссии наблюдается при замене диэтиламиногруппы на карбазолильную (соединение 35с); более того, такое замещение в ряду 2-флуоренилхиназолинов приводит к полному тушению люминесценции (соединение 35е). Данный эффект может быть обусловлен нарушением сопряжения между акцепторной и донорной частями, поскольку 1,4-фениленовый фрагмент оказывается выведенным из плоскости системы (Рисунок 34).

2.1.8 2-(4-Цианофенил)- и 2-(4-трифторметилфенил)-замещённые 4-арилхиназолины

Поскольку 2-фенилхиназолины **35а-с** продемонстрировали привлекательные фотофизические свойства, была проведена модификация фенильного кольца, а именно введение акцепторного трифторметильного остатка или циано-группы в *пара*-положение. Процедура получения хромофоров **40а-f** аналогична синтезу хиназолинов **35** (Схема 29). Отличительной особенностью является использование более мягких условий на первой стадии синтеза. Так, интермедиаты **37** получали взаимодействием 2-аминобензамида **1** и соответствующего *пара*замещённого бензальдегида **36а,b** при комнатной температуре. Оказалось, что в случае 4цианобензальдегида **36а** использование мягких условий приводит к образованию основания Шиффа **37а** в качестве промежуточного продукта, в то время как в реакции с 4трифторметилбензальдегидом **36b** был выделен 2,3-дигидрохиназолин-4(1*H*)-он **37b**. Структуры интермедиатов подтверждены спектрами ЯМР ¹Н (Приложение В). Можно предположить, что наличие более сильного акцепторного заместителя препятствует формированию циклизованного продукта.

^{36, 38, 39:} R = CN (**a**), CF₃ (**b**)

40: R = CN, **R**¹ = NEt₂ (**a**), **R** = CN, **R**¹ = NPh₂ (**b**), **R** = CN, **R**¹ = 9*H*-карбазол-9-ил (**c**), **R** = CF₃, **R**¹ = NMe₂ (**d**), **R** = CF₃, **R**¹ = NPh₂ (**e**), **R** = CF₃, **R**¹ = 9*H*-карбазол-9-ил (**f**)

Фотофизические исследования для полученного ряда хиназолинов выполнены в растворе хлороформа. Соединения 40 характеризуются полосой абсорбции в ультрафиолетовой и видимой областях спектра с относительно небольшим молярным коэффициентом экстинкции, до $20 \text{ мM}^{-1} \text{ см}^{-1}$ (Таблица 11). В каждой серии карбазольные производные (40с, 40f) характеризуются наиболее смещённой в синюю область полосой абсорбции; максимумы абсорбции диалкиламино (40а, 40d) и дифениламино (40b, 40e) производных близки (Таблица 11, Рисунок 35 (а)). Максимум эмиссии растворов хиназолинов 40 наблюдается в сине-зелёной области спектра, значения квантового выхода превышают 50 %. Для циано-производных 40а-с характерно батохромное смещение максимумов абсорбции и эмиссии по сравнению с их трифторметильными аналогами **40d-f**. Дифениламино-производные **40b** и **40e** в каждой серии проявляют максимально смещённую в красноволновую область эмиссию, причём такая же закономерность характерна для серии 2-фенилхиназолина **35а-с**.

Соед.	$λ_{abs}$, HM (ε, MM ⁻¹ ·cm ⁻¹)	λem, HM	$\Phi_{\text{F}}{}^{a}$, %	Δv_{st}^{b} , cm ⁻¹	λ_{em} (TB), HM
40a	408 (20.4)	496	63	4349	502
40b	402 (20.2)	531	72	6043	505
40c	363пл (8.5), 340 (11.4)	486	64	6972	451
40d	390 (14.5)	474	76	4543	469
40e	396 (20.9)	517	75	5910	526
40f	340 (12.3)	474	53	8314	454

Таблица 11 – Фотофизические свойства соединений 40 в растворе CHCl₃, с $\approx 10^{-5}$ M, к. т.

^аИзмеряли относительно 9,10-бис(фенилэтинил)антрацена в циклогексане (Ф_F = 100 %), возбуждение в максимуме поглощения. ^bСтоксов сдвиг рассчитывали относительно длинноволновой полосы поглощения.

. Все образцы **40а-f** характеризуются положительным сольватохромизмом эмиссии и незначительным сольватохромизмом абсорбции (Рисунок 35, Таблица 12).

Рисунок 35 – (а) Нормализованные спектры абсорбции (пунктирная линия) и эмиссии (сплошная линия) соединений **40а-с** в растворе CHCl₃. (b) Нормализованные спектры эмиссии соединения **40b** в различных апротонных растворителях

Циано-производные **40а-с** характеризуются более интенсивным внутримолекулярным переносом заряда по сравнению с трифторметильными аналогами **40d-f**, о чём свидетельствует наибольший угол наклона прямой графика зависимости эмиссии от полярности растворителя (m, Таблица 12). Максимальное значение m наблюдалось для соединения **40a**.

Соед.	н-гептан	толуол	1,4-диоксан	ΤΓΦ	CH ₂ Cl ₂	MeCN	m ^b	R ²
	30.9 ^a	33.9 ^a	36.0 ^a	37.4 ^a	40.7 ^a	45.6 ^a		
40a	430	468	483	536	524	604	11.06	0,950
40b	457	488	502	540	554	604	9.94	0,994
40c	424	446	460	494	505	558	9.08	0,987
40d	426	461	477	512	498	563	8.36	0,915
40e	454	482	495	532	544	589	9.12	0,988
40f	419	441	454	489	500	553	9.02	0,975

Таблица 12 – Эмиссия (λ_{em} , нм) соединений **40а-f** в различных растворителях и в порошке.

^aE_T(30), параметр полярности Димрота-Райхардта в ккал×моль⁻¹. ^bНаклон линии регрессии λ_{em} (нм) относительно. E_T(30) в нм×ккал⁻¹.

При введении электроноакцепторных заместителей в *пара*-положение фенильного кольца, максимум эмиссии смешается в красную область более чем на 10 нм (Таблица 10, Таблица 12), что подтверждает усиление взаимодействия донорной и акцепторной частей.

2.1.9 2-Азинил-4-аминофенилхиназолины

В продолжение работы была проведена дальнейшая модификация заместителя в положении 2 хиназолинового ядра, а именно введение пиридинильного или хинолинильного остатков вместо фениленового (Схема 30).

Синтез 2-азинил-хиназолинонов **43а,b** выполнен в две стадии, с выделением дигидрохиназолинонов **42а,b** в качестве промежуточных продуктов. На стадии окисления дигидрохиназолинона использовали 2,3-дихлоро-5,6-дициано-1,4-бензохинон (DDQ), следуя ранее описанной методике.[132] На последующих стадиях было проведено бромдезоксигенирование по положению 4 и введение арильных заместителей путём Pd-катализируемой реакции кросс-сочетания аналогично другим 2,4-дизамещённым хиназолинам **35**, **40**. Целевые продукты очищали колоночной хроматографией на SiO₂ и охарактеризовали ФХМА.

Фотофизические свойства полученных хиназолинов (c = $0.8-1.5 \times 10^{-5}$ M) были изучены в растворах толуола и ацетонитрила (Таблица 13). Производные **45, 46а-с** продемонстрировали длинноволновый максимум абсорбции в интервале от 338 до 401 нм в растворе ацетонитрила. В случае 2-(хинолин-2-ил)хиназолинов **46а-с** максимум абсорбции сместился в красную область при увеличении электронодонорной способности заместителя в положении 4 хиназолинового ядра (**46с**→**46b**→**46a**; 338→389→401 нм). При переходе от хинолинил- к пиридинил- заместителю наблюдалось незначительное гипсохромное смещение максимумов абсорбции (соединения **46b** и **45**, соответственно), связанное с уменьшением длины π -сопряжённой системы. Производные хиназолина проявили люминесценцию в зелёно-жёлтой области спектра с максимумами в диапазоне от 537 до 574 нм и квантовым выходом до 16.9 % в ацетонитриле. Дифениламино-производное **46b** проявило наиболее смещённый в красную область максимум эмиссии по сравнению с аналогами **46a**, **46c**.

Соед.	Растворитель	λabs, HM	λem, ^a HM	$\Phi_{\rm F},^{\rm b}$ %	$\Delta v_{\rm st}$, c cm ⁻¹
45	толуол	390	472	53.8	4455
	MeCN	385	562	13.2	8180
46a	толуол	398	461	38.5	3434
	MeCN	401	569	0.2	7363
46b	толуол	394	472	45.5	4194
	MeCN	389	574	7.2	8285
46c	толуол	340	450	0.2	7189
	MeCN	338	537	16.9	10964

Таблица 13 – Фотофизические свойства хромофоров 45, 46а-с.

^аВозбуждение в максимуме поглощения. ^bАбсолютный квантовый выход. ^dСтоксов сдвиг рассчитывали относительно длинноволновой полосы поглощения.

При переходе от ацетонитрила к толуолу положение максимума абсорбции изменилось незначительно, в то время как максимум эмиссии сместился в синюю область (461–472 нм) на 87–107 нм (Таблица 13). При этом соединения **45**, **46а,b** продемонстрировали увеличение квантового выхода. Только в случае карбазолил-производного **46с** наблюдалось тушение люминесценции, как и в случае 2-фениленового аналога **35с**. Стоит отметить, что замена фениленового остатка (**35b**) на пиридинильный (**45**) приводит к незначительному батохромному смещению полосы абсорбции (на 3 нм), гипсохромному смещению полосы эмиссии (15 нм), интенсивность люминесценции практически не меняется. С целью сравнения фотофизических характеристик в ряду 2,4-дизамещённых хиназолинов все полученные данные свели в таблицу (Приложение Г).

Для рассматриваемых образцов, а также для 2-фенильного аналога **35b** изучили влияние полярности растворителя на эмиссию (Рисунок 36 (a,b), Таблица 14).

Соед.	н-гептан	циклогексан	толуол	ΤΓΦ	CH ₂ Cl ₂	ДМСО	MeCN	MeOH
	31.1 ^a	30.9 ^a	33.9 ^a	37.4 ^a	40.7 ^a	45.1 ^a	45.6 ^a	55.4 ^a
35b	449	446	472	506	528	564	562	579
45	435	434	470	517	536	583	577	604
46a	426	425	461	505	516	579	569	560
46b	441	440	472	512	537	578	574	587
46c	439	440	450	476	498	539	537	553

Таблица 14 – Максимумы эмиссии соединений 35b, 45 и 46а-с в различных растворителях

^аЕ_т(30), параметр полярности Димрота-Райхардта в ккал моль-1.

Графики зависимости сдвига Стокса от ориентационной поляризации растворителя (Δf) хромофоров **45–46** (Таблица 15, Рисунок 37) имеют линейный характер, что подтверждает положительный сольватохромизм эмиссии хиназолинов.

Таблица 15 – Данные, полученные из уравнения Липперта-Матага для хиназолинов 45–46

Соед.	Угол наклон	R ₂	aª, Å	Δμ, D
35b	17144	0.95	4.61	18.26
45	13827	0.96	4.59	16.29
46 a	14496	0.91	4.45	15.93
46b	15251	0.94	4.74	17.96
46c	14263	0.90	4.65	16.88

а^а – Радиус Онсагера.[134]

Рассчитанные согласно уравнению Липперта-Матаги [135–138] значения разности дипольных моментов (Δµ) основного и возбужденного состояний хиназолинов **35b**, **45**, **46а-с** составляют 15.93–18.26 Д, что указывает на значительный процесс внутримолекулярного переноса заряда при фотовозбуждении.

Рисунок 36 – (a) Нормализованные спектры эмиссии и (b) фотография растворов хиназолина **45** в различных растворителях

Рисунок 37 – Графики зависимости сдвига Стокса от ориентационной поляризации растворителя (Δf) флуорофоров **35b**, **45**, **46а-с**

Согласно полученным данным, значение $\Delta \mu$ зависит от природы заместителя в положении как 2, так и 4. Разница дипольного момента увеличивается при переходе от 2пиридинилхиназолина **45** (16.29 Д) к 2-хинолинил- **46b** (17.96 Д) и 2-фенил- аналогу **35b** (18.26 Д), при этом значения $\Delta \mu$ для **46b** и **35b** практически одинаковы. В серии соединений **46а-с** наибольшая разница дипольных моментов характерна для 4-дифениламинохиназолина **46b**, значение которой уменьшается в ряду **46b** \rightarrow **46с** \rightarrow **46а**.

Люминесцентные свойства соединений **35b**, **45** и **46а-с** были изучены в порошке. При фотовозбуждении соединения характеризуются излучением в диапазоне от синей (**46c**) до зелено-желтой (**45**) области, с максимумами при 448–515 нм (Таблица 16). Положение пиков полос излучения, а также квантовые выходы зависят от природы как электронодонорного фрагмента, так и заместителя в положении 2 хиназолинового ядра.

Соед.	λ_{em} (TB), HM	Ф _F (тв), ^а %		-						
35b	500	20.9								
45	515	6.1								
46a	512	< 1	35b	45	46 a	46b	46c			
46b	499	2.6	Эмиссия соединений 35b, 45, 46а-с в твёрдом со-							
46c	448	< 1	стояни	и под У	Ф-лампой	$\check{A} (\lambda_{em} =$	366 нм)			

Таблица 16 – Фотофизические свойства хромофоров 35b, 45, 46а-с в порошке

^аАбсолютный квантовый выход.

Квантовые выходы производных 2-азинил-хиназолина **45**, **46а-с**, достигают 6.1 %, в то время как хромофор **35b** люминесцирует в порошке с квантовым выходом около 21 %.

2.1.10 Фотофизические исследования 2-азинил-4-аминофенилхиназолинов в присутствии катионов металлов

Присутствие координационного сайта в структуре хиназолинов **45**, **46а-с** позволяет рассматривать данные молекулы в качестве сенсоров на катионы металлов. В частности, ранее был разработан 2-(хинолин-2-ил)хиназолин-4(3*H*)-оновый хромофор для селективного детектирования катионов цинка по механизму «включение».[139] Для анализа сенсорных свойств раствор каждого хромофора **45**, **46а-с** готовили в ацетонитриле, а растворы различных ионов металлов, таких как Cd²⁺, Ni²⁺, Co²⁺, Cu²⁺, Fe²⁺, Hg²⁺ и Zn²⁺ – в дистиллированной воде. Первоначально нами был проверен визуальный отклик хромофоров на присутствие катиона металла. Для этого к растворам **46с** и **45** (c = 5×10^{-5} M) в ацетонитриле добавляли по 2 экв различных катионов (c = 10^{-4} M). В обоих случаях наблюдали изменение цвета раствора и тушение люминесценции в разной степени при добавлении катионов Cu²⁺, Cd²⁺, Ni²⁺, Co²⁺, Hg²⁺ и Zn²⁺ (Рисунок 38). Оказалось, что катион Cu²⁺ более существенно влияет на поглощение и излучение, чем другие аналиты, в то время как изменений в присутствии катионов Fe²⁺ наблюдалось.

Для более детального исследования влияния катионов металлов на фотофизические свойства мы выполнили титрование растворов хромофоров **45**, **46а-с** солями Cu²⁺, Ni²⁺, Fe²⁺ и Zn²⁺. В спектрах поглощения соединений **45** и **46а,b** наблюдается батохромное смещение максимума абсорбции при добавлении катионов Cu²⁺, Ni²⁺ и Zn²⁺ (в случае соединения **45**) (Рисунок 39 (а)), что, вероятно, связано с формированием комплексного соединения хиназолина с катионом металла. Присутствие катионов железа (III) практически не повлияло на форму спектра во всех случаях.

Рисунок 38 – Изменения цвета раствора хромофоров **45** и **46c**, (c = 5×10⁻⁵ M) в присутствии двух эквивалентов различных катионов (c = 10⁻⁴ M) в CH₃CN при дневном свете и под УΦоблучением (λ_{em} = 365 нм)

Все рассматриваемые соединения **45**, **46а-с** продемонстрировали тушение люминесценции в разной степени в зависимости от природы и количества катионов. Примечательно, что присутствие 0.25 экв (для **45**) (Рисунок 39), 0.5 экв (для **46a** или **46b**) и 1 экв (для **46c**) катиона Cu^{2+} привело к полному тушению интенсивности излучения хромофоров, тогда как такое же количество катионов Ni²⁺ или Zn²⁺ вызвало только уменьшение интенсивности в каждом случае. Результаты соответствуют изменениям, наблюдаемым невооруженным глазом (Рисунок 38): самый темный раствор содержит катионы Cu²⁺.

Рисунок 39 – Спектры абсорбции (a) и эмиссии (b) сенсора **45** в MeCN (c = 5×10^{-5} M) при постепенном добавлении катионов Cu²⁺ (c = 10^{-4} M)

Уменьшение интенсивности люминесценции можно объяснить процессом обмена электронов, который сопровождается безызлучательным переносом энергии согласно механизму Декстера.[140,141] Более того, добавление катионов меди (II), может приводить к резкому изменение в спектрах эмиссии из-за парамагнитных свойств металла.[142]

2.1.11 Электрохимические, нелинейно-оптические свойства и теоретические исследования соединений 11а-с, 40a-f

Для соединений **11а-с, 40а-f** с усиленным акцепторным характером хиназолинового ядра дополнительно были изучены электрохимические и нелинейно-оптические свойства, а также выполнены теоретические расчёты.¹ Показано, что соединения **11а-с, 40а-f** окисляются в диапазоне потенциалов от 0.312 до 0.922 В и восстанавливаются от -1.570 до -2.372 В в зависимости от природы заместителя (Таблица 17). В случае алкильного заместителя NR₂ (**11а, 40а** и **40d**) процесс окисления имеет обратимый характер, в случае соединений **11с, 40с** и **40f**, содержащих карбазольный остаток, – необратимый. Для дифениламинопроизводных **40b** и **40e** наблюдали

¹ Выполнено совместно с Dr. P. Le Poul, Prof. F. Robin-Le Guen, Dr. S. Achelle (Ланньон, Франция), Dr. A. Barsella (Страсбург, Франция), Prof. O. Pytela, Prof. F. Bureš (Пардубице, Чехия).

осаждение образца на рабочем электроде после первой ступени окисления и чёткие сигналы, по-видимому, соответствующие продуктам димеризации или полимеризации. Процесс восстановления для хромофоров **11a,b**, **40a-c,e,f**, кроме **11a**, **40d** является обратимым.

Соед.	$E_{1/2}^{ox1}, [B]^a$	$E_{1/2}^{red1}, [B]^a$	ΔE , [B] ^b	Евзмо, [eB] ^c	Енсмо, [eB] ^c	λ_{max}^{A} , [HM] ^d
11a	0.312	-1.581	1.89	-5.09	-3.20	655
11b	0.483	-1.570	2.05	-5.26	-3.21	604
11c	0.553 ^e	-1.863 ^e	2.78	-5.70	-2.92	445
40a	0.553	-2.119	2.67	-5.33	-2.66	464
40b	0.629	-2.053	2.68	-5.41	-2.73	462
40c	0.922 ^e	-2.024	2.95	-5.71	-2.76	419
40d	0.584	-2.372 ^e	2.96	-5.36	-2.40	419
40e	0.624	-2.129	2.75	-5.40	-2.65	450
40f	0.606 ^e	-2.054	2.99	-5.72	-2.73	414

Таблица 17 – Данные электрохимических исследований соединений 11, 40

^aВсе потенциалы приведены относительно ферроцена. ^b $\Delta E = E_{1/2}^{ox1} - E_{1/2}^{red1}$. ^c $E_{HOMO/LUMO} = - (E^{ox1/red1} + 4.8)$. ^dPaccчитанные значения λ_{max} ($\lambda = 1241/\Delta E$). ^eHeoбратимые пики E_p .

Далее для всех соединений **11а-с, 40а-f** были рассчитаны значения B3MO/HCMO уровней и разница электрохимической щели. В целом результаты электрохимических исследований соответствуют фотофизическим данным. Так, для карбазольных производных **11с, 40с, 40f** наблюдается наибольшая электрохимическая щель, а для диалкиламино и дифениламинопроизводных каждой серии (**11а,b, 40a,b, 40d,e**) значения энергетических переходов близки. При переходе от нитрильной к CF₃- группе (соединения **40а-с, 40d-f**), наблюдается незначительное уменьшение значения потенциала восстановления (E_{red}), что подтверждает более сильную акцепторную способность циано-группы. Для незамещённого положению 2 хиназолинового аналога **Л13b** значение E_{red} = -3.34 В меньше[6], что подтверждает электроно-акцепторное влияние арильного заместителя в соединениях **40b** и **40e**. Стоит отметить, что значения потенциалов восстановления *E*_{red} соединений **11** больше, чем соединений **40**, что свидетельствует о более электроноакцепторной способности 4-цианохиназолинового фрагмента по сравнению с *пара*замещённым 2-фенилхиназолиновым.

Расчётные значения энергий МО в растворе CHCl₃ находятся в диапазоне от -5.86 до -5.19 и -3.04 до -2.24 eV, соответственно, и согласуются со значениями, полученными в результате электрохимических исследований. Электронная плотность в основном состоянии (B3MO) в соединениях **11** распределена на 5-арилтиофен-2-ильном остатке, в возбуждённом (HCMO) – на 2-(тиофен-2-ил)хиназолиновом фрагменте. В соединениях **40** ВЗМО в большей степени распределена на амино-донорном фрагменте, в то время как НСМО локализуется на хиназолинильном 4-цианофенильном или 4-трифторметилфенильном, а также 1,4-фениленовом остатках (Рисунок 40).

Рисунок 40 – Локализация граничных молекулярных орбиталей и заряды Милликена в хромофорах **11a** (a) и **40a** (b)

Согласно расчётным данным, в сериях хромофоров **11** и **40** 4-цианохиназолины **40а**, **40b** характеризуются наибольшими значениями первой гиперполяризуемости (β), в то время как соединения серии **40а-с** обладают наибольшим дипольным моментом (μ).

Таблица 18 – Значения μβ для соединений **11а-с, 40а-f**^а

	Соед.	11a	11b	11c	40a	40b	40c	40d	40e	40f
	μβ, 10 ⁻⁴⁸ , esu ^a	280	150	< 40	240	140	< 40	110	110	< 40
(\mathbf{n})	(10-3) $(10-3)$ $(10-3)$									

 $^{a}\mu\beta$ (2 ω) измерено при 1907 нм в CHCl₃. Концентрация растворов 10⁻³–10⁻²M, $\mu\beta \pm 10$ %.

Нелинейные оптические свойства второго порядка изучили в растворе CHCl₃ методом генерации второй гармоники, индуцированной электрическим полем (EFISH) при длине волны 1907 нм. NLO-отклик, полученный данным методом, представляет скалярное произведение векторов μβ. Положительные значения μβ (Таблица 18) указывают на то, что и основное, и возбуждённое состояния поляризованы в одном и том же направлении, причём возбуждённое состояние более поляризовано, чем основное, что согласуется с результатами исследования сольватохромии. Все соединения продемонстрировали слабый NLO-отклик, с наибольшим значением μβ в случае соединения **11а**.

2.2 Донорно-акцепторные системы на основе 2,3-бис(5-арилтиофен-2-ил)хиноксалина

2.2.1 2,3-Бис(5-арилтиофен-2-ил)хиноксалины

Далее нами были разработаны и изучены V-образные 2,3-бис(5-арилтиофен-2ил)хиноксалины **51a-d** (Схема 31). Ключевой интермедиат **49** синтезировали конденсацией *о*фенилендиамина **47** с 2,2'-тенилом **48**[143] и последующим бромированием 2,3-бис(тиофен-2ил)хиноксалина **49** N-бромсукцинимидом в ДМФА при комнатной температуре. На последней стадии была проведена реакция Pd-катализируемого кросс-сочетания Сузуки между хиноксалином **50** и соответствующими арилбороновыми кислотами или их пинаколовыми эфирами.
Схема 31

Согласно данным РСА (Рисунок 41), структуры молекул **51a** и **51b** имеют скрученную геометрию: сопряжённые фенилтиенильные фрагменты значительно повёрнуты относительно хиноксалинового кольца. Дифениламинофенильные фрагменты соединения **51b** имеют пропеллерообразное строение.

Рисунок 41 – Молекулярная структура хиноксалинов 51а, b согласно РСА

В УФ-спектрах соединений **51а-d** длинноволновая полоса абсорбции проявляется в области λ_{abs} 383–439 нм (Таблица 19), положение которой смещается в синюю область в ряду ($\mathbf{a} \rightarrow \mathbf{b} \rightarrow \mathbf{c} \rightarrow \mathbf{d}$) с ослаблением электронодонорной способности заместителя. Соединения **41а-d** проявляют флуоресценцию с максимумом в диапазоне $\lambda_{em} = 480-557$ нм в растворе толуола с квантовыми выходами $\varphi = 7-14$ %. В растворе ацетонитрила хиноксалин **41а** не обладает люминесцентными свойствами; максимумы эмиссии соединений **41b-d** смещаются в красную область ($\lambda_{em} = 529-629$ нм), квантовый выход при этом уменьшается и не превышает 5 %. Стоксов сдвиг для хиноксалинов **51** достаточно большой, что подтверждает внутримолекулярный пере-

нос заряда в системах: значения ∆vst возрастают от 2739–4317 см⁻¹ в толуоле до 7149–8140 см⁻¹ в ацетонитриле (Таблица 19).

Соед.	Растворитель	$λ_{abs}$, HM (ε, MM ⁻¹ ×cm ⁻¹)	λem, HM	$\Phi_{\mathrm{F}}{}^{\mathrm{a}}$, %	Δv_{St} , cm ⁻¹
51a	толуол	438 (35.7)	557	7	3833
	MeCN	439 (30.4)	-	-	-
51b	толуол	424 (32.0)	519	14	4317
	MeCN	416 (23.9)	629	<1	8140
51c	толуол	418 (43.9)	498	8	2739
	MeCN	409 (42.4)	578	2	7149
51d	толуол	389 (31.5)	480	11	3721
	MeCN	383 (-) ^b	529	5	7687

Таблица 19 – Фотофизические свойства производных хиноксалина **51а-d**, $c = 10^{-5}$ M, к. т.

^аИзмеряли относительно 3-аминофталимида в этаноле ($\phi = 60$ %), $\lambda_{ex} = 400$ нм. ^b Не определяли из-за низкой растворимости соединения.

Выявлено, что введение тиенильного спейсера между хиноксалиновым и дифениламинофенильным фрагментом (соединение **51b**) приводит к батохромному сдвигу в спектрах поглощения и испускания, а также к снижению интенсивности люминесценции по сравнению с 2,3-бис(4-дифениламинофенил)хиноксалином, описанным в литературе ($\lambda_{abs} = 403$ нм, $\lambda_{em} = 475$ нм, $\phi = 33$ %).[144] Соединения **51а,b,d** обладают слабоинтенсивной люминесценцией (до 2 %) в твёрдом состоянии с максимумом эмиссии при 595, 558 и 520 нм, соответственно.

2.2.2 2,3-Бис-(арилтиенил)дибензо[f,h]хиноксалины

Дибензохиноксалиновый интермедиат 54 был получен по реакции циклоконденсации фенантрен-9,10-диамина 52 и 1,2-бис(5-бромтиофен-2-ил)этан-1,2-диона 53 при кипячении в этаноле (Схема 32). Следует отметить, что другой подход – реакция конденсации фенантрен-9,10-диамина 52 с 2,2'-тенилом 48 и последующее бромирование 2,3-бис(тиофен-2-ил)дибензо[*f*,*h*]хиноксалина действием N-бромсукцинимида в ДМФА при температуре 120 °C в течение 24 ч – привел к образованию смеси моно- и дибром-производного (Схема 33). Для получения целевых продуктов 55а-с реализованы Pd-катализируемые реакции кросс-сочетания Сузуки.

В спектрах поглощения соединений **55а-с** (Таблица 20) длинноволновая полоса (π – π^* , λ_{abs}), проявляется в видимой области λ_{abs} 412–454 нм. Влияние арильного заместителя на положение максимума поглощения такое же, как и для соединений **51а,b,d**. Соединения **55а-с** проявляют флуоресценцию во всех изученных растворителях (толуол, CHCl₃, TГФ, CH₂Cl₂), максимум в спектре испускания расположен при λ_{em} 490–597 нм, квантовые выходы $\varphi = 3-13$ % (Таблица 20). При переходе от т олуола к CH₂Cl₂ наблюдался батохромный сдвиг в спектре эмиссии хиноксалинов **55а-с**, например, для соединения **55а** смещение составило 61 нм, кван-

74

товый выход флуоресценции при этом либо уменьшился (55a,b), либо практически не изменился (55c).

Таблица 20 – Фотофизические свойства дибензо[*f*,*h*]хиноксалинов **55а-с**, к. т.

56 (56 %)

57

Соед.	Растворитель	$λ_{abs}$, HM (ε, MM ⁻¹ ·cM ⁻¹)	λem, HM	$\Phi_{\text{F}}{}^{\text{a}}$, %	Δv_{St} , cm ⁻¹
	толуол	451 (39.8)	536	8	3516
55a	CHCl ₃	450 (38.0)	572	4	4740
	ΤΓΦ	451 (43.7)	578	4	4872
	CH_2Cl_2	454 (39.8)	597	3	5276
	толуол	436 (56.2)	519	13	3668
55h	CHCl ₃	436 (44.7)	549	8	4721
220	ΤΓΦ	435 (42.7)	550	9	4807
	CH ₂ Cl ₂	436 (46.8)	568	7	5330
	толуол	412 (41.7)	490	13	3864
550	CHCl ₃	412 (43.7)	500	10	4272
550	ΤΓΦ	412 (41.7)	496	10	4151
	CH ₂ Cl ₂	412 (38.8)	503	11	4391

^а Измеряли относительно 3-аминофталимида в этаноле ($\phi = 60$ %), $\lambda_{ex} = 400$ нм.

В твердом состоянии соединение **55а** не люминесцирует, а соединения **55b,с** обладают флуоресценцией с максимумом при 557 нм ($\Phi_F = 3$ %) и 542 нм ($\Phi_F = 9$ %), соответственно. Выявлено, что положения максимумов абсорбции аннелированных производных хиноксалина **55а-с** батохромно смещены на 12–23 нм относительно аналогов **51а,b,d**, вероятно, из-за увеличения цепи сопряжения. При этом положения максимумов эмиссии смещаются в синюю область на 39, 21 нм или не изменяется (в случае соединения **55b**), по-видимому, в результате ослабления акцепторных свойств в дибензохиноксалине относительно хиноксалина и, как следствие, более слабого взаимодействия донорного и акцепторного фрагментов. Значения квантовых выходов при этом практически не меняются.

2.2.3 Теоретические исследования 2,3-бис(арилтиенил)хиноксалинов и дибензо[*f*,*h*]хиноксалинов

Высшие занятые молекулярные орбитали соединений **51а,b,d** делокализованы по всей молекуле, в то время как ВЗМО соединений **55а-с** в большей степени локализованы на ариламиновом фрагменте и пиразиновом цикле (практически не наблюдаются на бензольных кольцах) (Рисунок 42).² Электронный переход ВЗМО→НСМО сопровождается значительным переносом электронной плотности от ариламинового фрагмента к хиноксалиновому остову.

Значения ВЗМО для хиноксалинов **51** ниже, чем ВЗМО для соответствующих дибензоаналогов **55**, наименьшие значения ВЗМО и НСМО наблюдаются для производного **51c**. Вероятность переходов между энергетическими уровнями (сила осциллятора, λ_{calc}) соединений **55а-с** выше в 1.5 раза, чем для **51a,b,d**, что указывает на большую степень делокализации в π -системе дибензохиноксалинов **55а-с**.

Рисунок 42 – Расчётные граничные молекулярные орбитали хиноксалинов 51a,b,d и 55a-с

Рассчитанные дипольные моменты соединений **51а,b,d** больше, чем в **55а-с**. В целом, данные, полученные в результате теоретических расчётов, хорошо согласуются с результатами эксперимента.

² Выполнено совместно с Prof. В. Ośmiałowski (Торунь, Польша), Prof. R. Zaleśny (Варшава, Польша).

2.2.4 Влияние рН-среды на фотофизические свойства 2,3-бис(арилтиенил)хиноксалинов и дибензо[*f*,*h*]хиноксалинов

Чтобы оценить возможность применения производных хиноксалина **51а-d** и **55а-с** в качестве pH-сенсоров, было проведено титрование трифторуксусной кислотой их толуольных растворов. Добавление ТФУК к образцу **51а** приводило к постепенному изменению формы полосы и положения максимумов абсорбции (Рисунок 43 (а), Рисунок 44 (а)). С увеличением кислотности среды (более 300 экв) наблюдали батохромный сдвиг пика ($\lambda_{abs} = 482$ нм). Что касается флюоресценции, при добавлении кислоты (до 135 экв) максимум эмиссии хиноксалина **51а** ($\lambda_{em} = 547$ нм) сместился в синюю область ($\lambda_{em} = 461$ нм), затем при 3500 экв – в красную область ($\lambda_{em} = 601$ нм) с одновременным уменьшением интенсивности (Рисунок 43 (а), Рисунок 44).

Рисунок 43 – (а) Изменения цвета абсорбции (слева) и эмиссии (справа) толуольного раствора 51а: 1 – без ТФУК, 2–135
эквивалентов ТФУК, 3–3500 эквивалентов ТФУК; λ_{ex} = 365 нм; (b) Изменения цвета абсорбции (слева) и эмиссии (справа)
толуольного раствора 51b: 1 – без ТФУК, 2– 7000 эквивалентов ТФУК; λ_{ex} = 365 нм.

Изменения в спектрах абсорбции и эмиссии связаны с образованием новых протонированных форм. Вероятнее всего, протонированию подвергаются диэтиламинофенильные фрагменты (pKa₁ = 0.65), в результате чего донорные свойства аминного остатка ослабевают и наблюдается коротковолновый сдвиг максимума в спектрах абсорбции и эмиссии. При дальнейшем увеличении кислотности протонированию подвергается и азагетероцикл. В результате усиления электроноакцепторных свойств хиноксалинового фрагмента происходит усиление внутримолекулярного переноса заряда в молекуле и смещение максимума эмиссии в красную область.

Выявлено, что низкие концентрации TFA (до 100 экв) оказывают незначительное влияние на спектры поглощения и эмиссии толуольных растворов **51b-d**. Последующее добавление кислоты привело к длинноволновому сдвигу в спектре абсорбции и тушению люминесценции. Вероятно, в этом случае протонированию подвергается только пиразиновый цикл, поскольку атом азота электронодонорного заместителя соединений **51b-d** (в сравнении с **51a**) не может протонироваться (pKa < -1) трифторуксусной кислотой (pKa = 0.3). При добавлении ТФУК к толуольному раствору соединений **55а-с** только в случае дибензо[*f*,*h*]хиноксалинового хромофора **55а** наблюдали изменения в спектрах абсорбции и эмиссии (Рисунок 45), причём изменения происходили при значительно большем избытке кислоты, чем в случае его аналога **55а**.

Рисунок 44 – Изменения в спектре абсорбции (а) и эмиссии (b) толуольного раствора **51а** при добавлении ТФУК

Так при добавлении кислоты (до 3000 экв.), максимум абсорбции хиноксалина **55**а сместился в синюю область, (Рисунок 45 (а)), при дальнейшем добавлении кислоты изменений в спектре не наблюдали. Полоса эмиссии производного **55**а сместилась синюю область с незначительным увеличением интенсивности до 9 % (Рисунок 45 (b),(c)). Различия в поведении соединений **51**а и **55**а, вероятно, связаны с тем, что производное хиноксалина **51**а может протонироваться как по Et₂N группам, так и по хиноксалиновому циклу, в то время как в молекуле **55а** протонированию подвергаются только диэтиламиновые остатки.

Рисунок 45 – Изменение спектра абсорбции (а), эмиссии (b) и квантового выхода флуоресценции (c) толуольного раствора **55а** (c = 2×10⁻⁶ M) при добавлении ТФУК

Дибензохиноксалиновое ядро не протонируется из-за стерических препятствий, вызванных бензольными кольцами. Этим же объясняется отсутствие изменений в спектрах испускания дибензо[f,h]хиноксалиновых хромофоров **55b,с** в отличие от аналогов **51b,d**.

2.2.5 Изучение способности хиноксалинов детектировать нитросодержащие вещества

Далее была изучена способность V-образных хиноксалинов **51а,b,d** и их дибензо аналогов **55а-с** детектировать нитросодержащие взрывчатые вещества (Рисунок 46) на примере 2,4-динитротолуола (ДНТ), 2,4,6-тринитротолуола (ТНТ), пентаэритриттетранитрата (ПЭТН) и пикриновой кислоты (ПК).

Рисунок 46 – Структуры нитро-содержащих соединений

Исследования проводили методом Single Point. Все производные хиноксалина **51а,b,d** и **55а-с** продемонстрировали тушение люминесценции с эффективностью до 40 % (Рисунок 47).

Рисунок 47 – Эффективность тушения сенсоров 51a,b,d, 55a-с к нитросоединениям

Было показано, что эффективность тушения зависит от природы как донорного фрагмента, так и хиноксалинового ядра. Значения константы связывания (Ksv) для хиноксалинов **51а,с,d** и дибензо[*f,h*]хиноксалинов **55а-с** (Таблица 21) довольно велики (до 57800 М⁻¹ в ТГФ). Выявлено, что соединения **51а,с,d** характеризуются более прочным связыванием с нитроароматическими веществами по сравнению с их аналогами **55а-с**, при этом Ksv увеличиваются в порядке ($d(c) \rightarrow b \rightarrow a$). Также был определён предел обнаружения на основе данных по тушению флуоресценции, следуя ранее описанному методу (Таблица 21).[145]

Соот	K_{SV} , $M^{-1}/$ LOD, ppb						
Соед.	ДНТ	THT	ПЭНТ	ПА			
51a	48400/32	45800/78	57800/216	57200/56			
51b	16900/134	14800/156	14400/135	26100/98			
51d	9950 /168	6480/221	7610/302	20800/133			
55a	21400/60	21000/95	21000/93	27500/73			
55b	12600/97	13100/221	12100/210	17300/240			
55c	5040/219	4440/405	3160/582	16000/195			

Таблица 21 – Значения K_{SV} и пределы обнаружения (LOD) нитросоединений для сенсоров **51а,с,d**, **55а-с**.

Учитывая все параметры, хиноксалин **51а**, содержащий концевые диэтиламинофенильные заместители, является более эффективным хемосенсором с $K_{sv} = 48400-57800 \text{ M}^{-1}$ и пределом обнаружения LOD = 32–216 миллиардных частей. Примечательно, что данное соединение обладает хорошей чувствительностью к взрывчатым веществам как ароматической, так и алифатической природы. В целом значения констант связывания хиноксалинов **51а,с,d** и **55а-с** достаточно велики для данного класса детекторов и сопоставимы со значениями, полученными для ранее описанных V-образных хромофоров на основе пиримидина.[146]

Стоит отметить, что на значения K_{SV} хромофоров в случае пикриновой кислоты может оказывать влияние эффект внутреннего фильтра (IFE) поскольку ПК характеризуется широким спектром поглощения, который может перекрываться со спектром возбуждения и/или спектром эмиссии флуорофора.[147] Более того, значительное тушение может быть вызвано протонированием изучаемых соединений, поскольку значение pKa пикриновой кислоты близко с pKa для ТФУК.

2.3 Полициклические производные хиназолинонов

Для синтеза полициклических соеднинений **60а-d** были использованы хиназолин-4(3*H*)оны **4, 13,** описанные в предыдущих разделах, и **59а,b**, которые получали аналогично, в две стадии с выделением интермедиатов: 2,3-дигидрохиназолин-4(1*H*)-она **58а** или бензамида **58b** (Схема 34). Аннелирование хиназолин-4(3*H*)-онов **59а-d** дифенилацетиленом с использованием [RhCp·Cl₂]₂ в качестве катализатора (4 мол.%), CsOAc (30 мол.%) в качестве основания в гексафторизопропаноле (HFIP) при 60 °C в течение 12 ч [63] привело к 4,5-дифенил-7*H*тиено[2',3':3,4]пиридо[2,1-*b*]хиназолин-7-онам **60а-d** с умеренными выходами. Схема 34

Модификация 4,5-дифенил-7*H*-(2-бром)тиено[2',3':3,4]пиридо[2,1-*b*]хиназолин-7-она **60b** с помощью Pd-катализируемой реакции кросс-сочетания позволила получить производное хиназолинона **60e** с электронодонорным дифениламинофенильным остатком в тиофеновом кольце (Схема 35). Стоит отметить, что попытка получить бромпроизводное **60b** из незамещённого 4,5дифенил-7*H*-тиено[2',3':3,4]пиридо[2,1-*b*]хиназолин-7-она **60a** путем обработки NBS в ДМФА при 80 °C в течение 6 часов не привела к получению желаемого продукта. Было установлено, что указанные условия способствуют двойному бромированию по бензольному кольцу (Схема 35), и в качестве основного продукта был выделен 4,5-дифенил-7*H*-тиено[2',3':3,4]пиридо[2,1-*b*]хиназолин-7-он **60f**.

Результаты ЯМР-спектроскопии и масс-спектрометрии подтверждают предложенные структуры интермедиатов и целевых продуктов. Согласно данным РСА (Рисунок 52), геометрии молекул **60a** и **60b** схожи; полициклическая система искажена, атом кислорода карбонильной группы отклонён от плоскости гетероцикла. Молекулы **60b** объединяются в димеры посредством межмолекулярных полярных контактов.

Рисунок 48 – Молекулярная структура соединений 60а, b и 62 согласно данным РСА

Для аннелирования 2-фенилхиазолинона **33a** дифенилацетиленом были использованы те же условия, что и для превращения 2-тиенильных аналогов **59a-d**, однако ожидаемый изохинолинохиназолинон **61** был выделен лишь в примесных количествах (Схема 36). Совокупность данных ФХМА, в том числе РСА (Рисунок 48), указывает на то, что основным продуктом является производное бензонафтиридина **62**, образовавшееся в результате алкоголиза амидной группы и двойного аннелирования фенилацетилена. Из данных РСА следует, что трициклическая часть молекулы **62** является плоской. Арильные заместители повёрнуты на углы 60–90° в сторону гетероцикла.

Согласно фотофизическим исследованиям, выполненным для растворов толуола и ацетонитрила, соединения **60a-f**, **61**, **62** демонстрируют широкую длинноволновую полосу поглощения в области 346–433 нм. Соединение **60e** с расширенной π -системой характеризуется наиболее смещённой в красную область полосой поглощения. При переходе от 4,5-дифенил-7*H*-тиено[2',3':3,4]пиридо[2,1-*b*]хиназолин-7-она (**60a**) к аналогу **61** максимум поглощения смещается батохромно в обоих растворителях. Для производного бензонафтиридина **62** наблюдается широкая длинноволновая полоса поглощения с максимумом 350 нм в толуоле и 346 нм в MeCN. Максимумы полос излучения соединений **60а-f**, **61**, **62** располагаются в диапазоне от 470 до 560 нм (Таблица 22). Наличие электронодонорной группы в тиофеновом фрагмент (соединения **60b-e**) приводит к батохромному смещению максимума флуоресценции в толуоле по сравнению с незамещённым аналогом **60a**. Введение атома брома в бензольное кольцо тиенопиридохиназолин-7-она вызывает противоположный эффект: 470/475 нм и 480/480 нм (растворы MeCN/толуол) для **60f** и **60a** соответственно. Основной максимум эмиссии фенилсодержащего соединения **61** (510 нм) смещён на 30 нм в красную область по отношению к тиофенсодержащему аналогу. Положение максимумов эмиссии для **60a**,**b**,**d**, **61** не зависит от природы растворителя. Для **60c**,**f**, **62** эффект растворителя выражается в гипсохромном смещении максимумов флуоресценции, с наибольшим изменением в спектре производного бензонафтиридина **62** (560 нм и 520 нм в толуоле и MeCN, соответственно). Для **60e** полоса испускания смещается батохромно на 80 нм при увеличении полярности растворителя, что подтверждает высокую эффективность ВПЗ. Из серии соединений **60a-f**, **61**, **62** только дифениламинофенил-замещенный хиназолинон **60e** продемонстрировал умеренный квантовый выход (15 % в толуоле и 29 % в растворе ацетонитрила).

Соед.	Растворитель	$λ_{abs}$, HM (ε, MM ⁻¹ ·cm ⁻¹)	λem, HM	$\Phi_{\rm F}{}^{\rm a}$, %	v_{st} (cm ⁻¹)
60a	толуол	383 (13.3)	480	< 1	5267
60b	толуол	415 (9.2)	485	1	5221
60c	толуол	385 (20.1)	485	1	5355
60d	толуол	419 (12.9)	485	2	4634
60e	толуол	423 (32.5)	470 , 500	15	3640
	MeCN	417 (19.3)	550	29	5799
60f	толуол	392 (19.7)	475	1	4458
61	толуол	392 (13.6)	430, 510	< 1	5902
62	толуол	433 (5.4)	560	< 1	5238
	MeCN	346 (14.2)	520	< 1	8594

Таблица 22 – Фотофизические свойства соединений 60а-f, 61, 62, к. т.

^а Измеряли относительно 3-аминофталимида в этаноле ($\phi = 60$ %), $\lambda_{ex} = 380$ нм.

Все соединения проявляют люминесцентные свойства в твёрдом состоянии (Ф_F до 4.5 %), обусловленные ограничением внутримолекулярного вращения фенильных групп и уменьшением безызлучательных потерь энергии. Максимумы эмиссии порошков смещены в красную область на 8–38 нм (соединения **60a,b,d-f, 61, 62**) по сравнению с раствором толуола, возможно, из-за усиления межмолекулярных взаимодействий. Гексил-производное **60c** характеризуются гипсохромно-смещенной полосой эмиссии на 9 нм. Вероятно, гексильная группа препятствует плотной упаковке молекул.

На основании данных по люминесцентным свойствам в растворах и твёрдом состоянии для соединений **60a-f**, **61**, **62** был изучен АIEE-эффект (Рисунок 49). В случае соединений **60a-d**,

61 наблюдали усиление эмиссии, вызванное формированием агрегатов, при доле воды превышающей 70 %, для образца **62** – 60 %.

Рисунок 49 – (а) Спектры флуоресценции соединения **60с** (с = 10^{-6} M) в смеси MeCN/H₂O с различной долей воды (f_w , %). (b) График зависимости I/I₀ при 475 нм от доли соотношения MeCN/H₂O для соединения **60с** ($\lambda_{ex} = 385$ нм)

Также для ряда соединений **60a-d,f**, **62** исследована способность детектировать катионы железа Fe^{3+} . В большинстве случаев (соединения **60a-d,f**) наблюдалось тушение люминесценции. Однако, при добавлении катионов Fe^{3+} к раствору **62** интенсивность флуоресценции увеличилась в 100 раз по сравнению с чистым растворителем (Рисунок 50(а)). Вероятно, Fe^{3+} координируется с C=O-группой и атомом азота, вследствие чего повышается структурная жёсткость молекулы и происходит усиление эмиссии.

Рисунок 50 – (а) спектры флуоресценции раствора **62** с различной концентрацией Fe³⁺. (b) Спектры флуоресценции раствора **62** в ацетоне с различными катионами. Вставка: фотография раствора **62** в ацетоне без (1) или с (2) добавлением Fe³⁺.

При добавлении катионов других металлов, а именно Cu^{2+} и Cr^{3+} , которые часто конкурируют с Fe³⁺[148], изменений в спектрах эмиссии не наблюдалось (Рисунок 50(b)), что подтверждает селективность соединения **62** к катиону трёхвалентного железа.

2.4 Замещённые 2-(2-гидроксифенил)хиназолин-4(3*H*)-оны, дифторборатные комплексы на основе бензодиазиновых N,O-лигандов

2.4.1 2-(2-Гидроксифенил)хиназолин-4(3H)-оны и ВF₂ комплексы на их основе

(2-Гидроксифенил)хиназолин-4(3*H*)-оны **65а-h** были получены из 2-аминобензамида **1** и соответствующего производного салицилового альдегида **63а-h** в две стадии с выделением 2-(2гидроксибензилиденамино)бензамида **64а-h** или без выделения промежуточного соединения (для **65g,h**) (Схема 37). Применение мягких условий реакции (перемешивание при комнатной температуре) способствует формированию основания Шиффа **64а-f** для всех производных салицилового альдегида, независимо от природы заместителя в кольце. Модификация 2-(2гидрокси-5-бромфенил)хиназолин-4(3*H*)-она **65с** с помощью Pd-катализируемой реакции кросссочетания позволила получить хиназолинон **65i** с расширенной π -сопряжённой системой. Дифторборатые комплексы **66а-g** были получены обработкой соответствующего лиганда **65а-g** эфиратом трёхфтористого бора (BF₃·OEt₂) в смеси толуола и ледяной уксусной кислоты при кипячении (Схема 37).

Структура полученных соединений **64** и **65** подтверждена спектроскопией ЯМР, а также масс-спектрометрией. Для всех дифторборатных комплексов **66а-i** выполнен массспектрометрический анализ. Дополнительно, для образцов **66g** и **66i** зарегистрированы спектры ЯМР ¹H, ¹¹В и ¹⁹F (Рисунок 51), остальные образцы плохо растворимы в неполярном CDCl₃ и нестабильны в полярных растворителях, таких как ацетон- d_6 и ДМСО- d_6 , поэтому ЯМР анализ выполнить не удалось.

Рисунок 51 – Фрагменты спектров ЯМР 1 H (a), 11 B (b) и 19 F (c) BF₂ комплекса 66g

Согласно данным РСА, атом бора дифторборатного комплекса **66e** отклонён от плоскости NCCCO на 0.109, Å. Кристалл **66e** организован в центросимметричных димерах посредством водородных связей между NH-группами и карбонильными остатками (Рисунок 52).

Рисунок 52 – Структура и межмолекулярное N–H…О взаимодействие хиназолинона 66е согласно данным РСА

Из результатов исследования фотофизических свойств (Таблица 23) следует, что лиганды 65 проявляют максимум длинноволновой полосы абсорбции в диапазоне $\lambda_{abs} = 342-380$ нм в толуоле.

C	Раствори-	Лиганд			C	Комплекс				
соед.	тель/ состояние	λ _{abs} , нм	λ_{em} , нм	$\Phi_{\text{F}}{}^{\text{a}}$, %	Δv_{st} , cm ⁻¹	Соед.	λ _{abs} , нм	λem, HM	$\Phi_{\text{F}}{}^{\text{a}}$, %	Δv_{st} , cm ⁻¹
65a	толуол	351 пл 337	505	1	9872	66a	354	423	24	4608
	порошок ^с	-	495	29	-		-	500	19	-
65b	толуол	360 пл 345	517	2	9643	66b .	362	434	18	4583
	порошок	-	511	15	-		-	505	11	-
65c	толуол	360 пл 346	512	3	9370	66c	367	433	2	4153
	порошок	-	502	15	-		-	506	2	-
(5)	толуол	352	524	5	9325		370	432	< 1	3879
050	порошок	-	529	6	-	000	-	503	< 1	-
65e	толуол	342	532	< 1	10443	66e	366	441	42	4647
	порошок	-	544	3	-		-	469	66	-
65f	толуол	343 пл 319 пл 303	-	-	-	66f	350 пл 303	466 ^d	5	5568
	порошок	-	518	11	-		-	509	1	-
(5-	толуол	367	557	< 1	9359	((-	385	474	70	4877
05g	порошок	-	546	10	-	oog	-	489	4	-
	ΤΓΦ	375	404, 485	< 1 ^b	1914, 6048		379	422	11	2689
65h	толуол	379	487	< 1 ^b	5851	66h	392	412	62	1238
	порошок	-	446	< 1	-		-	504	2	-
	ΤΓΦ	380 пл 310	562	1 ^b	12510 ^e		400 пл 330	591	2	8080 ^c
65i	толуол	380	563	3 ^b	12000 ^e	66i	405	538	22	6104
	порошок	-	530	2	-		-	563	1	-

Таблица 23 – Фотофизические свойства лигандов 65 и комплексов 66, к.т.

^аИзмеряли относительно бисульфата хинина в 0.1 N H₂SO₄ (ϕ = 54.6 %), λ_{ex} = 350 нм; ^bИзмеряли относительно 3аминофталимида в этаноле (ϕ = 60 %), λ_{ex} = 375 нм. ^cКвантовый выход измеряли с использованием интегрирующей сферы Quanta- ϕ F-3029. ^dКомплекс разрушается при нагревании. ^eЗначения приблизительные, так как спектры абсорбции уширены.

Значительное смещение в длинноволновую область наблюдается при введении электронодонорного амино-заместителя (соединение **65h**) наряду с расширением сопряжённой π системы (соединение **65i**). Полоса спектров эмиссии соединений **65a-e,g-i** располагается в жёлто-зелёной области с максимумами в диапазоне от 505 до 563 нм и низкой интенсивностью, до 5 %. Введение заместителя в *пара-* или *орто-* положение фенольного кольца (хиназолиноны **65b-е,g,h**) приводит к батохромному смещению полосы эмиссии на 7–58 нм, при этом смещение увеличивалось при усилении электронодонорной способности заместителя (Таблица 23). 2-Гидрокси-4-диэтиламинофенильное производное **65h** характеризуется гипсохромным сдвигом максимума полосы эмиссии. Производное хиназолинона **66f**, содержащее этокси-группу в *ор-то-* положении к гидроксилу фенольного остатка, не обладает люминесцентными свойствами, возможно, по причине образования водородной связи между атомом водорода гидроксильной группы и кислородом этокси-фрагмента, что приводит к дополнительной стабилизации неактивной енольной формы (Рисунок 53).

Рисунок 53 – Формирование водородной связи в молекуле хиназолинона 66f

Также фотофизические свойства были изучены в растворе ТГФ; выявлено, что лиганды мало чувствительны к полярности среды.

Согласно литературным данным (см. Раздел 1), для 2-(2-гидроксифенил)хиназолин-4(3*H*)-онов характерно явление фотоиндуцированного внутримолекулярного переноса протона со стабилизацией кето-формы, что отражается в появлении длинноволновой полосы эмиссии и больших значениях сдвига Стокса. Данное явление было отмечено и для замещённых соединений **65b-е,g,i** как в растворе толуола, так и ТГФ, которое подтверждается большими значениями сдвига Стокса (>150 нм или 9325–12510 см⁻¹ в ТНГ и от 9174 до 12000 см⁻¹ в толуоле) и полосой эмиссии с максимумом, превышающим 500 нм (Таблица 23). Однако, в случае диэтиламино-замещённого производного **65i** мы наблюдали коротковолновый пик в толуоле и два пика в растворе ТГФ (Таблица 23, Рисунок 54). Можно предположить, что высокоэнергетическая полоса с максимумом при 404 нм возникает в результате эмиссии енольной формы, в то время как низкоэнергетическая полоса с максимумом при 485 нм – кетоформы.

Поскольку лиганды **65** обладают более интенсивной люминесценцией в твёрдом состоянии (Рисунок 55) по сравнению с раствором (Таблица 23), было изучено явление усиления эмиссии, вызванное агрегацией.

88

Рисунок 54 – Спектры возбуждения и эмиссии соединения 65i в ТГ Φ

При постепенном увеличении доли воды в кювете во всех экспериментах наблюдали усиление эмиссии по сравнению с чистым растворителем (в качестве примера, Рисунок 56), что подтверждает люминесцентный характер агрегированной формы исследуемых образцов. Отмечено, что увеличение интенсивности (*I*/*I*₀) в значительной степени зависит от природы и положения заместителя и изменяется от 2 до 202 раз.

Рисунок 55 – Эмиссия соединений 65, 66 в твёрдом состоянии (порошок)

Положение максимумов полос флуоресценции соединений 65а-е, g-i в смеси ТГФ/вода и ТГФ совпадают, что свидетельствует о существовании одной и той же активной формы. Стоит отметить, что добавление воды к раствору хиназолинона **65h** в $T\Gamma\Phi$ привело к возникновению интенсивной полосы эмиссии с длинноволновым максимумом (470 нм) по сравнению с чистым ТГФ. Этокси-замещённое производное 65f продемонстрировало эмиссию при 519 нм, вызванную агрегацией, что может быть объяснено разрушением водородной связи из-за увеличения полярности среды и появления внутримолекулярного переноса протона (Рисунок 53). Таким образом, можно полагать, что добавление воды во всех случаях приводит к агрегации молекул И стабилизации ИХ кето-формы. В результате затруднения

внутримолекулярного вращения и уменьшения безызлучательных потерь энергии наблюдается усиление эмиссии.

Рисунок 56 – (а) Спектр абсорбции (пунктирная линия) соединения **65e** в ТГФ. УФ спектры в ТГФ и смеси ТГФ/вода с различными долями воды (fw). (b) Зависимость интенсивности люминесценции (I/I₀) соединения **65e** при λ = 532 нм от состава смеси ТГФ/вода. Вставка: фотография соединения **65e** в ТГФ и ТГФ/вода (98/1, v/v)

При переходе от лигандов **65** к дифторборатным комплексам **66** максимум абсорбции сместился батохромно до 25 нм (Таблица 23) из-за формирования более сопряжённой планарной структуры. По сравнению с абсорбцией незамещённого комплекса **66a** (λ_{abc} = 354 нм в толуоле), соединения, содержащие атомы галогенов (**66b-d**), характеризуются батохромным смещением длинноволновой полосы абсорбции на 8–16 нм. Введение MeO- и Ph₂NPh- групп в *пара*-положение (**66g,i**), или Et₂N-группы *мета*-положение (**66h**) приводит к значительному батохромному сдвигу (31 нм, 46 нм и 38 нм, соответственно), что связано с увеличением цепи сопряжения. Наличие этокси-группы в положении 3' фенольного остатка (**66f**) оказывает незначительное влияние на положение максимума абсорбции. Соединения **66a-i** обладают люминесценцией в сине-зелёной области спектра (от $\lambda = 412$ нм до $\lambda = 538$ нм) с максимумами, смещёнными в область коротких длин волн по сравнению с соответствующими лигандами **65**, что связано с прекращением процесса переноса протона.

Показано, что величина квантовых выходов BF_2 комплексов зависит как от структуры, так и от среды. Незамещённое соединение **66a** характеризуется квантовым выходом 24 % в толуоле и 16 % в $T\Gamma\Phi$. Эмиссия комплексов **66c,d,f** слабоинтенсивна в обоих растворителях (квантовый выход менее 5 %), что связано с наличием тяжёлого атома брома в структуре или со значительным взаимодействием этокси-группы с соседним кислородом, приводящим к релаксации возбуждённого состояния и безызлучательному рассеянию энергии. Производные

66b,е,е-і, содержащие донорные заместители, продемонстрировали интенсивную люминесценцию (до 70 %) в толуоле. При переходе к раствору ТГФ интенсивность значительно уменьшилась и не превысила 22 %. Полосы эмиссии соединени **66b-е,g-i** батохромно смещены по сравнению с незамещённым аналогом **66a**, что свидетельствует об увеличении взаимодействия донорной и акцепторной частей молекул. Производное **66h**, содержащее Et₂N группу в положении 4' фенольного кольца, характеризуется гипсохромным смещением максимума эмиссии. Значения сдвигов Стокса соединений **66a-g** составляют 4000–5500 см⁻¹ и достигают 6000–8000 см⁻¹ в случае соединения **66i**. Все дифторборатные комплексы **66** характеризуются смещённой в красную область эмиссией с максимумами в интервале от 469 до 563 нм в твёрдом состоянии по сравнению с раствором толуола (Таблица 23), что, возможно, связано с усилением межмолекулярных взаимодействий. Выявлено, что введение *трет*-бутильных групп в фенольный остаток приводит к усилению эмиссии в твёрдом состоянии с 19 % (соединение **66a**) до 66 % (соединение **66e**). Хлор-производное **66b** демонстрирует среднее значение квантового выхода, около 11 %, в то время как интенсивность остальных комплексов низкая, вероятно, из-за плотной упаковки молекул.

2.4.2 ВF₂ комплексы 2-(2-гидроксифенил)-4-арилхиназолина

Чтобы продемонстрировать влияние 2,4заместителя В трёх фрагментах диарилхиназолина на фотофизические свойства, была получена серия дифторборатных комплексов 69а-к с использованием двухстадийного подхода (Схема 38). Лиганды 68а-к синтезитрёхкомпонентной реакции между 2-аминобензофеноном ровали путём 67a-c. 2гидроксибензальдегидом **63а, b, e, g** и ацетатом аммония в этаноле с использованием CuCl₂·2H₂O или I₂ в качестве катализатора. После обработки 2-(2-гидроксифенил)-4-арилхиназолинов 68 избытком эфирата трёхфтористого бора BF3·OEt2 в смеси толуола и уксусной кислоты в течение 30–90 минут получали продукты **69**. Спектры ЯМР ¹H, ¹¹B и ¹⁹F подтверждают структуры целевых соединений.

Схема 38

67: $X = X^{1} = H(a)$; X = Cl, $X^{1} = H(b)$; $X = X^{1} = Cl(c)$; 63: $R = R^{1} = H(a)$; R = H, $R^{1} = Cl(b)$; $R = R^{1} = t$ -Bu(e); R = H, $R^{1} = OMe(g)$; 68, 69: $X = X^{1} = R = R^{1} = H(a)$; $X = X^{1} = R = H$; $R^{1} = Cl(b)$; X = Cl; $X^{1} = R = R^{1} = H(c)$; $X = X^{1} = Cl$, $R = R^{1} = H(d)$; $X = R^{1} = Cl$, $X^{1} = R = H(e)$; $X = X^{1} = R^{1} = Cl$, R = H(f); $X = X^{1} = H$, $R = R^{1} = t$ -Bu(g); X = Cl, $X^{1} = H$, $R = R^{1} = t$ -Bu(h); $X = X^{1} = Cl$, $R = R^{1} = t$ -Bu(i); $X = X^{1} = R = H$, $R^{1} = OMe(j)$; X = Cl, $X^{1} = R = H$, $R = R^{1} = t$ -Bu(h); $X = X^{1} = Cl$, $R = R^{1} = t$ -Bu(i); $X = X^{1} = R = H$, $R^{1} = OMe(j)$; X = Cl, $X^{1} = R = H$, $R^{1} = t$ -Bu(h); Согласно данным РСА, атом бора в соединениях **69е,g,h** имеет типичную тетраэдрическую геометрию (Рисунок 57), шестичленный гетероцикл почти плоский, фенильные заместители отклонены от плоскости гетероциклической системы на углы 43–45°.

Комплексы **69** характеризуются максимумами полос абсорбции в диапазоне 386–440 нм (Таблица 24). УФ-спектры соединений **69а,b,j,g** смещены на 32–49 нм в красную область по сравнению с хиназолиноновыми аналогами **66а,b,e,g** (Таблица 23, Таблица 24), что может быть связано с увеличением сопряжения при введении фенильного остатка в хиназолиновое ядро. Введение атома хлора в структуру хиназолина **69а** приводит к батохромному смещению максимума абсорбции. Так, разница между полосой поглощения незамещённого комплекса **69а** и его трихлор-замещённого аналога **69f** достигает 24 нм.

Рисунок 57 – Структура соединения 69е, д, согласно данным РСА

Значения сдвига Стокса составляют 5694–7157 см⁻¹. Примечательно, что природа заместителя и его положение незначительно влияют на максимум полосы эмиссии и квантовый выход в растворе.

Флуоресцентные свойства соединений **69а,b,j,g** и их аналогов **66а,b,e,g** достаточно сильно различаются. Если производные хиназолинона **66а,b,e,g** обладают синей флуоресценцией в толуоле ($\lambda_{em} = 423-474$ нм с квантовым выходом $\Phi_F = 18-70$ %), то хиназолиновые аналоги **69а,b,j** демонстрируют малоинтенсивную жёлтую или жёлто-зелёную флуоресценцию с максимумом в диапазоне 529–565 нм (соединение **69g** не обладает люминесценцией). Примечательно, что присутствие метокси-группы в фенольном кольце приводит к усилению эмиссии в случае соединения **66g** (от 24 % до 70 % в толуоле, Таблица 23), в то время как переход от **69a** к **69j** сопровождается утратой люминесцентных свойств (Таблица 24). Для соединений **69а,b,g,h,j,k** была изучена люминесценция в твёрдом состоянии (Рисунок 58, Таблица 24). Комплексы 4фенилхиназолина **69b,g,h** продемонстрировали гипсохромное смещение максимума эмиссии и увеличение интенсивности в твёрдом состоянии, по сравнению с флуоресценцией в толуоле.

Дифторборатные комплексы, содержащие метокси-группу в фенольном кольце, не обладают люминесценцией в твёрдом состоянии. Отмечено, что атом хлора в бензольном кольце оказывает положительное влияние на квантовый выход и приводит к значительному увеличению флуоресценции в твёрдом состоянии по сравнению с раствором.

Соед.		Порошок ^ь				
	$λ_{abs}$, HM (ε, MM ⁻¹ ·cm ⁻¹)	λem, HM	$\Phi_{\mathrm{F}}{}^{\mathrm{a}}$, %	Δv_{st} , cm ⁻¹	λem, HM	$\Phi_{\mathrm{F}},\%$
69a	386 (5.0)	529	1.3	6607	502	0.2
69b	390 (5.2)	541	2.1	7157	не изм	еряли
69c	395 (6.8)	542	0.8	6866	500	11.1
69d	395 (7.8)	547	0.7	7035	не изм	еряли
69e	404 (6.8)	554	0.9	6702	не изм	еряли
69f	410 (6.5)	556	0.7	6405	не изм	еряли
69g	410 (3.5)	565	0.2	6691	541	1.9
69h	420 (3.9)	552	0.1	5694	540	2.5
69i	424 (3.3)	586	0.1	6520	не изм	еряли
69j	434 (2.5)	_	_	_	_	_
69k	440 (3.4)	_	_	_		_

Таблица 24 – Фотофизические свойства комплексов 69а-к к. т.

^аИзмеряли относительно 3-аминофталимида в этаноле ($\varphi = 60$ %), $\lambda_{ex} = 375$ нм. ^b Квантовый выход измеряли с использованием интегрирующей сферы Quanta- φ F-3029.

Различные изменения при переходе от раствора толуола к твёрдому состоянию, а именно батохромное смещение полосы испускания для комплексов **66**, и гипсохромное смещение для **69**, можно объяснить различной упаковкой кристаллов, на которую, по-видимому, влияет фенильное кольцо в положении 4 хиназолинового ядра.

3 Экспериментальная часть

3.1 Методы и приборы

Реактивы и растворители были приобретены у коммерческих поставщиков и использованы без дополнительной очистки.

Спектры ЯМР ¹H, ¹³C, ¹⁹F, ¹¹В зарегистрированы на ЯМР-спектрометре «Bruker Avance II» (400 МГц), «Bruker AC-300» (300 МГц) или «Bruker DRX-600» (600 МГц) с использованием ДМСО-d₆ или CDCl₃ в качестве растворителей. Химические сдвиги водорода приведены относительно растворителя (ДМСО-d₆, δ = 2.50 м.д. или CDCl₃, δ = 7.26 м.д.). Химические сдвиги углерода приведены относительно растворителя (ДМСО- d_{6} , $\delta = 2.50$ м.д. или CDCl₃, $\delta = 77.16$ м.д.). Для спектров ЯМР ¹⁹F в качестве вторичного стандарта использовали гексафторбензол С₆F₆ (δ(¹⁹F) -162.9 м.д.); для спектров ЯМР ¹¹В в качестве внешнего стандарта использовали BF₃·OEt₂ (0 м.д.). Химические сдвиги приведены в шкале б в миллионных долях (м.д.); константы спин-спинового взаимодействия Ј приведены в Гц; мультиплетность обозначается как с (синглет), д (дублет), дд (дублет дубдетов), ддд (дублет дублетов дублетов), дт (дублет триплетов), т (триплет), кв (квартет), уш с (уширенный сигнал) и м (мультиплет). Масс-спектры высокого разрешения для образцов **55а-с** регистрировали на спектрометре Bruker maXis Impact HD с электронной ионизацией образца (ESI). Масс-спектры высокого разрешения для образцов 39b, **40d-f** регистрировали на спектрометре Bruker MetroTOF-Q II. Масс-спектры для остальных образцов регистрировали на масс-спектрометре SHIMADZU GC-MS-QP2010 Ultra с системой ионизации образцов электронным ударом (EI). Элементный анализ (С, Н, N) проведён с использованием прибора Perkin-Elmer 2400. Спектры КР зарегистрированы при комнатной температуре с использованием приставки-модуля RAMII, совместимой с ИК Фурье спектрометром «Vertex 80» (длина волны 1064 нм, Nd: YAG, P = 100 мВт). Для определения температуры плавления использован прибор «Boetius».

Спектры поглощения в растворе измеряли на спектрометре Shimadzu UV-2600. Спектры флуоресценции в растворе регистрировали с использованием спектрофлуориметра «Varian Cary Eclipse» (ксеноновая лампа). Спектры флуоресценции и квантовый выход в твёрдом состоянии регистрировали с использованием интегрирующей сферы Quanta- ϕ F-3029 на флуориметре Horiba FluoroMax-4. Спектры абсорбции и эмиссии соединений **11а-с**, **40a-f** регистрировали на флуориметре FluoroMax-3 (Jobin-Yvon Horiba).

Рентгеноструктурный анализ (Приложение Д) был проведен по стандартной процедуре на дифрактометре «Xcalibur 3», оборудованном ССD детектором (Мо K_α или Cu K_α излучение, ω-сканирование, шаг 1°). Используя Olex2, структуры были решены с помощью программы ShelXS с использованием прямого метода и уточнены с помощью пакета программ ShelXL с использованием полноматричной минимизации методом наименьших квадратов.[149,150] Атомы (кроме водорода) уточнены в анизотропном приближении; атомы водорода были помещены в рассчитанные позиции и уточнены изотропно с использованием модели «rider».

Электрохимические исследования соединений проводили в трехэлектродной ячейке (рабочий электрод: Pt; электрод сравнения: проволока Ag; вспомогательный электрод: Pt). В конце каждого эксперимента добавляли ферроцен для определения значений окислительновосстановительного потенциала. Потенциал ячейки измеряли с помощью потенциостата µAUTO-LAB Type III, контролируемого компьютером. В качестве растворителя использовали безводный свежеперегнанный дихлорметан, который дегазировали азотом. В качестве поддерживающей соли использовали NBu4PF₆ для электрохимического анализа (> 99.9 % Sigma-Aldrich).

Детали экспериментов по измерениям нелинейно-оптических свойств методом EFISH описаны в литературе.[151]

3.2 Методики синтеза и характеристики соединений

2-(Тиофен-2-ил)хиназолин-4(3H)-он 4 синтезировали в две стадии с выделением промежуточного продукта **2-(тиофен-2-ил)-2,3-дигидрохиназолин-4(1H)-она 3**, следуя ранее описанной методике [107] с незначительной модификацией процедуры.

2-(Тиофен-2-ил)-2,3-дигидрохиназолин-4(1*H***)-он (3). К раствору 2-аминобензамида 1 (1 г, 7.3)**

ммоль) в этаноле (13 мл) добавляли тиофен-2-карбальдегид **2** (0.89 мл, 7.3 ммоль), реакционную массу кипятили 3 часа. После охлаждения осадок отфильтровывали и промывали этанолом. Выход 89 %, Т_{пл} 206–208 °C. (лит. Т_{пл} 213–216 °C [152]).

ЯМР ¹Н (400 МГц, ДМСО-d₆), δ : 5.99 (c, 1H, NHC**H**NH), 6.68 (м, 1H), 6.74 (д, ³J = 8.3, 1H), 6.95 (м, 1H, H-4'), 7.11 (м, 2H, H-5', N(1)-H), 7.21 (м, 1H), 7.34 (дд, ³J = 4.7, ⁴J = 0.7, 1H, H-3'), 7.62 (дд, ³J = 7.4, ⁴J = 1.1, 1H), 8.26 (c, 1H, N(3)-H). C₁₂H₁₀N₂OS (230.29).

2-(Тиофен-2-ил)-хиназолин-4(3*H***)-он (4).** К дигидрохиназолинону **3** (2.5 ммоль) в этаноле (7.5 мл) добавляли CuCl₂ (0.36 г, 2.7 ммоль). Реакционную массу кипятили в течение 5 часов. После охлаждения хиназолинон **4** отфильтровывали, промывали этанолом и перекристаллизовывали из ДМСО. Выход 85 %, Т_{пл} 278–280 °C (лит. Т_{пл} 285–

286 °C [152]). ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.15 (м, 1Н, H-4'), 7.42 (м, 1Н), 7.61 (д, ³J = 7.8, 1Н), 7.70 (д, ³J = 4.7, 1Н, H-5'), 7.74 (м, 1Н), 8.10 (д, ³J = 8.1, 1Н), 8.20 (д, ³J = 4.6, 1Н, H-3'). С₁₂H₈N₂OS (228.27).

2-(Тиофен-2-ил)-4-хлорхиназолин (5). К хиназолинону 4 (1.33 ммоль) добавляли POCl₃ (1.74

мл, 18.65 ммоль). Реакционную массу кипятили 2 часа на установке с хлоркальциевой трубкой, после чего охлаждали и выливали в лёд. Смесь интенсивно перемешивали, сформировавшийся осадок отфильтровывали, промывали насыщенным

раствором NaHCO₃ и сушили. Выход 93 %, Т_{пл} 134–136 °С. ЯМР ¹Н (400 МГц, DMSO-*d*₆): δ 7.22

(дд, ³J = 5.3, ³J = 4.8, 1Н, Н-4'), 7.72–7.78 (м, 2Н, Н-5', 1Н хиназ.), 8.00–8.09 (м, 3Н, Н-3', 2Н хиназ.), 8.23 (д, 1Н, ³J = 8.1). С₁₂Н₇СlN₂S (246.71).

4-(Морфолин-4-ил)-2-(тиофен-2-ил)хиназолин (6). Для синтеза использовали свежеприготовленный, тщательно высушенный 4-хлорхиназолин **5**. К раствору хлорпроизводного **5** (2.8 ммоль) в ацетонитриле (62 мл) добавляли морфолин (0.65 мл, 7.4 ммоль). Реакционную массу кипятили 6 часов с хлоркальциевой трубкой. После охлаждения растворитель полностью упаривали, остаток промывали водой и перекристал-

лизовывали из этанола. Выход 86 %, Т_{пл} 155–157 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 3.80 (м, 4H, N(CH₂)₂), 3.85 (м, 4H, O(CH₂)₂), 7.14 (дд, ³J = 5.2, ³J = 3.7, 1H, H-4'), 7.43 (дд, ³J = 3.7, ⁴J =1.5, 1H, H-5'), 7.54 (дд, ³J = 5.2, ⁴J = 1.3, 1H, H-3'), 7.76 (м, 2H, H-5, H-7), 7.95 (м, 2H, H-6, H-8). Масс-спектр (EI), m/z (I_{отн}, %): 297 [M]⁺ (100), 296 (76), 266 (34), 254 (12), 252 (35), 241 (18), 240 (81), 239 (90), 213 (15), 212 (50), 211 (73), 140 (10), 110 (22), 106 (20), 103 (27), 102 (44), 86 (25), 84 (14), 76 (13), 75 (13), 39 (11). С₁₆H₁₅N₃OS (297.38).

2-(5-Бромтиофен-2-ил)-4-(морфолин-4-ил)хиназолин (7). К раствору хиназолина 6 (0.44 г, 1.48 ммоль) в ДМФА (4 мл) добавляли раствор NBS (0.29 г, 1.65 ммоль) в ДМФА (2.3 мл). Реакционную смесь перемешивали при комнатной температуре 36 часов, затем добавляли воду (15 мл). Образовавшийся осадок отфильтровывали и перекристаллизовывали из этанола. Выход 79 %, Тпл 141–143 °С. ЯМР ¹Н

(400 МГц, ДМСО-d₆), δ: 3.83 (м, 8H, N(CH₂)₂, O(CH₂)₂), 7.18 (д, ³J = 3.9, 1H, H-4'), 7.45 (м, 1H, H-7), 7.73 (д, ³J = 3.9, 1H, H-3'), 7.77 (м, 2H, H-5, H-6), 7.95 (д, ³J = 8.3, 1H, H-8). Масс-спектр (EI), m/z (I_{отн}, %): 377 [M+2]⁺ (88), 376 (86), 375 [M]⁺ (86), 374 (66), 346 (32), 344 (25), 334 (10), 333 (11), 332 (39), 330 (28), 321 (17), 320 (70), 319 (100), 318 (70), 317 (82), 292 (21), 291 (63), 290 (21), 289 (55), 239 (13), 238 (18), 212 (14), 211 (57), 210 (18), 146 (15), 145 (16), 129 (10), 119 (10), 103 (46), 102 (84), 86 (56), 82 (26), 76 (24), 75 (25), 56 (13), 51 (15). С₁₆H₁₄BrN₃OS (376,28). Вычислено, %: C 51.07, H 3.75, N 11.17; найдено, %: C 51.13, H 3.82, N 11.11.

Целевые продукты **8а-g** синтезировали по реакции кросс-сочетания Сузуки, следуя разработанной методике.[108] Суспензию бромпроизводного **7** (0.50 ммоль) в толуоле (25 мл) перемешивали при комнатной температуре в течение 5 минут, затем добавляли соответствующую арил(гетарил)бороновую кислоту или пинаколовый эфир бороновой кислоты (0.70 ммоль), PdCl₂(PPh₃)₂ (35 мг, 0.05 ммоль), PPh₃ (26 мг, 0.10 ммоль), насыщенный раствор K₂CO₃ (0.47 г) в воде (2.8 мл) и этанол (2.8 мл). Смесь выдерживали при 85 °C в течение 7 часов в атмосфере аргона. После охлаждения органический слой отделяли, промывали насыщенными растворами K₂CO₃ (20 мл) и NH₄Cl (20 мл), сушили над Na₂SO₄, и упаривали при пониженном давлении. Осадок промывали ацетонитрилом (15 мл). Продукт извлекали этанолом (30 мл). 4-(Морфолин-4-ил)-2-(5-фенилтиофен-2-ил)хиназолин (8а). Выход 68 %, Тпл 143-145 °С.

ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 3.84 (м, 4H, N(CH₂)₂), 3.88 (м, 4H, O(CH₂)₂), 7.10 (м, 1H, аром), 7.46 (м, 4H, аром), 7.78 (м, 4H, аром), 7,95 (м, 2H, аром). ЯМР ¹³С (100 МГц, ДМСО-d₆), δ: 49.7, 66.0, 114.2, 124.6, 126.1, 125.4, 125.5, 127.8, 128.1, 129.2, 129.6, 133.1, 133.6, 143.2, 146.7, 152.0, 155.1, 163.8. Масс-

спектр (EI), m/z (I_{отн}, %): 373 [M]⁺ (100), 372 (41), 342 (22), 328 (25), 317 (18), 316 (66), 315 (64), 289 (12), 288 (37), 287 (67), 186 (18), 185 (33), 160 (19), 144 (14), 116 (10), 115 (77), 103 (24), 102 (30), 86 22), 76 (13). С₂₂H₁₉N₃OS (373.12). Вычислено, %: С 70.75, H 5.13, N 11.25, найдено, %: С 70.66, H 5.07, N 11.33.

2-([2,2']Бистиофен-5-ил)-4-(морфолин-4-ил)хиназолин (8b). Выход 71 %, Т_{пл} 177–179 °С.

ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 3.83 (м, 4H, N(CH₂)₂), 3.87 (м, 4H, O(CH₂)₂), 7.10 (м, 1H, H-4"), 7.28 (м, 1H, H-5"), 7.37 (м, 1H, H-3"), 7.44 (м, 2H, H-3', H-4'), 7.78 (м, 2H, H-5, H-6), 7.89 (м, 1H, H-5), 7.97 (м, 1H, H-8). Масс-спектр (EI), m/z (І_{отн}, %): 379 [М]⁺ (100), 378 (31), 348 (18), 334 (21),

323 (15), 322 (50), 321 (48), 297 (31), 296 (27), 295 (12), 294 (29), 293 (40), 266 (11), 252 (13), 240 (30), 239 (31), 212 (22), 211 (34), 192 (12), 191 (28), 166 (18), 147 (20), 121 (48), 110 (12), 106 (10), 103 (38), 102 (53), 86 (35), 77 (11), 76 (21), 75 (18), 58 (11), 56 (12), 51 (14), 45 (12), 39 (12). С₂₀H₁₇N₃OS₂ (379.08). Вычислено, %: С 63.30, Н 4.52, N 11.07; найдено, %: С 63.22, Н 4.45, N 11.16.

2-(5-(4-Метоксифенил)тиофен-2-ил)-4-(морфолин-4-ил)хиназолин (8с). Выход 69 %, Тпл

157–159 °C. ЯМР ¹H (400 МГц, ДМСО-d₆), δ: 3.82 (м, 4H, N(CH₂)₂), 3.84 (с, 3H, OMe), 3.87 (м, 4H, O(CH₂)₂), 6.97 (д, ³J = 8.6, 2H, H-3", H-5"), 7,36 (м, 1H, H-4"), 7.46 (м, 1H, H-7), 7.65 (д, ³J = 8.6, 2H, H-2", H-6"), 7.80 (м, 2H, H-5, H-6), 7.92 (м, 1H, H-3"), 7.97 (м, 1H, H-8). ЯМР ¹³С (100

МГц, ДМСО-d₆), δ: 49.7, 55.3, 66,0, 114.5, 114.6, 123.3, 124.9, 125.4, 126.3, 126.9, 127.8, 129.6, 133.0, 142.0, 146.9, 152.0, 155.3, 159.4, 163.8. Масс-спектр (EI), m/z (І_{отн}, %): 403 [M]⁺ (100), 402 (29), 372 (15), 358 (15), 347 (11), 346 (44), 345 (36), 318 (17), 317 (17), 173 (11), 172 (11), 145 (10), 103 (11), 102 (17), 86 (11). С₂₃H₂₂N₃O₂S (404.14). Вычислено, %: С 68.29, H 5.48, N 10.39; найдено, %: С 68.37, H 5.56, N 10.28.

4-(Морфолин-4-ил)-2-(5-(3,4,5-триметоксифенил)тиофен-2-ил)хиназолин (8d). Выход 71 %,

Тпл 182–184 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 3.83 (м, 4H, N(CH₂)₂),
3.88 (м, 4H, O(CH₂)₂), 3.92 (с, 9H, 3(OMe)), 6.94 (с, 2H, H-2", H-6"), 7.44
(м, 2H, H-3', H-4'), 7.78 (м, 2H, аром), 7.93 (м, 1H, аром), 7.95 (м, 1H, H-8). ЯМР ¹³С (100 МГц, ДМСО-d₆), δ: 49.7, 56.4, 60.2, 66.0, 104.0, 114,6,

124.5, 124.9, 125.3, 128.1, 128.8, 129.4, 133.0, 138.6, 142.9, 147.0, 152.1, 153.5, 155.3, 163.9. Macc-

спектр (EI), m/z (I_{отн}, %): 463 [M]⁺ (100), 462 (21), 448 (22), 406 (26), 405 (30), 86 (13). С₂₅H₂₅N₃O₄S (463.16). Вычислено, %: С 64.78, Н 5.44, N 9.06; найдено, %: С 64.85, Н 5.51, N 9.02.

2-(5-(4-Диэтиламинофенил)тиофен-2-ил)-4-(морфолин-4-ил)хиназолин (8е). Выход 73 %, Тпл

153–155 °C. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 1.19 (т, ³J = 7.1, 6H, 2(CH₃)), 3.42 (кв, ³J = 7.1 Гц, 4H, 2(CH₂)), 3.87 (м, 8H, N(CH₂)₂, O(CH₂)₂), 6.68 (д, ³J = 8.5, 2H, H-3", H-5"), 7.26 (м, 1H, H-4'), 7.45 (м, 1H, H-7), 7.51 (д, ³J = 8.5, 2H, H-2", H-6"), 7.78 (м, 2H, H-5, H-6), 7.98 (м, 2H, H-3', H-8). ЯМР

¹³С (100 МГц, ДМСО-d₆), δ: 12.4, 43.7, 49.8, 66.0, 112.0, 114.5, 120.9, 121.4, 124.8, 125.3, 126.7, 127.8, 129.7, 132.9, 140.3, 147.7, 148.6, 152.2, 155.6, 163.8. Масс-спектр (EI), m/z (I_{отн}, %): 444 [M]⁺ (100), 430 (15), 429 (48), 186 (13). С₂₆H₂₈N₄OS (444.20). Вычислено, %: С 70.24, Н 6.35, N 12.60; найдено, %: С 70.15, Н 6.22, N 12.67.

2-(5-(4-Дифениламинофенил)тиофен-2-ил)-4-(морфолин-4-ил)хиназолин (8f). Выход 67 %,

Т_{пл} 128–130 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 3.86 (м, 8H, N(CH₂)₂, O(CH₂)₂), 7.08 (м, 8H), 7.29 (м, 4H), 7.41 (м, 2H), 7.60 (м, 2H), 7.80 (м, 2H), 7.94 (м, 2H). ЯМР ¹³С (100 МГц, ДМСО-d₆), δ: 49.7, 66.0, 114.5, 122.1, 122.9, 123.5, 124.0, 124.4, 126.6, 127.7, 129.4, 129.5, 132.9, 142.4,

146.9, 147.4, 152.0, 155.4, 163.8. Масс-спектр (EI), m/z (І_{отн}, %): 540 [M]⁺ (100), 483 (11), 352 (10), 241 (12), 227 (12). С₃₄H₂₈N₄OS (540.20). Вычислено, %: С 75.53, Н 5.22, N 10.36; найдено, %: С 75.46, Н 5.15, N 10.41.

2-(5-(4-(9Н-Карбазол-9-ил)-фенил)тиофен-2-ил)-4-(морфолин-4-ил)хиназолин (8g). Выход

70 %, Т_{пл} 173–175 °C. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 3.86 (м, 8H, N(CH₂)₂, O(CH₂)₂), 7.28 (м, 2H), 7.45 (м, 5H), 7,62 (м, 1H). 7.69 (м, 2H), 7.81 (м, 2H), 8.01 (м, 4H), 8.17 (м, 2H). ЯМР ¹³С (100 МГц, ДМСО-d₆), δ: 49.7, 66.0, 109.7, 114.6, 120.2, 120.4, 123.0, 125.1, 125.3, 126.2, 127.1,

127.3, 127.9, 129.6, 132.9, 133.0, 136.7, 140.3, 143.9, 145.8, 152.2, 155.2, 163.8. Масс-спектр (EI), m/z (I_{отн}, %): 538 [M]⁺ (100), 537 (19), 507 (12), 493 (15), 484 (15), 482 (12), 481 (35), 480 (20), 453 (19), 452 (11), 351 (18), 350 (52), 349 (11), 269 (12), 241 (18), 240 (28), 226 (37), 140 (10), 103 (57), 102 (63), 86 (38), 76 (19), 75 (14), 56 (18), 44 (13), 43 (17), 41 (13). С₃₄H₂₆N₄OS (538.18). Вычислено, %: С 75.81, H 4.87, N 10.40; найдено, %: С 75.73, H 5.06, N 10.38.

Целевые продукты **8h,i** синтезировали по реакции кросс-сочетания Соногаширы, следуя разработанной методике.[109] К суспензии 2-(5-бромтиофен-2-ил)-4-(морфолин-4-ил)хиназолина **7** (0.2 г, 0.53 ммоль) в толуоле (2 мл) добавляли CuI(I) (5 мг, 0.026 ммоль), Pd(OAc)₂ (5.9 мг, 0.026 ммоль) и PPh₃ (13.9 мг, 0.006 ммоль). В атмосфере аргона к смеси при-капывали фенилацетилен (0.128 мл, 1.17 ммоль) через мембрану, затем триэтиламин (1.86 мл) и

ДМФА (1.86 мл). Реакционную массу нагревали при 80 °С в течение 6 ч. После охлаждения добавляли 1М раствор HCl (93 мл), отфильтровывали от примесей. Продукт экстрагировали из фильтрата диэтиловым эфиром (3×40 мл), экстракт промывали водой (3×40 мл) и сушили над Na₂SO₄. После отгонки эфира продукт промывали ТГФ (10 мл).

4-(Морфолин-4-ил)-2-(5-фенилэтинилтиофен-2-ил)хиназолин (8h). Выход 64 %, Тпл 175–177

°C. ЯМР ¹H (400 МГц, ДМСО-d₆), δ: 3.84 (м, 4H, N(CH₂)₂), 4.08 (м, 4H, O(CH₂)₂), 7.48 (м, 3H, аром), 7.60 (м, 4H, аром.), 7.95 (м, 1H, аром), 8.07 м, 1H, аром), 8.13 (м, 1H, аром), 8.40 (м, 1H, аром). ЯМР ¹³C (100 МГц, ДМСО-d₆), δ: 66.4, 67.6, 95.8, 99.8, 116.2, 121.7, 124.0, 126.8, 129.4, 130.1,

132.3, 134.1, 137.5, 144.3, 150.4. Масс-спектр (EI), m/z (I_{отн}, %): 397 [M]⁺ (100), 397 (40), 366 (20), 352 (22), 340 (57), 339 (56), 312 (27), 311 (41), 209 (22), 139 (40). С₂₄H₁₉N₃OS (397.12). Вычислено, %: С 72.52, H 4.82, N 10.57; найдено, %: С 72.61, H 4.89, N 10.48.

^{оме} (м, H-4'), 7.49 (д, ³J = 7.2, 2H, H-2'', H-6''), 7.59 (м, 1H, аром), 7.93 (м, 1H, аром), 8.12 (м, 1H, H-3'), 8.39 (м, 1H, аром), 8.74 (м, 1H, аром).

ЯМР ¹³С (100 МГц, ДМСО-d₆), δ: 45.3, 55.4, 65.9, 61.9, 80.9, 96.8, 111.9, 113.1, 114.6, 121.4, 122.3, 126.3, 126.6, 129.3, 133.1, 133.6, 134.8, 138.0, 144.8, 150.4, 160.2. Масс-спектр (EI), m/z (І_{отн}, %): 427 [M]⁺ (100), 426 (30), 396 (15), 382 (17), 371 (14), 370 (50), 369 (41), 342 (16), 341 (17), 213 (10), 196 (11), 171 (12), 107 (19). С₂₅H₂₁N₃O₂S (427.14). Вычислено, %: С 70.24, H 4.95, N 9.83; найдено, %: С 70.56, H 4.91, N 9.92.

2-(Тиофен-2-ил)-4-цианохиназолин (9). К раствору 4-хлорхиназолина 5 (2 ммоль) в безводном

ДМФА (9.6 мл) добавляли свежеприготовленный цианид калия (0.19 г, 2.9 ммоль) и натриевую соль *n*-толулсульфокислоты (0.13 г, 0.7 ммоль). Реакционную смесь выдерживали 3 часа при 95 °С. После охлаждения, к реакционной массе добавляли

воду (15 мл). Выпавший осадок отфильтровывали, перекристаллизовывали из ДМСО. Выход 65 %, Т_{пл} 179–182 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.24 (м, 1H, H-4'), 7.73 (дд, ³J = 5.0, ⁴J =1.1, 1H, H-5'), 7.85 (м, 1H, аром), 8.10–8.16 (м, 3H, аром), 8.22 (д, ³J = 8.3, 1H, H-8). ЯМР ¹³С (100 МГц, ДМСО-d₆), δ: 114.3, 122.3, 125.1, 128.3, 128.9, 129.8, 130.4, 132.2, 136.8, 141.5, 143.3, 150.9, 156.7. Масс-спектр (ЕІ), m/z (І_{отн}, %): 237 [М]⁺ (100), 211 (14), 141 (8), 140 (8), 118 (8), 109 (9), 102 (13), 76 (16), 75 (11), 50 (13), 45 (8), 39 (8). С₁₃H₇N₃S (237.28). Вычислено, %: С 65.80, H 2.97, N 17.71; найдено, %: С 68.78, H 2.85, N 17.79.

2-(5-Бромтиофен-2-ил)-4-цианохиназолин (10) получали, следуя методике синтеза 2-(5-

бромтиофен-2-ил)-4-(морфолин-4-ил)хиназолина **5.** Реакционную смесь выдерживали 6 часов при 80 °С. После охлаждения выпавший осадок отфильтровывали и перекристаллизовывали из ДМСО. Выход 63 %, Т_{пл} 162–164 °С. ЯМР ¹Н

(400 МГц, ДМСО-d₆), δ: 7.30 (д, ³J = 3.9, 1H, H-4'), 7.9 (м, 2H, аром), 8.08 (м, 1H, аром), 8.16 (м, 1H, аром), 8.22 (д, ³J = 8.3, 1H, H-8).ЯМР ¹³С (100 МГц, ДМСО-d₆), δ: 114.2, 117.9, 122.4, 125.3, 128.2, 130.1, 130.8, 132.4, 137.0, 142.8, 143.4, 150.7, 155.4. Масс-спектр (EI), m/z (І_{отн}, %): 317 [M+2]⁺ (76), 316 (12), 315 [M]⁺ (71), 237 (18), 236 [M-Br]⁺ (100), 184 (13), 140 (18), 118 (14), 102 (19), 76 (18), 75 (10), 50 (11). С₁₃H₆BrN₃S (315.18). Вычислено, %: С 49.38, H 1.91, N 13.29; найдено, %: С 49.33, H 1.95, N 13.31.

Продукты **11а-с** получали аналогично хиназолинам **8а-h**. Реакцию проводили в стеклянном автоклаве при 85 °C.

2-(5-(4-Диэтиламинофенил)тиофен-2-ил)-4-цианохиназолин (11а). Продукт очищали колоночной хроматографией (SiO₂, элюент CHCl₃). Выход 56 %, Т_{пл} 219–221 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 1,23 (м, 6H, 2(CH₃)), 3.44 (м, 4H, 2(CH₂)), 6.72 (д, ³J = 8.1, 2H, H-5", H-3"), 7.25 (д, ³J = 3.9, 1H, H-4'), 7.61

(д, ³J = 8.1, 2H, H-2'', H-6''), 7.69 (м, 1H, H-6), 7.98 (м, 1H, H-7), 8.07 (д, ³J = 7.8, 1H, H-5), 8.12 (д, 1H, H-3'), 8,19 (д, ³J = 8.0, 1H, H-8). ЯМР ¹³С (100 МГц, ДМСО-d₆), δ: 12.4, 43.7, 111.7, 119.0, 121.8, 123.4, 126.3, 126.7, 129.2, 131.0, 131.9, 133.5, 137.7, 138.1, 143.4, 144.5, 149.8, 151.7, 156.4. Масс-спектр (EI), m/z (I_{отн}, %): 384 [M]⁺ (71), 371 (8), 370 (27), 369 [M-CH₃]⁺ (100), 341 (18), 340 (41), 313 (8), 312 (13), 184 (8). С₂₃H₂₀N₄S (384.51). Вычислено, %: С 71.85, H 5.24, N 14.57; найдено, %: С 71.72, H 5.20, N 14.59.

2-(5-(4-Дифениламинофенил)тиофен-2-ил)-4-цианохиназолин (11b). Продукт очищали коло-

ночной хроматографией (SiO₂, элюент гексан/EtOAc (5/1)). Выход 28 %, _{Ph2} T_{пл} 220–222 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 7.06–7.18 (м, 7Н), 7.27–7.33 (м, 6Н), 7.60 (д, ³J = 8.1, 2Н), 7.70 (т, ³J = 7.5, 1Н, CH хиназ.), 7.98 (т, ³J =

7.5, 1Н, СН хиназ.), 8.07 (д, ³J = 8.3, 1Н, СН хиназ.), 8.12 (д, ³J = 4.0, 1Н, Н-3' тиоф.), 8.19 (д, ³J = 8.2, 1Н, СН хиназ.). ЯМР ¹³С (100 МГц, CDCl₃), δ: 114.4, 122.7, 123.2, 123.7, 123.7, 125.0, 125.3, 126.9, 127.6, 128.9, 129.0, 129.6, 132.1, 136.1, 139.8, 143.5, 147.4, 148.4, 150.4, 151.9, 158.0. Масс-спектр (EI), m/z (І_{отн}, %): 482 [M+2]⁺ (11), 481 [M+1]⁺ (36), 480 [M]⁺ (100), 240 (12). С₃₁H₂₀N₄S (480.58). Вычислено, %: С 77.48, H 4.19, N 11.66; найдено, %: С 77.41, H 3.99, N 11.48.

2-(5-(4-(9*H*-Карбазол-9-ил)фенил)тиофен-2-ил)-4-цианохиназолин (11с). Для реакции использовали пинаколовый эфир 4-(9*H*-карбазол-9-ил)фенилбороновой кислоты. Реакционную массу выдерживали в течение 20 часов. После охлаждения реакционной массы, выпавший осадок отфильтровывали и промывали гексаном. Выход 35 %, $T_{III.}$ 255–257 °С. ЯМР ¹H (400 МГц, CDCl₃), δ: 7.32 (т, ³J = 7.4, 2H, CH карбазол), 7.42–7.52 (5H, м), 7.66 (д, ³J = 7.8, 2H), 7.75 (т, ³J = 7.6, 1H, CH хиназ.), 7.96 (д, ³J = 8.0, 2H), 8.02 (т, ³J = 7.6, 1H, CH хиназ.), 8.11–8.17 (м, 3H), 8.22 (м, 2H). ЯМР ¹³C (100 МГц, CDCl₃), δ: 109.9, 114.3, 120.4, 120.5, 122.9, 123.7, 125.2, 125.3, 126.2, 127.5, 127.7, 128.4, 129.1, 132.0, 133.0, 136.3, 140.8, 141.5, 143.6, 149.1, 151.9, 157.8. Масс-спектр (EI), m/z (I_{OTH} , %): 480 [M+2]⁺ (11), 479 [M+1]⁺ (35), 478 [M]⁺ (100), 239 (18), 76 (17). С₃₁H₁₈N₄S (478.57). Вычислено, %: С 77.80, H 3.79, N 11.71; найдено, %: С 77.58, H 3.74, N 11.82.

2-(5-Бромтиофен-2-ил)хиназолин-4(3*H***)-он 13** получали аналогично соединению **4** в две стадии, с выделением **2-(5-бромтиофен-2-ил)-2,3-дигидрохиназолин-4(1***H***)-она 12** в качестве промежуточного продукта.

2-(5-Бромтиофен-2-ил)-2,3-дигидрохиназолин-4(1*H***)-он (12). Выход 77 %, Т_{пл} 175–178 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 5.96 (с, 1H, NHCH**NH), 6.72 (м, 1H), 6.76 (д, ³J = 8.2, 1H), 6.95 (д, 1H, H-4'), 7.08 (д, 1H, H-3'), 7.26 (м, 1H), 7.30 (с, 1H, N(1)-H), 7.62 (д, ³J = 7.9, 1H), 8.52 (с, 1H, N(3)-H). С₁₂Н₉BrN₂OS (309.18).

2-(5-Бромтиофен-2-ил)хиназолин-4(3Н)-он (13). Реакционную массу кипятили 5 часов. Про-

дукт перекристаллизовывали из ДМСО. Выход 52 %, Т_{пл} 310–312 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.21 (д, ³J = 4.1, 1H, H-4'), 7.45 (м, 1H, аром), 7.60 (д, ³J = 7.9, 1H, H-5), 7.75 (м, 1H, аром), 8.01 (д, ³J = 4.1, 1H, H-3'), 8.11 (д, ³J = 7.5, 1H,

H-8 12.61 (c, 1H, NH). Macc-спектр (EI), m/z (I_{отн}, %): 308 [M]⁺ (60), 306 (60), 228 (16), 227 [M-Br]⁺ (100), 109 (12), 92 (14), 90 (27), 82 (15), 76 (11), 64 (21), 63 (18), 50 (12), 39 (13). C₁₂H₇BrN₂OS (307.17).

Синтез соединений **14а-с** аналогичен получению хиназолинов **8а-h.** Реакцию проводили в стеклянном автоклаве при 85 °С. После охлаждения к реакционной массе добавляли воду и EtOAc (по 10 мл). Органический слой отделяли. Водный слой экстрагировали дополнительным количеством EtOAc (2×10 мл). Органические фракции объединяли. Растворитель упаривали.

2-(5-(4-Диэтиламинофенил)тиофен-2-ил)хиназолин-4(3*H***)-он (14а). Реакционную смесь нагревали 12 часов. Продукт очищали колоночной хроматографией (SiO₂, элюент EtOAc). Выход 50 %, T_{пл} > 300 °C. ЯМР ¹Н (400 МГц, ДМСО-d₆), \delta: 1.23 (т, ³J = 7.1, 6H, 2 CH₃), 3.44 (кв, ³J = 7.1, 4H, 2 CH₂), 6.72 (д, ³J =**

8.8, 2H, H-5'', H-3''), 7.25 (д, ³J = 3.9, 1H, H-4'), 7,48 (м, 1H, аром), 7.58 (д, ³J = 8.8, 2H, H-2'', H-6''), 7.78 (м, 2H, аром), 7.87 (д, ³J = 3.9, 1H, H-3'), 8.33 (д, ³J = 8.0, 1H, H-8), 10.64 (с, 1H, NH). ЯМР ¹³С (151 МГц, ДМСО-d₆), δ: 12.4 (2С, 2(CH₃)), 43.6 (2С, 2(CH₂)), 111.5, 119.6, 120.6, 121.4, 125.8, 125.9, 126.7, 127.0, 130.7, 132.7, 134.5, 147.7, 147.8, 148.8, 150.4, 161.6 (1C, C=O). Maccспектр (EI), m/z (І_{отн}, %): 375 [M]⁺ (81), 361 (26), 360 [М-СН₃]⁺ (100), 332 (14), 331[М-С₃Н₈]⁺ (33), 180 (14), 119 (17). С₂₂H₂₁N₃OS (375.50). Вычислено, %: С 70.37, Н 5.64, N 11.19; найдено, %: С 70.29, Н 6.70, N 11.13.

2-(5-(4-Дифениламинофенил)тиофен-2-ил)хиназолин-4(3H)-он (14b). Реакционную смесь

нагревали 9 часов. Органический слой после выделения упаривали частично, выпавший осадок отфильтровывали и промывали гексаном. Выход 70 %, T_{пл} > 300 °C. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.02–7.10 (м,

8H), 7.29 (м, 4H), 7.37 (д, ³J = 3.2, 1H, H-4'), 7.42 (м, 1H), 7.59 (м, 3H), 7.73 (м, 1H), 8.10 (д, ³J = 7.7, 1H), 8.17 (с, 1H, H-3'), 12.51 (с, 1H, NH). ЯМР ¹³С (151 МГц, ДМСО-d₆), δ: 120.7, 122.2, 123.6, 123.7, 124.6, 125.9, 126.1, 126.4, 126.7, 126.8, 129.6, 130.5, 134.5, 135.0, 146.6, 147.7, 148.6, 161.7 (1C, C=O). Масс-спектр (EI), m/z (І_{отн}, %): 473 [M+2]⁺ (11), 472 [M+1]⁺ (36), 471 [M]⁺ (100), 235(13). С₃₀H₂₁N₃OS (465.56). Вычислено, %: С 76.41, H 4.49, N 8.91; найдено, %: С 76.45, H 4.47, N 8.94.

2-(5-(4-(9Н-Карбазол-9-ил)фенил)тиофен-2-ил)хиназолин-4(3Н)-он (14с). Реакционную

смесь нагревали 10 часов. Органический слой после выделения упаривали частично, выпавший осадок отфильтровывали и промывали гексаном. Выход 74 %, T_{пл} > 290 °C. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.28

(м, 2H, карбаз.), 7.40–7.48 (м, 5H), 7.64–7.77 (м, 4H), 7.76 (м, 1H), 8.02 (д, ³J = 8.0, 2H,), 8.13–8.19 (м, 3H), 8.27 (с, 1H, H-3'), 12.63 (с, 1H, NH). ¹³C NMR (151 МГц, ДМСО-d₆), δ: 109.7, 120.2, 120.5, 120.8, 122.8, 125.4, 125.9, 126.2, 126.8, 127.2, 127.4, 128.1, 128.8, 130.6, 131.9, 13.6, 136.6, 137.0, 139.9, 147.4, 148.5, 161.7 (1C, C=O). Масс-спектр (EI), m/z (І_{отн}, %): 471 [M+2]⁺ (11), 470 [M+1]⁺ (36), 469 [M]⁺ (100), 350(13), 235 (17), 92 (16), 91 (18). С₃₀H₁₉N₃OS (463.54). Вычислено, %: С 76.74, H 4.08, N 8.95; найдено, %: С 76.76, H 4.11, N 8.93.

2-Бромфенилхиназолин-4(3H)-оны 17а,b получали аналогично соединению **4** в две стадии. В результате первой стадии была получена смесь **2-(бромфенил)-2,3-** дигидрохиназолин-4(1*H*)-она (16а,b) и **2-(бромбензилиден)аминобензамида (16'а,b).**

Смесь 2-(4-бромфенил)-2,3-дигидрохиназолин-4(1*H*)-она (16а) и 2-(4-

бромбензилиденамино)бензамида (16а'). После охлаждения реакционную массу упаривали на 2/3 объёма, образовавшийся осадок отфильтровывали, промывали этанолом и гексаном. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 5.75 (с, 1H, H-2, **16а**), 6.68 (т, 1H, ³J = 7.3, **16а**),

6.74 (д, 1H, ³J = 8.1, **16a**), 7.13 (с, 1H, NH, **16a**), 7.25 (м, 1H, **16a** и 1H, **16a'**), 7.35 (м, 1H, **16a'**), 7.44 (д, ³J = 7.9, 2H, **16a**), 7.54–7.61 (м, 3H, **16a** и 2H, **16a'**), 7.78 (м, 2H, **16a'**), 7.89 (м, 3H, **16a'**), 8.08 (с, 1H, **16a'**), 8.31 (с, 1H, NH, **16a**), 8.69 (с, 1H, CH=N, **16a'**); (соотношение **16a:16a'** = 10:1).

Смесь 2-(3-бромфенил)-2,3-дигидрохиназолин-4(1*H*)-она (16b) и 2-(3-

бромбензилиденамино)бензамида (16b'). После охлаждения реакционную массу упаривали на 2/3 объёма, образовавшийся осадок отфильтровывали, промывали этанолом и гексаном. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 5.73 (с, 1H, H-2, **16b**), 6.65 (т, ³J = 7.4, 1H,

16b), 6.73 (д, ³J = 8.1, 1H, 16b), 7.20 (т, ³J = 7.5, 1H, 16b), 7.30 (м, 1H, 16b), 7.46–7.52 (м, 2H, 16b и 2H, 16b'), 7.60 (д, ³J = 7.7, 1H, 16b), 7.67 (с, 1H, 16b), 7.72 (м, 2H, 16b'), 7.80 (м, 1H, 16b'), 8.15–8.22 (с, 1H, NH, 16b и м, 3H, 16b'), 8.42 (с, 1H, CH=N, 16b'); (соотношение 16b:16b' = 4:1). 2-(4-Бромфенил)хиназолин-4(3H)-он (17а). Синтезировали из смеси интермедиатов 16а и

16а'. Реакционную массу кипятили 5 часов. Продукт отфильтровывали и промывали спиртом. Выход 85 %, $T_{nn} > 300$ °C (лит. T_{nn} 298–300 °C [153]). ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.54 (м, 1Н, Н-6 или Н-7), 7.76 (м, 3Н, Н-5, Н-3', Н-5'),

7.85 (м, 1Н, Н-6 или Н-7), 8.14 (м, 3Н, Н-8, Н-2', Н-6'), 12.60 (уш с, 1Н, NН). С14Н9BrN2O (301.14).

2-(3-Бромфенил)хиназолин-4(3H)-он (17b). Синтезировали из смеси интермедиатов 16b и

16b'. Реакционную массу кипятили 5 часов. Продукт отфильтровывали и промывали спиртом. Выход 77 %, Т_{пл} 295–296 °С (лит. Т_{пл} 271–272 °С [153]). ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.45 (м, 2Н, Н-6 или Н-7, Н-5'), 7.68 (м, 2Н, Н-4', Н-

5), 7.77 (м, 1H, H-6 или H-7), 8.11 (д, ³J = 7.8, 1H, H-8), 8.17 (д, ³J = 7.9, 1H, H-6'), 8.37 (с, 1H, H-2'), 12.51 (уш с, 1H, NH). С₁₄H₉BrN₂O (301.14).

2-Бромфенил-4-хлорхиназолины 18а,b получали аналогично хлорпроизводному **5**. Реакционную массу кипятили 3 часа.

2-(4-Бромфенил)-4-хлорхиназолин (18а). Выход 95 %, Т_{пл} 142–144 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.71 (д, ³J = 8.4, 2H, H-3', H-5'), 7.83 (м, 1H), 8.10 (м, 2H), 8.28 (д, ³J = 8.3, 1H, H-8), 8.45 (д, ³J = 8.4, 2H, H-2', H-6'). C₁₄H₈BrClN₂ (319.59).

2-(3-Бромфенил)-4-хлорхиназолин (18b). Выход 86 %, Т_{пл} 140–142 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.52 (т, ³J = 7.8, 1H, H-5'), 7.72 (д, ³J = 7.8, 1H, H-4'), 7.84 (м, 1H), в. 11 (м, 2H), 8.29 (д, ³J = 8.3, 1H, H-8), 8.50 (д, ³J = 7.8, 1H, H-6'), 8.63 (с, 1H, H-2'). C₁₄H₈BrClN₂ (319.59).

2-Бромфенил-4-(морфолин-4-ил)хиназолины 19а,b получали аналогично хиназолину **6**. Реакционную массу кипятили 14 часов. Продукт перекристаллизовывали из ДМСО.

2-(4-Бромфенил)-4-(морфолин-4-ил)хиназолин (19а). Выход 58 %, Тпл 195–197 °С. ЯМР ¹Н

(400 МГц, ДМСО-d₆), δ: 3.85 (м, 8H, N(CH₂)₂, O(CH₂)₂), 7.49 (м, 1H, H-6 или H-7), 7.62 (д, ³J = 8.2, 2H, H-3', H-5'), 7.78 (м, 1H, H-6 или H-7), 7.87 (д, ⁴J = 8.3, 1H, H-5), 7.80 (д, ³J = 8.3, 1H, H-8), 8.42 (д, ³J = 8.2, 2H, H-2', H-6'). Масс-спектр (EI), m/z (I_{отн}, %): 371 [M+2]⁺ (48), 370 [M+1]⁺ (54), 369 [M]⁺ (45), 368 (45), 340

(22), 338 (20), 326 (25), 324 (19), 314 (45), 313 (62), 312 (45), 311 (55), 286 (17), 285 (47), 284 (17), 283 (46), 205 (49), 204 (13), 157 (11), 155 (12), 129 (11), 116 (14), 103 (58), 102 (100), 86 (55), 77 (11), 76 (46), 75 (34), 56 (14), 51 (16), 50 (12). C₁₈H₁₆BrN₃O (370.24).

2-(3-Бромфенил)-4-(морфолин-4-ил)хиназолин (19b). Выход 87 %, Тпл 140-142 °С. ЯМР ¹Н

(400 МГц, ДМСО-d₆), δ: 3.85 (м, 8H, N(CH₂)₂, O(CH₂)₂), 7.44 (м, 1H, H-5'), 7.51 (м, 1H, H-6 или H-7), 7.62 (д, ³J = 7.7, 1H, H-4'), 7.81 (м, 1H, H-6 или H-7), 7.89 (д, ³J = 8.3, 1H, H-5), 8.01 (д, ³J = 8.1, 1H, H-8), 8.47 (д, ³J = 7.9, 1H, H-6'), 8.60 (с, 1H, H-2'). Масс-спектр (ЕІ), m/z (І_{отн}, %): 371 [M+2]⁺ (57), 370 [M+1]⁺ (66), 369

[M]⁺ (57), 368 (55), 340 (26), 338 (223), 338 (20), 326 (30), 324 (24), 315 (11), 314 (57), 313 (74), 312 (57), 311 (66), 286 (18), 285 (47), 284 (18), 283 (43), 205 (50), 204 (12), 157 (10), 155 (11), 129 (11), 116 (18), 103 (59), 102 (100), 86 (53), 77 (11), 76 (42), 75 (32), 56 (13), 51 (14), 50 (11). C₁₈H₁₆BrN₃O (370.24).

Продукты **20а-с** и **21а-с** синтезировали аналогично хиназолинам **8а-h**. После охлаждения, к реакционной массе добавляли воду и EtOAc (по 10 мл). Органический слой отделяли. Водный слой экстрагировали дополнительным количеством EtOAc (2×10 мл). Органические фракции соединяли. Растворитель упаривали.

2-(4'-N,N-Диэтиламино[1,1'-бифенил]-4-ил)-4-(морфолин-4-ил)хиназолин (20а). Реакцион-

ную смесь нагревали 14 часов. Продукт очищали колоночной хроматографией (SiO₂, элюент – градиентно: гексан → гексан/EtOAc (7/3)) и перекристаллизацией из смеси CH₂Cl₂/гексан. Выход 66 %, $T_{пл}$ 133–135 °C. ЯМР ¹H (400 МГц, CDCl₃), δ: 1.21 (т, ³J = 7.1, 6H, 2(CH₃)), 3.42 (кв, ³J = 7.1, 4H, 2(CH₂)), 3.86 (м, 4H, N(CH₂)₂), 3.95 (м, 4H, O(CH₂)₂), 6.78 (д, ³J =

8.4, 2H, H-3'', H-5''), 7.41 (м, 1H, H-6), 7.59 (д, ³J = 8.4, 2H, H-2'', H-6''), 7.68–7.75 (м, 3H), 7.89 (д, ³J = 8.5, 1H, H-5), 7.99 (д, ³J = 8.3, 1H, H-8), 8.57 (д, ³J = 8.0, 2H, H-2', H-6'). ЯМР ¹³С (100 МГц, CDCl₃), δ: 12.8 (2C, 2(CH₃)), 44.6 (2C, 2(CH₂)), 50.6 (2C, N(CH₂)₂), 67.0 (2C, O(CH₂)₂), 112.1, 115.5, 124.8, 125.0, 126.0, 127.5, 128.1, 129.0, 129.3, 132.6, 136.0, 143.2, 147.6, 153.1, 159.7, 165.1. Масс-спектр (EI), m/z (І_{отн}, %): 439 [M+1]⁺ (27), 438 [M]⁺ (100), 424 (29), 423 [M-CH₃]⁺ (88), 183 (13), 155 (11). С₂₈H₃₀N₄O (438.58). Вычислено, %: С 76.68, H 6.89, N 12.78; найдено, %: С 76.67, H 6.91, N 12.76.

2-(4'-N,N-Дифениламино[1,1'-бифенил]-4-ил)-4-(морфолин-4-ил)хиназолин (20b). Реакци-

онную смесь нагревали 16 часов. Продукт очищали колоночной хроматографией (SiO₂, элюент – градиентно: гексана → гексан/EtOAc (7/3)) и перекристаллизацией из смеси CH₂Cl₂/гексан. Выход 66 %, $T_{пл}$ 215–217 °C. ЯМР ¹H (400 МГц, CDCl₃), δ: 3.87 (м, 4H, N(CH₂)₂), 3.97 (м, 4H, O(CH₂)₂), 7.05 (т, ³J = 7.3, 2H), 7.15–7.16 (м, 6H), 7.26–7.30 (м, 4H), 7.43 (м, 1H, H-6),

7.58 (д, ³J = 7.9, 2H, H-2'', H-6''), 7.70–7.77 (м, 3H), 7.90 (д, ³J = 8.2, 1H, H-5), 8.00 (д, ³J = 8.3, 1H, H-8), 8.61 (д, ³J = 7.5, 2H, H-2', H-6'). ЯМР ¹³С (100 МГц, CDCl₃), δ: 50.6 (2C, N(CH₂)₂), 67.0 (2C, O(CH₂)₂), 115.5, 123.2, 124.0, 124.7, 124.8, 125.2, 126.6, 127.9, 129.0, 129.3, 129.5, 132.7, 134.7, 137.1, 142.5, 147.7, 147.8, 153.1, 159.5, 165.1. Масс-спектр (EI), m/z (I_{отн}, %): 535 [M+1]⁺ (40), 534 [M]⁺ (100), 533 (10), 477 (16), 476 (12), 449 (12), 346 (14), 238 (13), 224 (15). C₃₆H₃₀N₄O (534.66). Вычислено, %: C, 80.87, H 5.66, N 10.48; найдено, %: C 80.85, H 5.64, N 10.47.

2-{4'-(9*H***-Карбазол-9-ил)-[1,1'-бифенил]-4-ил}-4-(морфолин-4-ил)хиназолин (20с)**. Реакционную массу кипятили 14 часов. Продукт очищали колоночной хроматографией (SiO₂, элюент – градиентно: гексан/EtOAc (19/1) \rightarrow гексан/EtOAc (1/1)) и перекристаллизацией из смеси CH₂Cl₂/гексан. Выход 46 %, Т_{пл} 243–245 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 3.90 (м, 4H, N(CH₂)₂), 3.98 (м, 4H, O(CH₂)₂), 7.31 (м, 2H, карбаз.), 7.42–7.52 (м, 5H), 7.68 (д, ³J = 7.8, 2H), 7.77 (м, 1H, H-6), 7.84 (д, ³J = 7.9, 2H), 7.92 (м, 3H),

8.03 (д, ³J = 8.2, 1H, H-8), 8.17 (д, ³J = 7.8, 2H, карбаз.), 8.71 (д, ³J = 7.8, 2H, H-6', H-2'). ЯМР ¹³С (100 МГц, CDCl₃), δ: 50.6 (2C, N(CH₂)₂), 67.0 (2C, O(CH₂)₂), 110.0, 115.5, 120.2, 120.5, 123.6, 124.8, 125.4, 126.1, 127.2, 127.5, 128.7, 129.2, 129.3, 132.8, 137.3, 138.0, 140.0, 141.0, 142.0, 153.0, 159.2, 165.1. Масс-спектр (EI), m/z (І_{отн}, %): 533 [M+1]⁺ (39), 532 [M]⁺ (100), 531 (29), 501 (17), 487 (14), 476 (14), 475 (44), 474 (37), 447 (24), 446 (14), 345 (14) 344 (40), 343 (10), 266 (13), 244 (10), 237 (24), 223 (33), 103 (16), 102 (13), 86 (15). С₃₆H₂₈N₄O (532.65). Вычислено, %: С 81.18, H 5.30, N 10.52; найдено: С 81.16, H 5.33, N 10.51.

2-(4'-Диэтиламино[1,1'-бифенил]-3-ил)-4-(морфолин-4-ил)хиназолин (21а). Реакционную смесь нагревали 20 часов. Продукт очищали колоночной хроматографией (SiO₂, элюент: гексан/EtOAc (4/1)) и перекристаллизацией из смеси CH₂Cl₂/гексан. Выход 50 %, $T_{пл}$ 145–147 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ : 1.22 (т, ³J = 7.1, 6H, 2(CH₃)), 3.42 (кв, ³J = 7.1, 4H, 2(CH₂)), 3.87 (м, 4H,

N(CH₂)₂), 3.95 (M, 4H, O(CH₂)₂), 6.80 ($_{\rm A}$, ³J = 8.0, 2H, H-3'', H-5''), 7.43 (M, 1H, H-6), 7.51 (M, 1H, H-5'), 7.61 ($_{\rm A}$, ³J = 8.0, 2H, H-2'', H-6''), 7.66 ($_{\rm A}$, ³J = 7.2, 1H), 7.74 (M, 1H, H-7), 7.90 ($_{\rm A}$, ³J = 8.3, 1H, H-5), 8.01 ($_{\rm A}$, ³J = 8.7, 1H, H-8), 8.42 ($_{\rm A}$, ³J = 7.6, 1H, H-6'), 8.75 (c, 1H, H-2'). *SMP* ¹³C (100 MFu, CDCl₃), δ: 12.8 (2C, 2CH₃), 44.6 (2C, 2(CH₂)), 50.6 (2C, N(CH₂)₂), 67.0 (2C, O(CH₂)₂), 112.1,

115.6, 124.7, 125.1, 126.1, 126.4, 128.1, 128.2, 128.3, 128.8, 129.4, 132.6, 139.0, 141.5, 147.4, 153.1, 159.9, 165.1. Масс-спектр (ЕІ), m/z (І_{отн}, %): 439 [M+1]⁺ (27), 438 [M]⁺ (86), 424 (31), 423 [M-CH₃]⁺ (100), 308 (11), 183 (16), 155 (11). С₂₈Н₃₀N4O (438.58). Вычислено, %: С 76.68, Н 6.89, N 12.78; найдено: С 76.65, Н 6.87, N 12.77.

2-(4'-Дифениламино[1,1'-бифенил]-3-ил)-4-(морфолин-4-ил)хиназолиин (21b). Реакционную

массу нагревали 14 часов. Продукт очищали колоночной хроматографией (SiO₂, элюент - градиентно: гексан/EtOAc (4/1) \rightarrow гексан/EtOAc (2/1)). Выход 31 %, Т_{пл} 220–222 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 3.87 (м, 4H, N(CH₂)₂), 3.96 (м, 4H, O(CH₂)₂), 7.04 (т, ³J = 7.3, 2H), 7.15–7.20 (м, 6H),

7.26–7.30 (м, 4H), 7.44 (м, 1H, H-6), 7.54 (м, 1H, H-5'), 7.61 (д, ${}^{3}J$ = 8.0, 2H, H-2'', H-6''), 7.67 (д, ${}^{3}J$ = 7.5, 1H), 7.75 (м, 1H, H-7), 7.91 (д, ${}^{3}J$ = 8.1, 1H, H-5), 8.01 (д, ${}^{3}J$ = 8.1, 1H, H-8), 8.49 (д, ${}^{3}J$ = 7.7, 1H, H-6'), 8.79 (с, 1H, H-2'). ЯМР 13 С (100 МГц, CDCl₃), δ: 50.6 (2C, N(CH₂)₂), 67.0 (2C, O(CH₂)₂), 115.5, 123.0, 124.1, 124.5, 124.6, 124.8, 125.3, 126.9, 127.1, 128.1, 128.7, 128.9, 129.3, 129.4, 132.7, 135.4, 139.2, 140.9, 147.4, 147.9, 153.0, 159.6, 166.2. Масс-спектр (EI), m/z (І_{отн}, %): 535 [M+1]⁺ (39), 534 [M]⁺ (100), 533 (11), 477 (16), 476 (11), 346 (11), 238 (13), 224 (15). Сз6H₃₀N4O (534.66). Вычислено, %: С 80.87, H 5.66, N 10.48; найдено: С 80.84, H 5.67, N 10.46.

2-{4'-(9Н-Карбазол-9-ил)-[1,1'-бифенил]-3-ил}-4-(морфолин-4-ил)хиназолин (21с). Реакци-

онную смесь нагревали 10 часов. Продукт очищали колоночной хроматографией (SiO₂, элюент: гексан/EtOAc, 5/1) и перекристаллизацией из смеси CH₂Cl₂/гексан (2 раза). Выход 32 %, Т_{пл} 208–210 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 3.90 (м, 4H, N(CH₂)₂), 3.98 (м, 4H, O(CH₂)₂), 7.32

(м, 2H, карбаз.), 7.43–7.52 (м, 5H), 7.62–7.70 (м, 3H), 7.76–7.82 (м, 2H), 7.92–7.97 (м, 3H), 8.05 (д, ³J = 8.4, 1H, H-8), 8.18 (д, ³J = 7.6, 2H, карбаз.), 8.61 (д, ³J = 7.4, 1H, H-6'), 8.82 (с, 1H, H-2'). ЯМР ¹³С (100 МГц, CDCl₃), δ: 50.6 (2C, N(CH₂)₂), 67.0 (2C, O(CH₂)₂), 110.0, 115.6, 120.1, 120.5, 123.6, 124.8, 125.4, 126.1, 127.3, 127.5, 127.9, 128.8, 129.1, 129.2, 129.4, 132.8, 137.1, 139.5, 140.5, 140.6, 141.1, 153.0, 159.5, 165.3. Масс-спектр (EI), m/z (І_{отн}, %): 533 [M+1]⁺ (38), 532 [M]⁺ (100), 531 (30), 501 (16), 476 (15), 475 (48), 474 (37), 447 (20), 446 (11), 345 (11), 344 (30), 266 (12), 237 (23), 223 (34), 103 (16), 102 (12), 86 (19). С₃₆H₂₈N₄O (532.65). Вычислено, %: С 81.18, H 5.30, N 10.52; найдено: С 81.17, H 5.31, N 10.50.

2-Бромфенил-4-цианохиназолины 22а,b получали, следуя методике синтеза 4цианохиназолина 9.

2-(4-Бромфенил)-4-цианохиназолин (22а). Выход 92 %, $T_{nn} > 300$ °С. ЯМР ¹Н (400 МГц,

ДМСО-d₆), δ : 7.74 (д, ³J = 8.3, 2H, H-3', H-5'), 7.95 (м, 1H), 8.20 (м, 2H), 8.26 (д, ³J = 8.3, 1H), 8.48 (д, ³J = 8.3, 2H, H-2', H-6'). Масс-спектр (EI), m/z (І_{отн}, %): 312 [M+3]⁺ (17), 311 [M+2]⁺ (92), 310 [M+1]⁺ (18), 309 [M]⁺ (100), 285 (10), 259 (13),

257 (14), 178 (20), 151 (15), 115 (27), 102 (45), 101 (13), 76 (43), 75 (32), 51 (14), 50 (30). С₁₅H₈BrN₃ (310.15). Вычислено, %: С 58.09, Н 2.60, N 13.55; найдено, %: С 58.12, Н 2.58, N 13.57.

C₁₅H₈BrN₃ (310.15). Вычислено, %: С 58.09, Н 2.60, N 13.55; найдено, %: С 58.13, Н 2.63, N 13.59.

Продукты **23а,b** и **24b** синтезировали аналогично хиназолинам **8а-h.** После охлаждения к реакционной массе добавляли воду и EtOAc (по 10 мл). Органический слой отделяли. Водный слой экстрагировали дополнительным количеством EtOAc (2×10 мл). Органические фракции соединяли. Растворитель упаривали.

2-(4'-Диэтиламино[1,1'-бифенил]-4-ил)-4-цианохиназолин (23а). Реакционную смесь нагре-

вали 14 часов. Продукт очищали колоночной хроматографией (SiO₂, элюент: гексан/EtOAc (3/1)). Выход 13 %, T_{пл} = 145–147 °C. ЯМР ¹H (400 МГц, CDCl₃), δ: 1.22 (т, ³J = 6.9, 6H, 2(CH₃)), 3.43 (кв, ³J = 6.9, 4H, 2(CH₂)), 6.78 (д, ³J = 8.4, 2H, H-3', H-5'), 7.61 (д, ³J = 8.7, 2H, H-2'', H-6''), 7.75 (т,

 3 J = 7.8, 3H, H-3', H-5'), 8.02 (т, 3 J = 7.8, 1H), 8.17 (д, 3 J = 8.6, 1H, H-5), 8.24 (д, 3 J = 7.8, 1H), 8.63 (д, 3 J = 8.3, 2H, H-2', H-6'). Масс-спектр (EI), m/z (I_{отн}, %): 379 [M+1]⁺ (16), 378 [M]⁺ (56), 364 (29), 363 (100) [M-CH₃]⁺, 335 (15), 334 (14), 306 (10), 181 (11). С₂₅H₂₂N₄ (378.48). Вычислено, %: С 79.34, H 5.36, N 14.80; найдено: С 79.29, H 5.38, N 14.77.

2-(4'-Дифениламино[1,1'-бифенил]-4-ил)-4-цианохиназолин (23b). Реакционную смесь нагревали 10 часов. Продукт очищали колоночной хроматографией (SiO₂, элюент – градиентно: гексан \rightarrow гексан/ЕtOAc (9/1)) и перекристаллизацией из смеси CH₂Cl₂/гексан. Выход 56 %, Т_{пл} = 105–107 °C. ¹Н ЯМР (400 МГц, CDCl₃), δ: 7.06 (т, ³J = 6.7, 2H, 2H Ph), 7.15-7.18 (м, 6H, 4H Ph, H-3",

H-5''), 7.29 (т, ³J = 7.7, 4H, 4 Ph), 7.59 (д, ³J = 8.7, 2H, H-2'', H-6''), 7.77 (т, ³J = 7.7, 3H, H-3', H-5'), 8.04 (т, ³J = 6.8, 1H), 8.19 (д, ³J = 8.7, 1H), 8.26 (д, ³J = 8.2, 1H), 8.67 (д, ³J = 8.7, 2H, H-2', H-6'). ¹³C ЯМР (100 МГц, CDCl₃), δ: 114.6, 123.1, 123.4, 123.7, 124.8, 125.1, 127.0, 128.0, 129.4, 129.5, 129.6, 133.9, 134.9, 135.9, 143.6, 143.8, 147.7, 148.0, 152.0, 161.0. Масс-спектр (EI), m/z (І_{отн}, %): 475 [M+1]⁺ (39), 474 [M]⁺ (100), 473 (10), 237 (13). С₃₃H₂₂N₄ (474.18). Вычислено, %: С 83.52, H 4.67, N 11.81. Найдено: C 83.48, H 4.70, N 11.76.

2-(4'-Дифениламино[1,1'-бифенил]-3-ил)-4-цианохиназолин (24b). Реакционную смесь

нагревали 7 часов. Продукт очищали колоночной хроматографией (SiO₂, элюент – градиентно: гексан \rightarrow гексан/EtOAc (19/1)) и кристаллизацией из смеси CH₂Cl₂/гексан (2 раза). Выход 21%, $T_{\pi\pi} = 210-212$ °C. ЯМР ¹Н

(400 МГц, CDCl₃), δ : 7.05 (т, ³J = 7.3, 2H, Ph,), 7.16–7.21 (м, 6H, Ph, H-3'', H-5''), 7.26-7.31 (м, 4H, Ph), 7.61 (т, ³J = 8.7, 3H, H-2'', H-6''), 7.75–7.81 (м, 2H), 8.05 (м, 1H), 8.21 (д, ³J = 8.6, 1H, H-5), 8.27 (д, ³J = 8.3, 1H, H-8), 8.57 (д, ³J = 7.7, 1H, H-6'), 8.85 (с, 1H, H-2'). Масс-спектр (EI), m/z (І_{отн}, %): 475 [M+1]⁺ (38), 474 [M]⁺ (100). С₃₃H₂₂N₄ (474.18). Вычислено, %: С 83.52, H 4.67, N 11.81. Найдено: С 83.49, H 4.72, N 11.78.

Продукты **25а-с** и **26а-с** синтезировали из 2-(бромфенил)хиназолин-4(*3H*)-онов **16а** и **16b**, соответственно, аналогично хиназолинам **8а-h**. После охлаждения, к реакционной массе добавляли воду и EtOAc (по 10 мл). Органический слой отделяли. Водный слой экстрагировали дополнительным количеством EtOAc (2×10 мл). Органические фракции соединяли. Растворитель упаривали.

2-(4'-Диэтиламино[1,1'-бифенил]-4-ил)хиназолин-4(3H)-он (25а). Реакционную массу нагре-

вали 20 часов. После охлаждения реакционной массы, выпавший осадок отфильтровывали и промывали гексаном. Выход 69 %, Т_{пл} 265–267 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 1.22 (т, ³J = 7.0, 6H, 2(CH₃)), 3.43 (кв, ³J = 7.0, 4H, 2(CH₂), 6.78 (д, ³J = 8.7, 2H, H-3", H-5"), 7.49 (т, ³J = 7.5, 1H, 7.58

(д, ³J = 8.7, 2H, H-2'', H-6''), 7.74–7.84 (м, 4H, 2H хиназ., H-3', H-5'), 8.14 (д, ³J = 8.2, 2H, H-2', H-6'), 8.33 (д, ³J = 8.0, 1H), 10.26 (с, 1H, NH). ЯМР ¹³С (100 МГц, ДМСО-d₆), δ: 12.5 (2(CH₃)), 43.7 (CH₂), 111.8, 121.3, 124.7, 125.4, 125.8, 126.8, 127.5, 128.3, 132.9, 138.2, 142.0, 147.2, 150.1. Масс-спектр (EI), m/z (І_{отн}, %): 370 [M+1]⁺ (17), 369 [M]⁺ (59), 355 (28), 354 [M-CH₃]⁺ (100), 326 [M-HNCO]⁺ (13), 177 (12), 119 (29). С₂₄H₂₃N₃O (369.47). Вычислено, %: С 78.02, H 6.27, N 11.37; найдено: С 78.04, H 6.28, N 11.36.

8.6, 2H, 2H фенилен.), 7.79–7.87 (м, 4H, 1H хиназ., 2H фенилен.), 8.23 (д, ³J = 8.6, 2H, H-2', H-6'), 8.36 (д, ³J = 8.0, 1H), 10.59 (с, 1H, NH). ЯМР ¹³С (100 МГц, DMSO-d₆) δ: 121.2, 122.9, 123.2, 124.1, 124.8, 125.5, 125.6, 126.7, 127.5, 128.2, 129.4, 132.9, 132.9, 133.6, 141.3, 146.8, 147.1, 149.6, 154.8, 164.9. Масс-спектр (EI), m/z (І_{отн}, %): 466 [M+1]⁺ (36), 465 [M]⁺ (100). С₃₂H₂₃N₃O (465.56). Вычислено, %: С 82.56, H 4.98, N, 9.03; найдено, %: С 82.57, H 4.99, N 9.01.
2-(4'-(9Н-Карбазол-9-ил)-[1,1'-бифенил]-4-ил)хиназолин-4(3Н)-он (25с). Реакционную массу

нагревали 20 часов. После охлаждения реакционной массы, выпавший осадок отфильтровывали и промывали гексаном. Выход 75 %, Т_{пл} 287–289 °C. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.27 (т, ³J = 14.5, 2H, карбаз.), 7.42 (м, ³J = 8.6, 5H), 7.67–7.74 (м, 4H, H-6 или H-7, 2H фенилен), 7.89 (д, ³J = 8.6, 2H), 8.03 (д, ³J = 8.6, 2H), 8.13–8.19 (м, 3H, H-2', H-6'), 8.45

(д, ³J = 8.6, 2H, карбаз.), 10.59 (с, 1H, NH). ЯМР ¹³С (100 МГц, ДМСО-d₆), δ: 109.73, 120.1, 120.5, 122.8, 126.1, 126.3, 127.1, 128.3, 128.5, 131.1, 136.2, 139.0, 139.6, 140.1, 151.6. Масс-спектр (EI), m/z (І_{отн}, %): 464 [M+1]⁺ (38), 463 [M]⁺ (100), 344 (21), 119 (17). С₃₂H₂₁N₃O (463.54). Вычислено, %: С 82.92, H 4.57, N 9.07; найдено, %: С 82.9, H 4.59, N 9.06.

2-(4'-(Диэтиламино[1,1'-бифенил]-3-ил)хиназолин-4(3Н)-он (26а). После охлаждения к реак-

ционной массе добавляли воду и EtOAc (по 10 мл). Органический слой отделяли. Водный слой экстрагировали дополнительным количеством EtOAc (2×10 мл). Органические фракции соединяли и частично упарива-

ли. Сформировавшийся осадок отфильтровывали и промывали гексаном. Выход 49 %, Т_{пл} 245–247 °C. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 1.19 (т, ³J = 6.9, 6H, 2(CH₃)), 3.42 (д, ³J = 5.9, 4H, 2(CH₂)), 6.73 (д, ³J = 7.6, 2H, H-3" и H-5"), 7.45–7.53 (м, 2H), 7.61 (д, ³J = 6.9, 2H, H-2", H-6"), 7.71–7.80 (м, 3H), 8.08 (д, ³J = 7.9, 1H), 8.16 (д, ³J = 8.3, 1H), 8.39 (с, 1H, H-2'), 12.53 (с, 1H, NH). Масс-спектр (EI), m/z (І_{отн}, %): 370 [M+1]⁺ (15), 369 [M]⁺ (51), 344 (21), 355 (28), 354 (100), 326 (11), 177 (15), 119 (27). С₂₄H₂₃N₃O(369.47). Вычислено, %: С 78.02, Н 6.27, N 11.37; найдено: С 78.00, H 6.31, N 11.35.

2-(4'-Дифениламино[1,1'-бифенил]-3-ил)хиназолин-4(3H)-он (26b). После охлаждения к ре-

акционной массе добавляли воду и EtOAc (по 10 мл). Органический слой отделяли. Водный слой экстрагировали дополнительным количеством EtOAc (2×10 мл). Органические фракции соединяли и частично упарива-

ли. Сформировавшийся осадок отфильтровывали и промывали этанолом и гексаном. Выход 55 %, Т_{пл} 260–262 °С. ЯМР ¹Н (400 МГц, CDCl₃), δ: 7.03 (м, 2H), 7.14 (м, 6H), 7.23–7.32 (м, 5H), 7.60 (т, ³J = 8.3, 1H), 7.66 (д, ³J = 7.6, 2H, фенилен), 7.71–7.79 (м, 2H), 7.83 (д, ³J = 8.3, 1H), 8.18 (д, ³J = 7.6, 1H), 8.24 (д, ³J = 7.6, 1H), 8.46 (с, 1H, H-2'), 11.81 (с, 1H, NH). Спектр ¹³С ЯМР (100 МГц, ДМСО-d₆), δ: 121.1, 123.3, 124.5. 125.4, 125.8, 126.4, 126.5, 127.4, 128.0, 128.9, 129.2. 129.6, 133.4, 133.5, 134.5, 139.9, 147.0, 147.1, 148.8, 152.5, 162.5. Масс-спектр (EI), m/z (І_{отн}, %): 466 [M+1]⁺ (35), 465 [M]⁺ (100), 464 (12), 233 (12). С₃₂H₂₃N₃O (465.56). Вычислено, %: С 82.56, H 4.98, N 9.03; найдено, %: С 82.53, H 5.01, N 8.98.

2-(4'-(9Н-Карбазол-9-ил)-[1,1'-бифенил]-3-ил)хиназолин-4(3Н)-он (26с). После охлаждения, к

реакционной массе добавляли воду и EtOAc (по 10 мл). Органический слой отделяли. Водный слой экстрагировали дополнительным количеством EtOAc (2×10 мл). Органические фракции соединяли и частично упаривали. Сформировавшийся осадок отфильтровывали и промывали

гексаном. Выход 81 %, Т_{пл} > 260 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.32 (т, ³J = 6.8, 2H, карбаз.), 7.45–7.50 (м, 4H, H-6 или H-7), 7.55 (т, ³J = 7.6, 1H), 7.72 (т, ³J = 7.6, 1H), 7.78 (д, ³J = 7.6, 3H), 7.87 (т, ³J = 6.8, 1H), 8.03 (д, ³J = 7.6, 1H, H-8), 8.15–8.20 (м, 3H), 8.27 (д, ³J = 7.6, 3H), 8.61 (с, 1H, H-2'), 12.75 (с, 1H, NH). ЯМР ¹³С (100 МГц, ДМСО-d₆), δ: 147.4, 157.9, 158.6, 160.4, 163.3, 163.5, 163.7, 164.0, 164.6, 164.7. 165.0, 166.1, 166.9, 167.0, 171.0, 172.0, 174.1, 176.1, 177.1, 177.7, 186.2, 189.6, 199.7 (СО). Масс-спектр (ЕІ), m/z (І_{отн}, %): 464 [M+1]⁺ (37), 463 [M]⁺ (100), 344 (19), 232 (12), 119 (28), 92 (12). С₃₂Н₂₁N₃O (463.54). Вычислено, %: С 82.92, H 4.57, N 9.07; найдено, %: С 82.88, H 4.62, N 9.04.

2-(4-Дифениламинофенил)хиназолин-4(3H)-он (28). К раствору 2-аминобензамида 1 (0.4 г,

O NH 2.9 ммоль) в 7.5 мл этанола добавляли (0.79 г, 2.9 ммоль) 2-(4дифениламинофенил)бензкарбальдегид 27, реакционную массу перемешивали
 ммоль) в течение 5 часов при комнатной температуре. После чего добавляли CuCl2

(0.38 г, 2.8 ммоль) и реакционную массу кипятили в течение 5 часов. После охлаждения продукт отфильтровывали и промывали этанолом. Выход 91 %, Тпл 280–282 °С (лит. Тпл 291–293 °С [154]). ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.02 (д, ³J = 8.2, 2H, H-3', H-5'), 7.10–7.14 (м, 6H), 7.32– 7.35 (м, 4H), 7.33 (м, 1H, H-6 или H-7), 7.64 (д, ³J = 8.0, 1H, H-5), 7.74 (м, 1H, H-6 или H-7), 8.12 (м, 3H, H-8, H-2', H-6'), 12.25 (уш с, 1H, NH). С₂₆Н₁₉N₃O (389.46).

2-(4-Дифениламинофенил)-4-(морфолин-4-ил)хиназолин (29). К хиназолинону **28** (0.30 г, 0.77 ммоль) добавили POCl₃ (1.0 мл, 10.72 ммоль). Раствор кипятили 2 часа с обратным холодильником и хлоркальциевой трубкой. После охлаждения реакционную массу выливали в лёд, образовавшийся осадок отфильтровывали и промывали насыщенным раствором NaHCO₃. К полученному продукту добав-

ляли безводный ацетонитрил (17 мл) и морфолин (220 мкл, 2.55 ммоль). Полученную смесь кипятили 4 часа. После охлаждения растворитель упаривали и остаток промывали водой (10 мл). Продукт очищали колоночной хроматографией (SiO₂, элюент – градиентно: гексан \rightarrow гексан/EtOAc (1/1)) и перекристаллизацией из смеси CH₂Cl₂/гексан. Выход 25 %, Т_{пл} 175–177 °C. ЯМР ¹H (400 МГц, ДМСО-d₆), δ: 3.83 (м, 4H, N(CH₂)₂), 3.94 (м, 4H, O(CH₂)₂), 7.07 (т, ³J = 7.3, 2H), 7.15–7.18 (м, 6H), 7.27–7.31 (м, 4H), 7.39 (м, 1H, H-6 или H-7), 7.72 (м, 1H, H-6 или H-7), 7.88 (д, ³J = 8.3, 1H, H-5), 7.94 (д, ³J = 8.4, 1H, H-8), 8.43 (д, ³J = 8.4, 2H, H-2', H-6'). ЯМР ¹³С (100 МГц, CDCl₃), δ: 50.6 (2C, N(CH₂)₂), 67.0 (2C, O(CH₂)₂), 115.4, 122.6, 123.5, 124.7, 124.8, 125.1, 129.3, 129.5, 129.7, 132.4, 132.6, 147.7, 150.0, 153.3, 159.5, 165.1. Масс-спектр (EI), m/z (I_{отн}, %): 459 [M+1]⁺ (34), 458 [M]⁺ (100), 457 (17), 427 (13), 413 (12), 401 (30), 400 (23), 389 (15), 373 (16), 372 (16), 270 (16), 269 (15), 229 (20), 200 (11). С₃₀H₂₆N₄O (458.55). Вычислено, %: С 78.58, H 5.72, N 12.22; найдено, %: С 78.61, H 5.68, N 12.19.

2-(4-(Дифениламино)фенил)-4-цианохиназолин (30). К хиназолинону **28** (0.30 г, 0.77 ммоль) добавляли POCl₃ (1.0 мл, 10.72 ммоль). Раствор кипятили 2 часа с обратным холодильником и хлоркальциевой трубкой. После охлаждения реакционную массу выливали в лёд, образовавшийся осадок отфильтровывали и промывали насыщенным раствором NaHCO₃. К полученному продукту добавляли ДМФА (4.4 мл), свежеприготовленный КСN (0.1 г, 1.5 ммоль) и натриевую соль *n*-толуолсульфокислоты (0.056 г, 0.010 ммоль). Реакционную смесь выдерживали 3 часа при 95 °С. После охлаждения, к реакционной массе добавляли воду (10 мл). Сформировавшийся осадок отфильтровывали, промывали спиртом и гексаном. Продукт очищали с помощью колоночной хроматографии (SiO₂, элюент – градиентню: гексан/ЕtOAc (19/1) \rightarrow EtOAc). Выход 28 %, Т_{пл} = 150–152 °C. ЯМР ¹H (400 МГц, CDCl₃), δ: 7.10–7.20 (м, 8H, 6H Ph, H-3', H-5'), 7.32 (м, 4H, Ph), 7.71 (т, ³J = 7.7, 1H), 7.98 (т, ³J = 7.9, 1H), 8.10 (д, ³J = 8.9, 1H), 8.20 (д, ³J = 8.9, 1H), 8.41 (д, ³J = 8.9, 2H, H-2', H-6'). Масс-спектр (EI), m/z (І_{отн}, %): 399 [M+1]⁺ (31), 398 [M]⁺ (100), 397 (18). C₂₇H₁₈N₄ (398.47). Вычислено, %: C 81.39, H 4.55, N 14.06; найдено, %: C 81.35, H 4.58, N 14.01.

2-Фенилхиназолин-4(3*H*)-он **33а** синтезировали из 2-аминобензамида **1** и бензоилхлорида **31а** по ранее описанной методике.[132]

2-Замещённые хиназолин-4(3*H*)-оны **33b,с** получали аналогично методике получения соединения **4**, в две стадии. В качестве интермедиатов были выделены **2-(флуорен-2-ил)-2,3**дигидрохиназолин-4(1*H*)-он (32b) или **2-(цимантренилметиленамино)бензамид** (32c).

2-(Флуорен-2-ил)-2,3-дигидрохиназолин-4(1*H*)-он (32b). Выход 89 %, Тпл 233-235 °С. ЯМР ¹Н

(400 MFµ, ДМСО-d₆), δ : 3.49 (c, 2H, CH₂), 5.84 (c, 1H, NHC**H**NH), 6.67 (T, ³J = 7.5, 1H), 6.75 (д, ³J = 7.9, 1H), 6.91 (c, 1H, NH), 7.20 (T, ³J = 7.7, 1H), 7.30 (T, ³J = 7.3, 1H), 7.36 (T, ³J = 7.3, 1H), 7.55 (T, ³J = 8.4, 2H), 7.64 (d, ³J = 7.7, 1H), 7.74

(c, 1H, H-1'), 8.02 (c, 1H, NH). C₂₁H₁₆N₂O (312.37).

2-(Цимантренилметиленамино)бензамид (32с). После охлаждения реакционной массы растворитель упарили, остаток промывали диэтиловым эфиром. Выход 45 %, Т_{пл} 196–198 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 5.15 (м, 2H, Cp), 5.74 (м, 2H, Cp), 7.05 (д, ³J = 7.9, 1H, CH бензамид), 7.32 (м, 1H, CH бензамид), 7.39 (с, 1H, NH₂), 7.51 (м, 1H, CH бензамид), 8.00 (д, ³J = 7.8, 1H, CH бензамид), 8.15 (с, 1H, NH₂),

8.28 (c, 1H, -N=CH-). C₁₆H₁₁N₂O₄Mn (350.21).

2-(Флуорен-2-ил)хиназолин-4(3H)-он (33b). Выход 85 %, Т_{пл} > 300 °С. ЯМР ¹Н (400 МГц,

 \square MCO-d₆), δ : 4.03 (c, 2H, CH₂), 7.35 (m, 1H), 7.41 (T, ³J = 7.3, 1H), 7.46 (m, 1H), 7.61 (μ , ${}^{3}J$ = 7.5, 1H), 7.72 (μ , ${}^{3}J$ = 7.9, 1H), 7.78 (μ , 1H), 7.91 (μ , ${}^{3}J$ = 7.9, 1H), 7.96 (д, ³J = 8.1, 1Н), 8.16 (м, 1Н), 8.29 (м, 1Н), 8.48 (с, 1Н, Н-1'), 12.40 (с, 1Н,

NH). C₂₁H₁₄N₂O (310.36).

2-Цимантренилхиназолин-4(3H)-он (33c). После охлаждения осадок отфильтровали и промывали горячим этанолом (5 мл). Выход 96 %, Т_{пл} 262–264 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 5.11 (м, 2H, Cp), 5.13 (м, 2H, Cp), 7.46 (м, 1H, аром), 7.60 (д, ³J = Mn-CO OC CO 8.0, 1H, H-5), 7.76 (м, 1H, аром), 8.10 (д, ³J = 8.0, 1H, H-8), 12.29 (с, 1H, NH). Масс-спектр (EI), m/z (I_{отн}, %): 348 [M]⁺ (9), 292 (9), 265 (15), 264 (100), 172 (44), 55 (46). C₁₆H₉N₂O₄Mn (348.19).

4-Бромхиназолины 34а-с синтезировали из соответствующих хиназолин-4(3H)-онов 33а-C, следуя ранее описанной методике.[133] К суспензии соответствующего 2арил(гетарил)хиназолин-4(3H)-она (0.7 г, 3.2 ммоль) в толуоле (14 мл) добавляли триэтиламин (0.35 мл) и раствор РОВг₃ (3.6 г, 12.5 ммоль) в толуоле (7.5 мл). Реакционную массу выдерживали при 80 °C в течение 12 или 24 часов. Продукт извлекали из реакционной массы многократной экстракцией хлороформом. Экстракт промывали водой (2×10 мл), сушили над Na₂SO₄ и упаривали при пониженном давлении. Остаток промывали насыщенным раствором NaHCO₃. Продукт экстрагировали гексаном.

4-Бром-2-фенилхиназолин (34а). Реакционную смесь нагревали в течение 12 часов. Выход 30

%, Тлл 123–125 °С (лит. Тлл 129 °С [155]). ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.55 (м, 3Н), 7.80 (м, 1Н), 8.07 (м, 2Н), 8.21 (м, 1Н, Н-8), 8.55 (м, 2Н). Масс-спектр (ЕІ), m/z (І_{отн}, %): 286 [M+2]⁺ (20), 284 [M]⁺ (21), 206 (16), 205 [M-Br]⁺ (100), 103 (17), 102 (35), 77 (39), 76 (20), 75 (19), 51 (14). C₁₄H₉N₂Br (285.15).

4-Бром-2-(флуорен-2-ил)хиназолин (34b). Реакционную смесь нагревали в течение 12 часов. Продукт экстрагировали хлороформом из реакционной смеси. Растворитель Br упаривали, остаток промывали насыщенным раствором NaHCO₃. Выход 45 %, T III 141–143 °C. ЯМР ¹H (400 МГц, CDCl₃), δ: 4.06 (c, 2H, CH₂), 7.39 (м, 1H), 7.45 (т, ³J = 7.5, 1H), 7.63 (д, 1H), 7.69 (м, 1H), 7.90 (д, ³J = 7.8, 1H), 7.96 (м, 2H), 8.11 (д, ³J =

8.4, 1H), 8.23 (д, ³J = 8.4, 1H), 8.69 (д, ³J = 8.2, 1H), 8.81 (с, 1H, H-1'). Масс-спектр (EI), m/z (І_{отн}, %): 374 [M+2]⁺ (74), 373 (21), 372 [M]⁺ (76), 330 (12), 328 (36), 294 (23), 293 [M-Br]⁺ (100), 292 (34), 191 (26), 190 (85), 165 $[C_{13}H_9]^+$ (47), 164 (41), 153 (28), 146 (21), 103 (14), 102 (33), 76 (14), 75 (22), 51 (12). C₂₁H₁₃BrN₂ (373.26).

4-Бром-2-цимантренилхиназолин (34с). Реакционную смесь нагревали в течение 12 часов.
Br Выход 23 %, Т_{пл} 124–126 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 5.14 (м, 2H, Cp), 5.95 (м, 2H, Cp), 7.79 (м, 1H, H-6), 7.97 (м, 1H, H-5), 8.04 (м, 1H, H-7), 8.17 (м, 1H, H-8). Масс-спектр (EI), m/z (І_{отн}, %): 412 [M+2]⁺ (12), 410 [M]⁺ (12), 329 (15), 328 [M-3CO]⁺ (100), 327 (17), 326 [M-3CO]⁺ (97), 247 (15), 246 [M-Br-3CO]⁺ (97), 192 (13), 166 (13), 164 (11), 140 (12), 139 (11), 136 (29), 134 (31), 102 (10), 55 (81). C₁₆H₈N₂O₃BrMn (411.09).

Продукты **35а-f** синтезировали из соответствующих 4-бромхиназолинов **39а-c**, аналогично хиназолинам **8а-h**. Выделение продуктов **35а,с-f**: после охлаждения органический слой отделяли, промывали его насыщенными растворами K₂CO₃ (20 мл) и NH₄Cl (20 мл), высушивали над Na₂SO₄, и упаривали при пониженном давлении. Остаток промывали гексаном.

4-(4-Диэтиламинофенил)-2-фенилхиназолин (35а). Выход 53 %, Т_{пл} 105–108 °С. ЯМР ¹Н (ДМСО-d₆), δ: 1.26 (м, 6H, 2 CH₃), 3.53 (м, 4H, 2 CH₂), 7.62–7.52 (м, 6H), 7.85–7.92 (м, 3H), 8.06 (м, 1H), 8.17 (м, 1H), 8.26 (м, 1H, H-8), 8.65 (м, 2H). Масс-спектр (EI), m/z (І_{отн}, %): 353 [M]⁺ (55), 339 (26), 338 (100), 310 (15), 205 (14), 169 (16), 77 (13). С₂₄H₂₃N₃ (353.47). Вычислено, %: С 81.55, H 6.56, N 11.89; найдено, %: С 81.35, H 6.48, N 11.34.

4-(4-Дифениламинофенил)-2-фенилхиназолин (35b). После охлаждения, к реакционной массе

добавляли воду и EtOAc (по 10 мл). Органический слой отделяли. Водный слой экстрагировали дополнительным количеством EtOAc (2×10 мл). Органические фракции соединяли. Растворитель упаривали. Продукт очищали колоночной хроматографией (SiO₂, элюент – градиентно: гексан → гексан/EtOAc (9/1) и перекристаллизацией из смеси CH₂Cl₂/гексан. Выход 53 %, T_{пл} 180–182 °C. ЯМР ¹Н

(400 МГц, CDCl₃), δ: 7.14 (м, 2H, 2 Ph), 7.22–7.26 (м, 6H, H-3", H-5", 4 Ph), 7.34–7.37 (м, 4H, 4 Ph), 7.51–7.58 (м, 4H, H-6, H-3', H-4', H-5'), 7.84–7.90 (м, 3H, H-7, H-2", H-6"), 8.15 (d, ³J = 8.5, 1H, H-5), 8.26 (д, ³J = 8.5, 1H, H-8), 8.72 (д, ³J = 8.0, 2H, H-2', H-6'). ЯМР ¹³С (DCCl₃), δ: 121.7, 121.9, 124.0, 125.5, 126.9, 127.2, 128.6, 128.8, 129.3, 129.6, 130.5, 130.8, 131.6, 133.5100 МГц,, 138.5, 147.3, 149.9, 152.3, 160.3, 167.7. Масс-спектр (EI), m/z (І_{отн}, %): 450 [M+1]⁺ (100), 449 [M]⁺ (100), 448 (50), 281 (37), 224 (11), 77 (17). С₃₁H₂₂N₄ (449.56). Вычислено для, %: С 85.50, H 5.16, N 9.35; найдено, %: С 85.54, H 5.13, N 9.37.

4[4-(9Н-Карбазол-9-ил)фенил]-2-фенилхиназолин (35с). Выход 80 %, Тлл 197–199 °С. ЯМР ¹Н

(400 МГц, ДМСО-d₆), δ: 7.32 (м, 2H, H-2^{'''}, H-7^{'''}), 7.46 (м, 2H, H-3^{'''}, H-6^{'''}), 7.56 (м, 3H, H-2['], H-3['], H-4[']), 7.63 (д, ³J = 8.3, 2H, H-4^{'''}, H-5^{'''}), 7.73 (м, 1H, H-7), 7.92 (д, ³J = 8.1, 2H, H-3^{'''}, H-5^{'''}), 8.04 (м, 1H, H-6), 8.16–8.22 (м, 5H, H-2^{''}, H-6^{''}, H-1^{'''}, H-8^{'''}, H-5), 8.34 (д, ³J = 8.3, 1H, H-8), 8.73 (м, 2H, H-2['], H-6[']). Масс-

спектр (EI), m/z (І_{отн}, %): 448 [M]⁺ (33), 447 (100), 446 (40), 281 (52), 282 (12), 224 (14), 76 (10). С₃₂H₂₁N₃ (447.54). Вычислено, %: С 85.88, Н 4.73, N 9.39; найдено, %: С 85.47, Н 4.82, N 9.50.

4-(4-Диэтиламинофенил)-2-(флуорен-2-ил)хиназолин (35d). Выход 39 %, Т_{пл} 182–185 °С.

ЯМР ¹H (400 МГц, CDCl₃), δ : 1.30 (т, ³J = 7.1, 6H, 2CH₃), 3.52 (кв, ³J = 7.1, 4H, 2CH₂), 4.06 (с, 2H, CH₂, флуорен.), 6.99 (д, ³J = 8.8, 2H, H-3'', H-5''), 7.36 (м, 1H), 7.44 (м, 1H), 7.54 (м, 1H), 7.62 (д, ³J = 7.4, 1H), 7.85–7.91 (м, 2H), 7.95 (м, 3H), 8.14 (д, ³J = 8.4, 1H), 8.32 (д, ³J = 8.1, 1H), 8.81 (д, ³J = 8.1, 1H), 8.93 (с,

1H, H-1'). ЯМР ¹³С (100 МГц, CDCl₃): 12.4, 36.5, 43.9, 111.2, 119.9 130.5, 120.8, 126.9, 127.3, 128.4, 131.9, 133.6, 136.6, 140.6, 143.3, 143.4, 144.0 149.1, 151.5, 159.1, 161.2. Масс-спектр (EI), m/z (I_{отн}, %): 441 [M]⁺ (74), 440 (13), 427 (32), 426 [M-CH₃]⁺ (100), 397 (16) [M-C₃H₈]⁺, 398 (15), 396 (16), 369 [M-NEt₂]⁺ (10), 213 (21), 199 (15), 190 (14), 165 (10). С₃₁H₂₇N₃ (441.58). Вычислено для, %: С 84.32, H 6.16, N 9.52; найдено, %: С 84.21, H 6.17, N 9.49.

4-[4-(9Н-Карбазол-9-ил)фенил]-2-(флуорен-2-ил)хиназолин (35е). Выход 34 %, Тлл 260-262

°C. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 4.07 (с, 2H, CH₂), 7.30–7.46 (м, 6H), 7.63 (м, 3H), 7.70 (т, ³J = 7.7, 1H), 7.92 (м, 3H), 7.97–8.03 (м, 2H), 8.13–8.23 (м, 5H), 8.32 (д, ³J = 8.4, 1H), 8.79 (д, ³J = 8.1, 1H), 8.93 (с, 1H, H-1'). Масс-спектр (EI), m/z (І_{отн}, %): 535 [M]⁺ (100), 534 (32), 369 [M-C₁₂H₁₀N]⁺ (25), 268 (44),

267 (10), 241 (10), 190 (17), 165 (12). С₃₉H₂₅N₃ (535.65). Вычислено, %: С 87.45, Н 4.70, N 7.84; найдено, %: С 88.39, Н 4.75, N 7.89.

4-(4-Диэтиламинофенил)-2-цимантренилхиназолин (35f). Выход 42 %, Т_{пл} 125–127 °С. ЯМР ^{№ Et}₂ ¹H (400 МГц, ДМСО-d₆), δ: 1.24 (т, ³J = 6.9, 6H, 2(CH₃)), 3.49 (м, 4H, 2(CH₂)), 5.07 (м, 2H, Cp), 5.97 (м, 2H, Cp), 6.83 (м, 2H, H-3', H-5'), 7.58 (м, 1H, аром.), 7.74 (д, ³J = 8.6, 2H, H-2', H-6'), 7.88 (м, 2H, аром), 7.92 (м, 2H, аром), 8.22 (м, 1H, H-8). ЯМР ¹³С (100 МГц, ДМСО-d₆): 12.4, 43.8, 84.2, 86.0, 98.4, 110.9, 120.7,

122.5, 127.3, 127.3, 128.0, 131.9, 133.9, 149.1, 151.1, 157.0, 167.1, 224.8 (СО). Масс-спектр (ЕІ), m/z (І_{отн}, %): 479 [М]⁺ (11), 396 (27), 395 (100), 393 (13), 351 (19), 190 (12). С₂₆H₂₂N₃O₃Mn (479.42). Вычислено, %: С 65.14, Н 4.63, N 8.76; найдено, %: С 65.36, Н 4.27, N 8. 73.

Хиназолин-4(3*H*)-оны **38а,b** получали в две стадии. В качестве интермедиатов были выделены **2-(4-цианобензилиденамино)бензамид 37а** или **2-(4-трифторметилфенил)-2,3дигидрохиназолин-4(1H)-он 37b**.

Стадия 1. Смесь 2-аминобензамида **1** (0.5 г, 3.7 ммоль) и соответствующего альдегида **31b,с** (3.7 ммоль) в этаноле (9 мл) перемешивали при комнатной температуре в течение 5 часов. Сформировавшийся осадок отфильтровывали, промывали этанолом и/или гексаном.

2-(4-Цианобензилиденамино)бензамид (37а). Выход 77 %, Т_{пл} 189–191 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.25 (д, ³J = 7.8, 1Н, СН бензамид), 7.32 (т, ³J = 7.4, 1Н, СН бензамид), 7.55 (м, 2Н, NH, СН бензамид), 7.84 (д, ³J = 7.8, 1Н, СН бензамид), 7.97 (уш с, 1Н, NH), 8.03 (д, ³J = 8.1, 2H, C₆H₄CN), 8.13 (д, ³J = 8.1, 2H, C₆H₄CN), 8.69 (с, 1H, -N=CH-). C₁₅H₁₁N₃O (249.27).

2-(4-Трифторметилфенил)-2,3-дигидрохиназолин-4(1*H***)-он (37b**). Выход 71 %, Т_{пл} 256– 258 °C. ЯМР ¹Н (300 МГц, ДМСО-d₆), δ: 5.86 (с, 1H, CH), 6.69 (дд, ³J = 8.1, ³J = 7.3, 1H, CH), 6.76 (д, ³J = 8.1, 1H), 7.26 (м, 2H, CH, NH), 7.61 (дд, ³J = 7.3, ⁴J = 1.4, 1H, CH), 7.70 (д, ³J = 8.4, 2H, C₆H₄CF₃), 7.77 (д, ³J = 8.4, 2H, C₆H₄CF₃), 8.44 (с, 1H, NH). C₁₅H₁₁F₃N₂O (292.26).

Стадия 2. Аналогично получению хиназолин-4(3*H*)-она *4.* Реакционную массу кипятили 2 часа, осадок отфильтровывали и перекристаллизовывали из ДМСО (для **38a**) или из этанола (для **38b**).

2-(4-Цианофенил)хиназолин-4(3*H***)-он (38а).** Выход 60 %, Т_{пл} 276–278 °С (лит. Т_{пл} 280–282 °С [35]). ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.57 (м, 1Н), 7.79–7.87 (м, 2Н), 8.05 (м, 2H), 8.17 (с, 1Н), 8.34 (м, 2Н), 12.74 (уш с, 1Н, NН). С₁₅Н₉N₃O (247.26).

2-(4-Трифторфенил)хиназолин-4(3*H***)-он (38b).** Выход 78 %, Тпл 285–287 °С (лит. Тпл 280–282 °С [34]). ЯМР ¹Н (300 МГц, ДМСО-d₆), δ: 7.57 (т, ³J = 7.6, 1H, CH хиназ.), 7.77 (д, ³J = 8.1, 1H, CH хиназ.), 7.87 (т, ³J = 7.6, 1H, CH хиназ.), 7.93 (д, ³J = 8.2, 2H, С₆H₄CF₃) 8.17 (д, ³J = 8.1, 1H,), 8.37 (д, ³J = 8.2, 2H, C₆H₄CF₃). C₁₅H₉F₃N₂O

4-Бромхиназолины 39а-b синтезировали аналогично хиназолинам 34.

(290.25).

4-Бром-2-(4-цианофенил)хиназолин (39а). Реакционную смесь нагревали в течение 24 часов.

Вг После охлаждения осадок отфильтровывали, промывали раствором NaHCO₃ и сушили при пониженном давлении. Выход 85 %, Т_{пл} 250–252 °С. ЯМР ¹Н (300 МГц, ДМСО-d₆), δ: 7.91 (1H, м), 8.01 (д, ³J = 8.2, 2H, C₆H₄CN), 8.13 (м, 2H), 8.24 (д, ³J = 8.3, 1H, CH хиназ.), 8.66 (д, ³J = 8.2, 2H, C₆H₄CN). Масс-спектр (EI), m/z (I_{отн}, %): 311 [M+2]⁺ (23), 309 [M]⁺ (24), 231 (18), 230 [M-Br]⁺ (100), 102 (54), 76 (16), 75 (28), 16 (16). C₁₅H₈BrN₃ (310.15).

4-Бром-2-(4-трифторметилфенил)хиназолин (39b). Реакционную смесь нагревали в течение 24 часов. После охлаждения реакционной смеси продукт экстрагировали CH₂Cl₂ (50 мл), органический слой промывали раствором NaHCO₃, затем сконцентрировали и высушили под вакуумом. 4-Бромхиназолин **39b** экстрагирова-

ли гексаном, растворитель отгоняли при пониженном давлении, продукт использовали без до-

полнительной очистки. Выход 40 %, Т_{пл.} 105–107 °С. ЯМР ¹Н (300 МГц, CDCl₃), δ: 7.88–7.97 (м, 3H), 8.16 (м, 2H), 8.23 (д, ³J = 8.4, 1H, CH хиназ.), 8.67 (д, ³J = 8.2, 2H, C₆H₄CF₃). HRMS: вычислено [M+H]⁺ 352.9896; найдено [M+H]⁺ 352.9896. С₁₅H₈BrF₃N₂ (353.14).

Продукты **40а-с** синтезировали из 4-бромхиназолина **39а** аналогично хиназолинам **8а-h**. Реакционную массу нагревали в стеклянном автоклаве. После охлаждения продукт отфильтровывали или выделяли из раствора.

4-(4-Диэтиламинофенил)-2-(4-цианофенил)хиназолин (40а). После охлаждения органический слой отделяли, промывали его насыщенными растворами K₂CO₃ (20 мл) и NH₄Cl (20 мл), сушили над Na₂SO₄, и упаривали при пониженном давлении. Продукт очищали колоночной хроматографией (SiO₂, элюент – градиентно: гексан/EtOAc (10/1) \rightarrow гексан/EtOAc (1/1)). Выход 69 %, Т_{пл.} 155–157 °C. ЯМР ¹H (400 МГц, CDCl₃), δ: 1.27 (т, ³J = 7.0, 6H, 2(CH₃)), 3.49 (кв, ³J = 7.0, 4H,

2(CH₂)), 6.85 (д, ³J = 8.2, 2H, C₆H₄NEt₂), 7.58 (т, ³J = 7.6, 1H, CH хиназ.), 7.80 (д, ³J = 7.9, 2H, C₆H₄CN), 7.88 (м, 3H), 8.11 (д, ³J = 8.3, 1H, CH хиназ.), 8.32 (д, ³J = 8.3, 1H, CH хиназ.), 8.83 (д, ³J = 7.9, 2H, C₆H₄CN). ЯМР ¹³C (100 МГц, CDCl₃), δ: 12.8 (2C, 2(CH₃)), 44.7 (2C, 2(CH₂)), 111.3 (2C, CH), 113.5 (C), 119.3 (C), 122.0 (C), 123.9 (C), 127.4 (CH), 127.7 (CH), 129.2 (2C, CH), 129.2 (CH), 132.3 (4C, CH), 133.5 (CH), 143.0 (C), 149.6 (C), 152.2 (C), 158.2 (C), 168.2 (C). Масс-спектр (EI), m/z (І_{отн}, %): 379 [M+1]⁺ (14), 378 [M]⁺ (47), 364 (28), 363 [M-CH₃]⁺ (100), 335 (16), 230 (13), 181 (11), 102 (13). Вычислено для C₂₅H₂₂N₄ (378.48), %: C 79.34, H 5.86, N 14.80. Найдено, %: C 79.41, H 5.69, N 14.55.

4-(4-Дифениламинофенил)-2-(4-цианофенил)хиназолин (40b). Продукт извлекали аналогич-

но **40a**. Затем очищали колоночной хроматографией (SiO₂, элюент – градиентно: гексан/CHCl₃ (5/1) → CHCl₃). Выход 74 %, Тпл. 205–207 °С. ЯМР ¹H (400 МГц, CDCl₃), δ: 7.13 (т, ³J = 7.3, 2H, NPh₂), 7.24 (м, 6H), 7.35 (т, ³J = 7.3, 4H, NPh₂), 7.62 (т, ³J = 7.6, 1H, CH хиназ.), 7.81 (д, ³J = 7.8, 4H), 7.92 (т, ³J = 7.6, 1H, CH хиназ.), 8.15 (д, ³J = 8.3, 1H, CH хиназ.), 8.28 (д, ³J = 8.3, 1H, CH хиназ.),

8.82 (д, ³J = 7.9, 2H, C₆H₄CN). ЯМР ¹³C (100 МГц, CDCl₃), δ: 113.7, 119.2, 121.6, 122.0, 124.2, 125.6, 127.4, 127.8, 129.2, 129.4, 129.7, 130.1, 131.6, 132.4, 133.9, 142.7, 147.2, 150.3, 152.1, 158.3, 168.0. Масс-спектр (EI), m/z (I_{отн}, %): 475 [M+1]⁺ (37), 474 [M]⁺ (100), 473 (32), 306 [M-NPh₂]⁺ (22), 237 (11), 102 (13), 76 (11). С₃₃H₂₂N₄ (474.57). Вычислено, %: С 83.52, H 4.67, N 11.81; найдено, %: С 83.37, H 4.50, N 11.72.

4-(4-(9Н-Карбазол-9-ил)-2-(4-цианофенил)хиназолин (40с). После охлаждения и частичного

CF₃

упаривания реакционной массы, осадок отфильтровывали и промывали гексаном (3 мл). Выход 84 %, Т_{пл.} 235–237 °С. ЯМР ¹Н (600 МГц, CDCl₃), δ: 7.34 (т, ³J = 7.5, 2H, CH карбазол), 7.49 (т, ³J = 7.5, 2H, CH карбазол), 7.62 (д, ³J = 7.7, 2H), 7.84 (т, ³J = 7.6, 1H, CH хиназ.), 7.94 (д, ³J = 8.2, 2H), 8.05 (д, ³J = 8.2, 2H), 7.84 (т, ³J = 7.6, 1H, CH хиназ.), 8.23 (м, 3H), 8.28 (м, 2H), 8.37 (д, ³J = 8.2, 1H,

СН хиназ.), 8.83 (д, ³J = 8.4, 2H, C₆H₄CN). ЯМР ¹³С (100 МГц, CDCl₃), δ: 110.0, 114.0, 119.1, 120.6, 120.6, 122.1, 123.9, 126.3, 127.1, 127.1, 128.3, 129.3, 129.7, 132.0, 132.5, 134.3, 136.2, 140.0, 140.7, 142.4, 152.2, 158.5, 167.8. Масс-спектр (m/z, I_{отн} %): 473 [M+1]⁺ (37), 472 [M]⁺ (100), 471 (28), 306 [М-карбазол]⁺ (25), 236 (22), 102 (11), 76 (18). С₃₃H₂₀N₄ (472). Вычислено, %: С 83.88, H 4.27, N 11.86; найдено, %: С 83.68, H 4.09, N 11.75.

Продукты **40d-f** синтезировали из 4-бромхиназолина **39b**, следуя ранее разработанной методике.[6] К бромпроизводному **39b** (0.25 ммоль) в толуоле (7.5 мл) добавляли соответствующую арилбороновую кислоту (0.50 ммоль), насыщенный раствор Na₂CO₃ (0.5 мл) и этанол (0.5 мл). Затем смесь дегазировали азотом и вносили Pd(PPh₃)₄ (28.9 мг, 0.025 ммоль). Реакционную смесь кипятили в атмосфере азота 14 часов. После охлаждения к реакционной массе добавляли воду и EtOAc (1:1, 10 мл). Органический слой отделили и водный слой проэкстрагиговали дополнительным количеством EtOAc (2×10 мл). Органические растворы соединили, растворитель упарили при пониженном давлении.

4-(4-Диметиламинофенил)-2-(4-трифторметилфенил)хиназолин (40d). Продукт очищали колоночной хроматографией (SiO₂, элюент петролейный эфир/EtOAc (9/1)). Выход 77 %, Т_{пл.} 160–162 °С (лит. Т_{пл.} 136–138 °С [156]). ЯМР ¹Н (300 МГц, CDCl₃), δ : 1.55 (c, 6H, 2(CH₃)), 6.89 (д, ³J = 8.3, 2H, C₆H₄NMe₂), 7.57 (т, ³J = 7.8, 1H, CH хиназ.), 7.82 (д, ³J = 8.0, 2H, C₆H₄CF₃), 7.86–7.93 (м, 3H), 8.13 (д, ³J = 8.4, 1H, CH хиназ.), 8.29 (д, ³J = 8.4, 1H, CH хиназ.), 8.82 (д, ³J = 8.0, 2H, Ch хиназ.), 8.82 (d, ³J = 8.0, 2H, Ch хиназ.), 8.82 (d, ³J = 8.0, 2H, Ch хиназ.), 8.

С6H4CF3). ЯМР ¹³С ЈМОД (75 МГц, CDCl3), δ: 40.4 (CH3), 112.0 (CH), 122.1 (C), 124.5 (кв, ¹J = 272.9, CF3),125.2 (C), 125.5 (кв, ³J = 3.9, CH), 127.2 (CH), 127.6 (CH), 129.0 (CH), 129.3 (CH), 131.7 (CF3), 132.0 (CH), 133.4 (CH), 142.2 (C), 152.1 (C), 152.3 (C), 158.9 (C), 168.3 (C). HRMS: вычислено [M+H]⁺ 394.1526, найдено [M+H]⁺ 394.1527. С₂₃H₁₈F₃N₃ (393.41). Вычислено, %: C 70.22, H 4.61, N 10.68; найдено, %: C 70.04, H 4.41, N 10.46.

4-(4-Дифениламинофенил)-2-(4-трифторметилфенил)хиназолин (40е). Продукт очищали колоночной хроматографией (SiO₂, элюент – петролейный эфир/EtOAc (19/1)). Выход 85 %, Т_{пл.} 146–148 °C. ЯМР ¹Н (300 МГц, CDCl₃), δ: 7.13 (т, ³J = 7.1, 2H, NPh₂), 7.24 (м, 6H), 7.32–7.37 (м, 4H), 7.60 (т, ³J = 7.6, 1H, CH хиназ.), 7.77 (д, ³J = 8.2, 2H, C₆H₄CF₃), 7.81 (д, ³J = 8.9, 2H, C₆H₄NPh₂), 7.91 (т, ³J = 7.6, 1H, CH хиназ.), 8.15 (д, ³J = 8.4, 1H, CH хиназ.), 8.27 (д, ³J = 8.2, 1H, CH хиназ.), 8.81 (д, ³J = 8.2, 1H, C₆H₄CF₃). ЯМР ¹³C JMOD (75 МГц, CDCl₃), δ : 121.8 (CH), 122.0 (C), 124.2 (CH), 124.5 (кв, ¹J = 272.1, CF₃), 125.5 (кв, ³J = 3.9, CH), 125.6 (CH), 127.3 (CH), 127.5 (CH), 129.0 (CH), 129.4 (CH), 129.7 (CH), 130.4 (C), 131.6 (CH), 131.9 (C), 132.3 (C), 133.8 (CH), 141.9 (C), 147.3 (C), 150.2 (C), 152.2 (C), 158.9 (C), 168.0 (C). HRMS: вычислено [M+H]⁺ 518.1839, найдено [M+H]⁺ 518.1844. C₃₃H₂₂F₃N₃ (517.56). Вычислено, %: C 76.58, H 4.28, N 8.12; найдено, %: C 76.53, H 4.08, N 8.01.

4-(4-(9*H***-Карбазол-9-ил)фенил)-2-(4-трифторметилфенил)хиназолин (40f**). Продукт очищали колоночной хроматографией (SiO₂, элюент – петролейный эфир/EtOAc (9/1)) и трёхкратной перекристаллизацией из смеси CH₂Cl₂/гептан. Выход 39 %, Т_{пл.} 212–214 °C. ЯМР ¹Н (300 МГц, CDCl₃), δ: 7.35 (т, ³J = 7.6, 2H, CH карбазол), 7.48 (т, ³J = 7.6, 2H, CH карбазол), 7.61 (д, ³J = 8.1, 2H), 7.70 (т, ³J = 7.6, 1H, CH хиназ.), 7.80–7.88 (м, 4H), 7.99 (т, ³J = 7.6, 1H, CH хиназ.), 8.16–8.26 (м,

5H), 8.32 (д, ³J = 8.2, 1H, CH хиназ.), 8.87 (д, ³J = 8.1, 2H, -C₆H₄CF₃). ЯМР ¹³C JMOD (75 МГц, CDCl₃), δ: 110.0 (CH), 120.6 (CH), 120.6 (CH), 122.1 (C), 123.9 (C), 124.2 (кв, ¹J = 272.9, CF₃), 125.7 (кв, ³J = 3.9, CH), 126.3 (CH), 127.0 (CH), 127.1 (CH), 128.0 (CH), 129.1 (CH), 129.7 (CH), 132.0 (CH), 134.2 (CH), 136.4 (C), 139.9 (C), 140.8 (C), 141.6 (C), 152.3 (C), 159.1 (C), 167.7 (C). HRMS: вычислено [M+H]⁺ 516,1682, найдено [M+H]⁺ 516,1685. C₃₃H₂₀F₃N₃ (515.54). Вычислено, %: C 76.88, H 3.91, N 8.15; найдено: C 76.68, H 3.72, N 8.09.

2-Азинилхиназолин-4(3*H*)-оны **43а,b** получали в две стадии. На первой стадии были выделены 2-гетарил-2,3-дигидрохиназолин-4(1*H*)-оны **42а,b**.

Стадия 1. Синтезировали аналогично методу получения хиназолинона **3**. После охлаждения реакционной массы осадок отфильтровывали и перекристаллизовывали из этанола.

2-(Пиридин-2-ил)-2,3-дигидрохиназолин-4(1*H*)-он (42а). Выход 73 %, Т_{пл} 183-185 °С (Т_{пл} =

о 187–188 °C [157]). ЯМР ¹Н (400 МГц, ДМСО-d₆), δ : 5.68 (c, 1H, H-2), 6.62 (т, ³J = 7.3, 1H, H-6), 6.72 (д, ³J = 8.1, 1H, H-8), 7.01 (c, 1H, NH), 7.14 (м, 1H, H-7), 7.29 (дд, ³J = 7.5, ³J = 4.9, 1H, H-5'), 7.53 (д, ³J = 7.9, 1H, H-3'), 7.58 (дд, ³J = 7.8, ⁴J = 1.7,

1H, H-5), 7.76 (α T, ${}^{3}J$ = 7.8, ${}^{4}J$ = 1.7, 1H, H-4'), 8.13 (c, 1H, NH), 8.53 (α , ${}^{3}J$ = 4.5, 1H, H-6'). C₁₃H₁₁N₃O (225.25).

2-(Хинолин-2-ил)-2,3-дигидрохиназолин-4(1H)-он (42b). Выход 77 %, Тпл 182–184 °С. ЯМР

¹H (400 MΓ_I, ДМСО-d₆), δ: 5.89 (д, ${}^{3}J$ = 2.2, 1H, H-2), 6.65 (T, ${}^{3}J$ = 7.4, 1H, H-6), 6.73 (д, ${}^{3}J$ = 8.2, 1H, H-8), 7.10 (c, 1H, NH), 7.18 (м, 1H, H-7), 7.56 (м, 1H), 7.64 (дд, ${}^{3}J$ = 7.7, ${}^{4}J$ = 1.4, 1H, H-5), 7.70–7.75 (м, 2H), 7.90 (д, ${}^{3}J$ = 7.9, 1H), 8.02 (д, ${}^{3}J$ = 8.4, 1H), 8.23 (д, ${}^{3}J$ = 2.2, 1H, NH), 8.31 (d, ${}^{3}J$ = 8.5, 1H). C₁₇H₁₃N₃O (275.31).

Стадия 2. Следуя описанной ранее методике.[132] 2,3-Дихлоро-5,6-дициано-1,4бензохинон (DDQ) (1.00 г, 4.4 ммоль) добавляли к суспензии соответствующего интермедиата **42а,b** (2.8 ммоль) в безводном ацетонитриле (42 мл). Смесь кипятили 2 часа, после охлаждения осадок отфильтровывали и перекристаллизовывали из этанола.

2-(Пиридин-2-ил)хиназолин-4(3*H***)-он (43а)**. Выход 89 %, Тпл 170–172 °С (лит. Тпл 169–171 °С

 $\begin{array}{l} \begin{array}{l} & (158]). \ \mbox{MMP} \ ^1\mbox{H} \ (400 \ \mbox{M}\mbox{Γu}, \ \mbox{$Д$MCO-d}_6), \ \mbox{δ: } \ \mbox{7.56} \ (\mbox{t, } \ ^3\mbox{J} = \ \mbox{7.4}, \ \mbox{1H}, \ \mbox{H-6}), \ \mbox{7.63} \ (\mbox{m, $1H}, \ \mbox{H-5}), \ \mbox{7.77} \ (\mbox{m, $1H, H-5$)}, \ \mbox{7.83} \ (\mbox{m, $1H, H-7$)}, \ \mbox{8.06} \ (\mbox{t, $^3\mbox{J} = \ \mbox{7.7}, \ \mbox{1H}, \ \mbox{H-4}'), \ \mbox{8.20} \ (\mbox{m, $3J = \ \mbox{8.20}, \ \mbox{M}, \ \mbox{1H}, \ \mbox{H-4}'), \ \mbox{8.20} \ (\mbox{m, $3J = \ \mbox{8.20}, \ \mbox{M}, \ \mbox{1H}, \ \mbox{H-4}'), \ \mbox{8.20} \ \mbox{(m, $3J = \ \mbox{8.20}, \ \mbox{M}, \ \mbox{1H}, \ \mbox{H-4}'), \ \mbox{8.20} \ \mbox{(m, $3J = \ \mbox{8.20}, \ \mbox{M}, \ \mbox{1H}, \ \mbox{H-4}'), \ \mbox{8.20} \ \mbox{(m, $3J = \ \mbox{8.20}, \ \mbox{M}, \ \mbox{1H}, \ \mbox{H-4}'), \ \mbox{8.20} \ \mbox{(m, $3J = \ \mbox{8.20}, \ \mbox{M}, \ \mbox{1H}, \ \mbox{H-4}'), \ \mbox{8.20} \ \mbox{(m, $3J = \ \mbox{8.20}, \ \mbox{M}, \ \mbox{M}, \ \mbox{H-4}, \ \mbox{M}, \ \m$

C₁₃H₉N₃O (223.24).

2-(Хинолин-2-ил)хиназолин-4(3*H***)-он (43b)**. Выход 86 %, Т_{пл} 210–212 °С (лит. Т_{пл} 229–231 °С [159]). ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.55 (м, 1H, H-6), 7.67 (м, 1H, H-6'), 7.82– 7.86 (м, 3H, H-7, H-7', H-5), 8.01 (д, ³J = 8.1, 1H, H-5'), 8.22–8.25 (м, 2H, H-8, H-8'), 8.53 (д, ³J = 8.3, 1H, H-4'), 8.61 (д, ³J = 8.4, 1H, H-3'), 11.59 (с, 1H, NH). C₁₇H₁₁N₃O (273.30).

4-Бромхиназолины 44а, b синтезировали аналогично хиназолинам 39.

4-Бром-2-(пиридин-2-ил)хиназолин (44а). Реакционную смесь нагревали в течение 24 часов. После охлаждения осадок отфильтровывали и экстрагировали CHCl₃ (2×50 мл). Экстракт промывали водой (2×50 мл) и сушили над Na₂SO₄. После упаривания растворителя остаток промывали насыщенным раствором NaHCO₃ и высушивали.

Выход 53%, Т_{пл} 135–137 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.51 (ддд, ³J = 7.5, ³J = 4.7, ⁴J = 1.0, 1H, H-5'), 7.85 (м, 1H, H-6), 7.96 (дт, ³J = 7.7, ⁴J = 1.7, 1H, H-4'), 8.09 (м, 1H, H-7), 8.13 (м, 1H, H-5), 8.24 (дд, ³J = 8.3, ⁴J = 0.7, 1H, H-8), 8.55 (д, ³J = 7.9, 1H, H-3'), 8.79 (д, ³J = 4.7, 1H, H-6'). Масс-спектр (EI), m/z (I_{отн}, %): 287 [M+2]⁺ (29), 285 [M]⁺ (29), 207 (15), 206 [M-Br]⁺ (94), 102 (15), 78 (100), 76 (13), 75 (16), 51 (28). C₁₃H₈BrN₃ (286.13).

4-Бром-2-(хинолин-2-ил)хиназолин (44b). Выделение аналогично **44a**. Выход 49 %, Т_{пл} 143– ^{Br} 145 °C. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.67 (т, ³J = 7.5, 1H), 7.83 (т, ³J = 7.5, 1H, H-6), 7.90 (т, ³J = 7.6, 1H, H-7'), 8.03 (д, ³J = 8.0, 1H, H-5'), 8.15 (м, 1H, H-7), 8.21– 8.29 (м, 3H, H-8, H-5, H-8'), 8.51 (д, ³J = 8.6, 1H, H-4'), 8.67 (д, ³J = 8.6, 1H, H-3'). Масс-спектр (ЕІ), m/z (І_{отн}, %): 337 [M+2]⁺ (27), 335 [M]⁺ (27), 257 (16), 256 [M-

Br]⁺ (76), 129 (10), 128 (100), 102 (14), 101 (23), 75 (12). C₁₇H₁₀BrN₃ (336.19).

Продукты **45** и **46а-с** синтезировали из соответствующего 4-бромхиназолина **44а,b**, аналогично хиназолинам **8а-h**. Выделение: после охлаждения, к реакционной массе добавляли воду и EtOAc (по 10 мл), органический слой отделяли. Водный слой экстрагировали дополни-

тельным количеством EtOAc (2×10 мл). Органические фракции соединяли и сушили над MgSO₄. Растворитель упаривали.

4-(4-Дифениламинофенил)-2-(пиридин-2-ил)хиназолин (45). Продукт очищали колоночной

хроматографией (SiO₂, элюент CH₂Cl₂, затем градиентно: гексан/EtOAc (9/1) \rightarrow EtOAc). Выход 20 %, Т_{пл.} 215–217 °C. ЯМР ¹Н (600 МГц, CDCl₃), δ : 7.12 (м, 2H, 2 Ph), 7.22–7.24 (м, 6H, H-3'', H-5'', 4 Ph), 7.32–7.34 (м, 4H, 4 Ph), 7.41 (ддд, ³J = 7.5, ³J = 4.6, ⁴J = 1.1, 1H, H-5'), 7.62 (м, 1H, H-6), 7.82 (м, 2H, H-2'', H-6''), 8.89– 8.93 (м, 2H, H-7, H-4'), 8.28 (д, ³J = 8.5, 1H, H-5), 8.35 (д, ³J = 8.5, 1H, H-8), 8.76

(д, ³J = 8.0, 1H, H-3'), 8.93 (м, 1H, H-6'). ЯМР ¹³С (100 МГц, CDCl₃), δ: 121.9, 122.3, 124.0, 124.5, 124.7, 125.5, 127.2, 127.8, 129.6, 130.1, 130.5, 131.7, 133.7, 137.1, 147.3, 150.1, 150.3, 152.3, 155.6, 159.1, 168.2. Масс-спектр (EI), m/z (I_{отн}, %): 451 [M+1]⁺ (32), 450 [M]⁺ (100), 449 (71), 371 (10), 283 (15), 282 (67), 224 (14), 78 (17). С₃₁H₂₂N₄ (450.55). Вычислено, %: С 82.64, H 4.92, N 12.44; найдено, %: С 82.63, H 4.95, N 12.45.

4-(4-Диэтиламинофенил)-2-(хинолин-2-ил)хиназолин (46а). Продукт очищали колоночной

хроматографией (SiO₂, CH₂Cl₂, затем гексан/EtOAc (9/1)). Выход 28 %, T_{пл} = 80–82 °C. ЯМР ¹H (400 МГц, CDCl₃), δ: 1.26 (т, ³J = 7.0, 6H, 2(CH₃)), 3.48 (кв, 4H, ³J = 7.0, 2(CH₂)), 6.86 (д, ³J = 8.3, 2H, H-3", H-5"), 7.59 (м, 2H), 7.76 (м, 1H), 7.88 (м, 2H), 7.95 (д, ³J = 8.3, 2H, H-2", H-6"), 8.35 (м, 3H), 8.46 (д, ³J = 8.4, 1H, H-4"), 8.91 (д, ³J = 8.5, 1H, H-3"). ЯМР ¹H (400 МГц, CF₃COOD), δ: 1.30 (м, 6H, 2(CH₃)), 3.75 (м, 2H, NCH₂), 3.86 (м, 2H, NCH₂), 7.78 (м, 1H), 7.86 (м, 2H, H-3",

H-5''), 7.97 (м, 1H), 8.1–8.2 (м, 5H), 8.27 (м, 1H), 8.34 (м, 1H), 8.4–8.5 (м, 1H), 9.15–9.28 (м, 2H, H-3', H-4'). ЯМР ¹³С (100 МГц, CDCl₃), δ: 12.8, 44.7, 111.3, 121.8, 122.3, 124.1, 127.3, 127.5, 128.7, 129.5, 130.1, 131.1, 132.5, 133.3, 136.9, 148.5, 149.6, 152.5, 156.1, 159.2, 168.5. Масс-спектр (EI), m/z (I_{отн}, %): 405 [M+1]⁺ (27), 404 [M]⁺ (87), 403 (37), 390 (31), 389 [M-CH₃]⁺ (100), 361 (22), 359 (18), 333 (11), 332 (31), 194 (22), 180 (14), 128 (27). C₂₇H₂₄N₄ (404.52). Вычислено, %: C 80.17, H 5.98, N 13.85; найдено: C 80.16, H 5.96, N 13.86.

4-(4-Дифениламинофенил)-2-(хинолин-2-ил)хиназолин (46b). Продукт очищали колоночной хроматографией (SiO₂, CH₂Cl₂ затем гексан/EtOAc (9/1)). Выход 41 %, T_{пл} = 150– 152 °C. ЯМР ¹H (400 МГц, CDCl₃), δ: 7.12 (м, 2H, 2 Ph), 7.23–7.26 (м, 6H, H-3", H-5", 4 Ph), 7.32–7.36 (м, 4H, 4 Ph), 7.58–7.67 (м, 2H), 7.77 (м, 1H), 7.88–7.96 (м, 4H, H-2", H-6", 2 Ar), 8.31–8.40 (м, 3H), 8.45 (д, ³J = 8.3, 1H), 8.88 (д, ³J = 8.5, 1H, H-3"). ЯМР ¹H (400 МГц, CF₃COOD), δ: 7.07 (м, 2H, H-3", H-5"), 7.22–7.27 (м,

6H), 7.34–7.40 (м, 4H, Ph), 7.95–7.99 (м, 1H), 8.03–8.08 (м, 3H), 8.18–8.24 (м, 2H), 8.26–8.29 (м, 1H), 8.34–8.36 (м, 1H), 8.50–8.53 (м, 2H), 9.02 (д, ³J = 8.4, 1H, H-3'), 9.38 (д, ³J = 8.4, 1H, H-3'). ЯМР ¹³С (100 МГц, CDCl₃), δ: 121.7, 121.9, 122.3, 124.1, 125.6, 127.2, 127.5, 127.6, 128.0, 129.7,

129.7, 130.3, 130.4, 131.1, 131.9, 133.7, 137.2, 147.3, 148.4, 150.2, 152.4, 155.7, 159.2, 168.3. Массспектр (EI), m/z (I_{отн}, %): 501 [M+1]⁺ (35), 500 [M]⁺ (100), 499 (70), 333 (14), 332 (54), 250 (22), 249 (11). С₃₅H₂₄N₄ (500.61). Вычислено, %: С 83.98, Н 4.83, N 11.19; найдено, %: С 83.97, Н 4.84, N 11.21.

4-(4-(9Н-Карбазол-9-ил)фенил)-2-(хинолин-2-ил)хиназолин (46с). Продукт очищали коло-

ночной хроматографией (SiO₂, элюент – градиентно: гексан/EtOAc (9/1) \rightarrow гексан/EtOAc (3/2)). Выход 17 %, $T_{\Pi\Pi} = 230-232$ °C. ЯМР ¹H (400 МГц, CDCl₃), δ : 7.35 (м, 2H, карбаз.), 7.49 (м, 2H, карбаз.), 7.62 (м, 3H), 7.72–7.82 (м, 2H), 7.87 (д, ³J = 7.6, 2H), 7.92 (д, ³J = 7.8, 1H), 8.03 (т, ³J = 7.7, 1H), 8.19 (д, ³J = 7.8, 2H), 8.24 (д, ³J = 7.9, 2H), 8.36–8.41 (м, 2H), 8.47 (м, 2H), 8.94 (д, ³J = 8.6, 1H, H-3'). ЯМР ¹³C (100 МГц, CDCl₃), δ : 110.0, 120.5, 120.6, 121.7, 122.4, 123.9, 126.3, 127.0,

127.1, 127.6, 127.7, 128.6, 128.8, 129.9, 130.5, 131.1, 132.2, 134.2, 136.4, 137.4, 139.9, 140.8, 148.4, 152.4, 155.4, 159.4, 168.2. Масс-спектр (EI), m/z (Іотн, %): 499 [M+1]⁺ (32), 498 [M]⁺ (100), 497 (77), 333 (16), 332 (66), 331 (11), 249 (34), 241 (11), 128 (38), 101 (11). С₃₅H₂₂N₄ (498.59). Вычислено, %: С 84.32, H 4.45, N 11.24; найдено, %: С 84.33, H 4.47, N 11.23.

2,3-Бис(тиофен-2-ил)хиноксалин (49) был синтезирован из о-фенилендиамина 47 и 2,2'-

тенила **48** согласно методике.[143] $T_{пл}$ 147–149 °С (лит. $T_{пл}$ 147.7–148.1 °С [143]). ЯМР ¹H (400 МГц, ДМСО-d₆), δ : 7.04 (м, 2H, 2(H-4')), 7.22 (д, ³J = 3.7, 2H, 2(H-3')), 7.62 (д, ³J = 4.7, 2H, 2(H-5')), 7.75 (м, 2H, H-6, H-7), 7.80 (м, 2H, H-5, H-8).

 $C_{16}H_{10}N_2S_2\ (294.39).$

2,3-Бис(5-бромтиофен-2-ил)хиноксалин (50) синтезировали аналогично синтезу бромхиназо-

лина 7. Соотношение хиноксалина 49 и NBS: 1.49/3.46 ммоль. Выход 85 %, Т_{пл} 135–137 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 7.01 (д, ³J = 3.6, 2H, 2(H-4['])), 7.11 (д, ³J = 3.6, 2H, 2(H-3['])), 7.72 (м, 2H, H-6, H-7), 8.02 (м, 2H, H-5, H-8). Масс-спектр (EI),
m/z (I_{отн}, %): 454 [M+4]⁺ (57), 452 [M+2]⁺ (98), 450 [M]⁺ (49), 373 [M-Br+2]⁺ (44),

372 (19), 371 [M-Br]⁺ (40), 293 (22), 292 [M-2Br]⁺ (100), 291 (20), 265 (12), 189 (22), 184 (81), 265 (13), 147 (13), 146 (88), 140 (83), 124 (18), 108 (11), 102 (23), 94 (12), 82 (23), 76 (53), 75 (25), 69 (17), 64 (14), 51 (14), 50 (43), 45 (15). C₁₆H₈BrN₂S₂ (452.18).

Продукты **51а-d** синтезировали из **2,3-бис(5-бромтиофен-2-ил)хиноксалина 50**, аналогично хиназолинам **8а-h**. Соотношение хиноксалина **50** и бороновой кислоты/эфира бороновой кислоты: 0.16/0.40 ммоль. После охлаждения продукт отфильтровывали или выделяли из раствора.

2,3-Бис(5-(4-диэтиламинофенил)тиофен-2-ил)хиноксалин (51а). После охлаждения реакци-

онной массы органический слой отделяли на делительной воронке, промывали насыщенным раствором K₂CO₃ (10 мл), затем насыщенным раствором NH₄Cl (10 мл) и сушили над Na₂SO₄. Раствор полностью упаривали под вакуумом и остаток промывали гексаном (10 мл). Продукт очищали колоночной хроматографией (SiO₂, гексан/EtOAc (1/1)). Выход 26 %, $T_{пл}$ 142–145 °C. ЯМР ¹H (400 МГц, CDCl₃), δ: 1.23 (т, ³J = 7.1, 12H, 4(CH₃)), 3.40 (кв, ³J = 7.1, 8H, 4(CH₂)), 6.69 (д, ³J = 8.3, 4H, 2(H-3^{**}), 2(H-5^{**})), 7.06 (д, ³J = 3.8, 2H, 2(H-4^{*})),

7.35 (д, ³J = 3.8, 2H, 2(H-3')), 7.55 (д, ³J = 8.3, 4H, 2(H-2''), 2(H-6'')), 7.65 (м, 2H, H-6, H-7), 8.03 (м, 2H, H-5, H-8). ЯМР ¹³С (100 МГц, CDCl₃), δ: 12.9, 47.7, 112.9, 123.5, 127.7, 128.8, 130.7, 131.9, 137.8, 139.5, 146.5, 149.8. Масс-спектр (EI), m/z (І_{отн}, %): 590 [M+2]⁺ (19), 589 [M+1]⁺ (41), 588 [M]⁺ (100), 574 (10), 573 [M-CH3]⁺ (22), 544 (11), 294 (13), 287 (17), 280 (11), 279 (51), 265 (13), 251 (14), 44 (14). С₃₆H₃₆N₄S₂ (588.83). Вычислено, %: С 73.43, H 6.16, N 9.51; найдено, %: С 73.72, H 5.95, N 9.59.

2,3-Бис(5-(4-дифениламинофенил)тиофен-2-ил)хиноксалин (51b). Продукт выделяли анало-

^{№ h2} гично **51а**. Выход 20 %, Т_{пл} 297–300 °С. ЯМР ¹Н (400 МГц, CDCl₃), δ: 7.03– 7.17 (м, 18H), 7.26–7.31 (м, 8H), 7.34 (д, ³J = 3.9, 2H, 2(H-3')), 7.55 (д, ³J = 8.3, 4H, 2(H-2''), 2(H-6'')), 7.69 (м, 2H, H-6, H-7), 8.05 (м, 2H, H-5, H-8). ЯМР ¹³С (100 МГц, CDCl₃), δ: 123.5, 124.4, 126.6, 128.3, 128.7, 129.4, 129.5, 139.8, 140.3, 146.9, 147.4. Масс-спектр (EI), m/z (І_{отн}, %): 780 [M]⁺ (0.03), 279 (12), 261 (26), 167 (31), 150 (12), 149 (100), 113 (16), 112 (10), 97 (11), 85 (11), 83 (19), 71 (41), 70 (30), 69 (19), 57 (63), 56 (13), 55 (29), 43 (48), 41 (31). C₅₂H₃₆N₄S₂ (781.01).

Вычислено, %: С 79.97, Н 4.65, N 7.17; найдено, %: С 79.75, Н 4.69, N 7.15.

2,3-Бис(5-(9-этил-9Н-карбазол-3-ил)тиофен-2-ил)хиноксалин (51с). Реакцию проводили при

80 °С в автоклаве в течение 18 часов. Продукт очищали аналогично **5а**. Выход 73 %, Т_{пл} 280–282 °С. ЯМР ¹Н (400 МГц, CDCl₃), δ: 1.47 (т, ³J = 7.1, 6H, 2(CH₃)), 4.40 (кв, ³J = 7.1, 4H, 2(CH₂)), 7.27 (м, 2H, карбазол), 7.31 (д, ³J = 3.9, 2H, 2(H-4')), 7.43 (м, 4H, карбазол), 7.47–7.52 (м, 4H, 2 тиофен, 2 карбазол), 7.71 (м, 2H, H-6, H-7), 7.83 (дд, ³J = 8.0, ⁴J = 1.7, 2H, 2 (H-2'')), 8.09 (м, 2H, H-5, H-8), 8.15 (д, ³J = 8.0, 2H, 2(H-1'')), 8.44 (д, ⁴J = 1.7, 2H, 2(H-4'')). ЯМР ¹³С (100 МГц, CDCl₃), δ: 13.9, 37.7, 106.7, 106.9, 118.1, 119.3, 120.7, 122.5, 122.9, 123.5, 124.2, 125.2, 126.1, 128.8, 129.8, 130.7, 139.6, 139.9, 140.5, 140.6, 146.6, 149.5. Масс-спектр (EI), m/z (Іотн, %): 680 [M]⁺ (11), 64 (37), 55 (10), 48 (20), 44 (100), 43 (24), 41 (15), 40 (10). C44H32N4S2 (680.89). Вычислено, %: С 77.62, Н 4.74, N 8.23; найдено, %: С 77.57, Н 4.81, N 8.18.

2,3-Бис(5-(4-(9Н-карбазол-9-ил)фенил)тиофен-2-ил)хиноксалин (51d). После охлаждения

реакционной массы образовавшийся осадок отфильтровывали и промывали гексаном. Выход 41 %, Тлл 297-300 °С. ЯМР ¹Н (400 МГц, CDCl₃), δ: 7.31 (м, 4H, карбазол), 7.38 (д, ³J = 3.9, 2H, 2(H-4')), 7.41–7.50 (м, 10H), 7.65 (д, ³J = 8.2, 4H, 2(H-2''), 2(H-6'')), 7.76 (м, 2H, H-6, H-7), 7.94, (д, ³J = 8.2, 4H, 2(H-3''), 2(H-5'')), 8.12 (м, 2H, H-5, H-8), 8.16 (д, ³J = 7.7, 4H, 2(H-4'''), 2(H-5^{'''})). ЯМР ¹³С (100 МГц, CDCl₃), δ: 109.8, 120.2, 120.4, 123.6, 124.1, 126.1, 127.3, 127.5, 128.9, 130.3, 130.7, 132.9, 137.6, 140.7, 141.3, 146.2, 146.8. Масс-спектр (EI), m/z (Іотн, %): 537 (16), 536 (39), 535 [M-C₁₈H₁₂N]⁺ (100), 534 (13), 350 (17), 267 (18), 76 (11), 44 (36), 43 (11). C52H32N4S2 (776.98).

Вычислено, %: C 80.38, H 4.15, N 7.21; найдено, %: C 80.12, H 4.18, N 7.19.

Фенантрен-9,10-диамин (52) синтезировали в две стадии из фенантрен-9,10-диона 51 согласно NH₂ NH₂

описанным методикам.[160,161] Т_{пл} 165–167 °С (лит. Т_{пл} 160 °С [162]). Масс-спектр (EI), m/z (I_{OTH}, %): 210 [M+2]⁺ (13), 209 [M+1]⁺ (91), 208 [M]⁺ (71), 207 (14), 181 (15), 180 (100), 152 (18), 104 (14), 90 (22), 77 (22), 36 (15). C₁₄H₁₂N₂ (208.26).

1,2-Бис(5-бромотиофен-2-ил)этан-1,2-дион (53) получали из 2,2'-тенила 48 согласно описанной методике.[163] Тпл 119–121 °С (лит. Тпл 138 °С [163]).

2,3-Бис(5-бромтиофен-2-ил)дибензо[*f,h*]хиноксалин (54). К суспензии 1,2-бис(5-бромтиофен-

2-ил)этан-1,2-диона 53 (0.13 г, 0.34 ммоль) в EtOH (11 мл) добавляли фенантрен-9.10-диамин 52 (0.071 г, 0.34 ммоль). Реакционную смесь перемешивали при 75 °C в течение 5 ч, затем выпавший осадок отфильтровывали горячим, осадок промыли горячим этанолом (2 мл). Выход 85 %, Т_{пл} 229–231 °C. ЯМР ¹Н

(400 МГц, DMSO-d₆), δ: 7.17 (д, ³J = 3.8, 2H, 2(H-4')), 7.36 (д, ³J = 3.8, 2H, 2(H-3')), 7.75 (м, 2H), 7.83 (м, 2Н), 8.73 (д, ³J = 8.0, 2Н), 9.02 (д, ³J = 8.0, 2Н). Масс-спектр (ЕІ), m/z (І_{отн}, %): 555 $[M+5]^+$ (16), 554 $[M+4]^+$ (58), 553 $[M+3]^+$ (31), 552 $[M+2]^+$ (100), 551 $[M+1]^+$ (20), 550 $[M]^+$ (49), 473 (19), 472 (17), 471 [M-Br]⁺ (23), 470 (11), 393 (14), 392 [M-2Br]⁺ (40), 391 (27), 196 (35), 176 (56), 175 (13), 174 (12), 150 (13). С24H12Br2N2S2 (552.30). Вычислено, %: С 52.19, Н 2.19, N 5.07; найдено, %: С 52.01, Н 2.23, N 4.99.

Продукты 55a-d 2,3-бис(5-бромтиофен-2синтезировали ИЗ ил)дибензо[*f*,*h*]хиноксалина 54 аналогично хиноксалинам 51а-с.

2,3-Бис(5-(4-диэтиламинофенил)тиофен-2-ил)дибензо[f,h]хиноксалин (55а). После охлажде-

ния реакционной массы органический слой отделяли на делительной воронке, промывали его насыщенным раствором K₂CO₃ (8 мл), затем насыщенным раствором NH₄Cl (8 мл), сушили над Na₂SO₄. Раствор упаривали под вакуумом, остаток промывали горячим гексаном (10 мл). Выход 39 %, Т_{пл} 205–207 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 1.22 (т, ³J = 7.0, 12H, 4(CH₃)), 3.42 (кв, ³J = 7.0, 8H, 4(CH₂)), 6.72 (д, ³J = 7.9, 4H, 2(H-3^{''}), 2(H-5^{''})), 7.11 (д, ³J = 3.4, 2H, 2(H-4['])), 7.57–7.62 (м, 6H, 2(H-3[']), 2(H-2^{''}), 2(H-6^{''})), 7.76 (м, 4H), 8.61 (м,

2H), 9.23 (м, 2H). ЯМР ¹³С (100 МГц, CDCl₃), δ: 12.8 (CH₃), 44.6 (CH₂), 111.9, 121.2, 121.7, 122.8, 125.7, 127.3, 127.7, 129.2, 129.9, 131.5, 137.8, 139.3, 144.6, 147.8, 149.0. Масс-спектр (ESI), m/z (І_{отн}, %): 691 [M+2]⁺ (19), 690 [M+1]⁺ (41), 689 [M]⁺ (100), 542 (9), 517 (20). С₄₄H₄₀N₄S₂ (688.95. Вычислено, %: С 76.71, H 5.85, N 8.13; найдено, %: С 76.68, H 5.92, N 8.11.

2,3-Бис(5-(4-дифениламинофенил)тиофен-2-ил)дибезо[f,h]хиноксалин (55b). Продукт выде-

ляли аналогично **55а**, очищали с помощью колоночной хроматографии (SiO₂, элюент CHCl₃). Выход 27 %, Т_{пл} 270–272 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 7.05–7.17 (м, 16H), 7.20 (д, ³J = 3.4, 2H, 2(H-4')), 7.27–7.31 (м, 8H), 7.55 (д, ³J = 3.4, 2H, 2(H-3')), 7.60 (д, ³J = 7.8, 4H, 2(H-2''), 2(H-6'')), 7.76 (м, 4H, H-6, H-7, H-10, H-11), 8.61 (м, 2H), 9.22 (м, 2H). ЯМР ¹³С (100 МГц, CDCl₃), δ: 122.9, 123.4, 123.6, 124.9, 125.8, 126.9, 127.8, 128.2, 129.5, 129.5, 129.7, 129.9, 131.7, 138.2, 140.9, 144.3, 147.6, 147.7, 147.9. Масс-спектр (ESI),

m/z (І_{отн}, %): 883 [M+2]⁺ (29), 882 [M+1]⁺ (66), 881 [M]+ (100), 636 (6), 102 (28). С₆₀Н₄₀N₄S₂ (881.13). Вычислено,%: С 81.79, Н 4.58, N 6.36; найдено, %: С 81.73, Н 4.62, N 6.34.

2,3-Бис(5-(4-(9*H*-карбазол-9-ил)фенил)тиофен-2-ил)дибензо[*f*,*h*]хиноксалин (55с).

охлаждения реакционной массы, образовавшийся осадок отфильтровывали. Продукт экстрагировали CHCl₃ (2×30 мл) очищали с колоночной хроматографией (SiO₂, элюент CHCl₃). Выход 34 %, T_{пл} > 300 °C. ЯМР ¹Н (400 МГц, DMSO-d₆), δ: 7.32 (м, 4H), 7.43–7.47 (м, 6H), 7.51 (д, ³J = 8.3, 4H), 7.67 (м, 6H), 7.78–7.83 (м, 4H), 8.00 (д, ³J = 7.8, 4H), 8.17 (д, ³J = 8.0, 4H), 8.65 (д, ³J = 7.4, 2H), 9.27 (д, ³J = 7.4, 2H). ЯМР ¹³С (100 МГц, CDCl₃), δ: 110.2, 120.5, 120.8, 123.3, 123.9, 124.6, 126.1, 126.4, 127.7, 127.9, 128.2, 129.8, 130.0, 130.2, 132.1, 133.5, 137.8, 138.8, 141.1, 142.6, 144.3, 147.0. Масс-спектр (ESI), m/z (І_{отн}, %): 879 [M+2]⁺ (29), 878 [M+1]⁺ (69), 877

После

[M]⁺ (100), 718 (15), 717 (41), 716 (89), 715 (37), 714 (74), 637 (23), 636 (50), 577 (16), 381 (19). С₆₀H₃₆N₄S₂ (877.10). Вычислено, %: С 82.16, Н 4.14, N 6.14; найдено, %: С 82.11, Н 4.19, N 6.09.

2,3-Бис(тиофен-2-ил)дибензо[*f,h***]хиноксалин (56)**. К суспензии 2,2'-тенила **48** (0.38 г, 1.7 ммоль), в ЕtOH (34 мл) добавили фенантрен-9,10-диамин **52** (0.36 г, 1.7 ммоль), реакционную смесь кипятили в течение 7 ч. После охлаждения, образовавшийся осадок отфильтровывали и промывали этанолом (4 мл). Выход 56 %, Т_{пл} 220–222 °C. ЯМР ¹H (100 МГц, CDCl₃), δ: 7.13 (дд, ³J = 3.8, ³J = 3.7, 2H, 2(H-5')), 7.40 (дд, ³J = 3.7, ³J = 0.9, 2H, 2(H-3')), 7.74–7.80 (м, 4H), 7.84 (м, 2H), 8.77 (д, ³J = 8.0, 2H), 9.08 (дд, ³J = 8.0, ⁴J = 1.0, 2H). Масс-спектр (EI), m/z (І_{отн}, %): 396 [M+2]⁺ (12), 395 [M+1]⁺ (31), 394 [M]⁺ (100), 393 (53), 197 (12). 176 (40), 175 (13). С₂₄H₁₄N₂S₂ (394). Вычислено, %: С 73.07, H 3.58, N 7.10; найдено, %: С 72.91, H 3.63, N 7.08.

Хиназолин-4(3H)-оны **59а,b** получали в две стадии аналогично синтезу хиназолинона **4**. В качестве интермедиатов были выделены **2-(5-гексилтиофен-2-ил)-2,3-дигидрохиназолин-4(1***H***)-он 58а** или **2-(бензо[***b***]тиофен-2-илметиленамино)бензамид 58**b.

2-(5-Гексилтиофен-2-ил)-2,3-дигидрохиназолин-4(1H)-он (58а). После охлаждения реакци-

O NH NH S C₆H

онной массы растворитель полностью упаривали, остаток промывали этанолом (5 мл). Выход 82 %, Т_{пл} 165–167 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 0.88 ³ (м, 3H, CH₃), 1.30 (м, 6H, 2CH₂), 1.59 (м, 2H, CH₂), 2.72 (т, ³J = 7.5, 2H, CH₂),

5.89 (с, 1Н, H-2), 6.61 (м, 1Н, H-4'), 6.67 (м, 1Н, бензо), 6.73 (д, ³J = 7.7, 1Н, бензо), 6.88 (д, ³J = 3.9, 1Н, H-3'), 7.05 (уш с, 1Н, NН), 7.21 (м, 1Н, бензо), 7.60 (д, ³J = 7.6, 1Н, бензо), 8.20 (уш с, 1Н, NН). Масс-спектр (ЕІ), m/z (І_{отн}, %): 315 [M+1]⁺ (17), 314 [M]⁺ (63), 313 [M–H]⁺ (100), 281 (30), 229 (11), 147 (48), 121 (12), 120 (95), 119 (18), 97 (30), 92 (30), 65(10). С₁₈H₂₂N₂OS (314.45). **2-(Бензо]***b*]**тиофен-2-илметиленамино)бензамид (58b).** После охлаждения реакционной мас-

сы образовавшийся осадок отфильтровывали и промывали ацетонитрилом. Выход 91 %, Т_{пл} 204–206 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.31 (д, ³J = 8.1, 1H), 7.35 (м, 1H), 7.42–7.50 (м, 2H), 7.54 (м, 1H), 7.60 (уш с, 1H, NH₂), 7.98 (м, 2H), 8.09 (м, 2H), 8.38 (уш с, 1H, NH₂), 8.95 (с, 1H, N=CH). Масс-спектр (EI), m/z (І_{отн}, %): 281 [M+1]⁺ (18), 280 [M]⁺ (79), 279 [M–H]⁺ (74), 247 (12), 160 (11), 147 (54), 146 (21), 134 (54), 121 (11), 120 (100), 119 (35), 92 (52), 91 (11), 65 (21), 64 (12), 63 (13). С₁₆H₁₂N₂OS (280.34).

2-(5-Гексилтиофен-2-ил)хиназолин-4(3H)-он (59а). Реакционную массу кипятили 5 часов.

Продукт отфильтровывали и промывали спиртом и гексаном. Выход 80 %, Т_{пл} 175–177 °C. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 0.90 (м, 3H, CH₃), 1.32–1.40 (м, 6H, 2CH₂), 1.69 (м, 2H, CH₂), 2.84 (т, ³J = 7.5, 2H, CH₂), 6.85 (д, ³J = 3.9, H-4^{*},

1H), 7.41 (м, 1H, H-7), 7.57 (д, ³J = 7.7, 1H, H-5), 7.74 (м, 1H, H-6), 8.01 (д, ³J = 3.9, 1H, H-3'), 8.09 (д, ³J = 8.2, 1H, H-8), 12.44 (с, 1H, NH). Масс-спектр (EI), m/z (I_{отн}, %): 313 [M+1]⁺ (14), 312 [M]⁺ (65), 242 (25), 241 [M–C5H₁₁]⁺ (100). C₁₈H₂₀N₂OS (312.43).

2-(Бензо[b]тиофен-2-ил)хиназолин-4(3H)-он (59b). В качестве растворителя использовали

метанол. Реакционную массу перемешивали при комнатной температуре 11 часов. После охлаждения хиназолинон отфильтровывали, перекристаллизовывали из ДМСО. Выход 50 %, $T_{пл} > 300$ °C. ЯМР ¹H (400 МГц, ДМСО-d₆), δ: 7.43–7.48 (м, 3H, H-7, H-5', H-6'), 7.69 (д, ³J = 8.2, 1H, H-5), 7.79 (м, 1H, H-6), 7.91 (дд, ³J = 6.7, ⁴J = 1.4, 1H, H-4' или H-7'), 7.95 (д, ³J = 7.4, 1H, H-4', H-7'), 8.15 (дд, ³J = 7.9, ⁴J = 1.3, 1H, H-8), 8.54 (с, 1H, H-3'), 12.80 (уш с, 1H, NH). Масс-спектр (ЕІ), m/z (Іотн, %): 279 [M+1]⁺ (20), 278 [M]⁺ (84), 159 (13), 150 (27), 133 (10), 120 (11), 119 (64), 105 (18), 104 (51), 103 (14), 92 (26), 91 (100), 90 (21), 89 (29), 79 (10), 78 (17), 79 (23), 51 (21), 50 (12), 45 (74), 43 (80), 42 (15), 39 (20). C₁₆H₁₀N₂OS (278.33).

Общая методика синтеза соединений **60а-d** аналогична описанной процедуре.[63] К суспензии соответствующего хиназолинона **4**, **13** или **59а,b** (0.90 ммоль) в HFIP (3 мл) добавили дифенилацетилен (0.19 г, 1.08 ммоль), [RhCp*Cl₂]₂ (22 мг, 36 мкмоль) и CsOAc (0,05 г, 0,27 ммоль). Смесь перемешивали при 70 °C в течение 12 часов в стеклянном автоклаве.

4,5-Дифенил-7*H***-тиено[2',3':3,4]пиридо[2,1-b]хиназолин-7-он (60а).** Реакционную смесь охлаждали и добавляли ацетон (2 мл), образовавшийся осадок отфильтровывали, промывали ацетоном (1 мл) и гексаном (1 мл). Выход 33 %, Т_{пл} 262–264 °С (лит. Т_{пл} 250–251 °С [58]). ЯМР ¹Н (400 МГц, CDCl₃), δ: 6.90 (д, ³J = 5.2, H-3, 1H), 7.08 (м, Ph, 4H), 7.16 (м, Ph, 3H), 7.23 (м, Ph, 3H), 7.36 (м, H-10, 1H), 7.66 (д, ³J = 5.2, 1H, H-2), 7.79 (м, 2H, H-8, H-9), 8.17 (д, ³J = 8.0, 1H, H-11). ЯМР ¹³С (100 МГц, DMSO-d₆), δ: 118.8, 124.8, 124.9, 124.9, 125.7, 126.6, 126.7, 126.8, 127.2, 127.9, 128.8, 130.1, 131.9, 134.7, 134.7, 135.6, 136.0, 136.3, 141.8, 144.8, 146.8, 160.2. Масс-спектр (EI), m/z (І_{отн}, %): 405 [M+1]+ (31), 404 [M]+ (100), 403 (30), 375 (12). С₂₆H₁₆N₂OS (404.49). Вычислено, %: С 77.20, Н 3.99, N 6.93; найдено, %: С 77.18, H 4.02, N, 6.92.

4,5-Дифенил-7*H***-2-бромтиено[2',3':3,4]пиридо[2,1-***b***]хиназолин-7-он (60b). Реакционную массу выдерживали 14 часов. После охлаждения осадок отфильтровывали, промывали ацетоном (1 мл) и гексаном (1 мл). Продукт экстаргировали CHCl₃ и очищали колоночной хроматографией (SiO₂, градиентно от гексана до смеси гек-**

^{Br} сан/ЕtOAc (1/1). Выход 30 %, Т_{пл} 265–266 °С. ЯМР ¹Н (400 МГц, CDCl₃), δ: 6.86 (с, 1H, H-3), 7.03–7.08 (м, 4H, Ph), 7.16–7.18 (м, 3H, Ph), 7.25 (3H, м, Ph), 7.34–7.38 (м, 1H, H-10), 7.77 (м, 2H, H-8, H-9), 8.15 (д, ³J = 8.0, 1H, H-11). ЯМР ¹³С (100 МГц, CDCl₃), δ: 119.5, 121.9, 124.7, 125.2, 126.2, 127.4, 127.6, 127.7, 128.3, 128.3, 128.8, 130.4, 133.9, 134.8, 135.6, 136.2, 137.1, 142.2, 144.1, 147.5, 161.1. Масс-спектр (EI), m/z (І_{отн}, %): 485 [M+3]⁺ (29), 484 [M+2]⁺ (100), 483 [M+1]⁺ (50), 482 [M]⁺ (95), 481 (22), 201 (29), 194 (16). C₂₆H₁₅BrN₂OS (483.38). Вычислено, %: C 64.60, H 3.13, N 5.80; найдено, %: C 77.18, H 4.02, N 6.92.

4,5-Дифенил-7Н-2-гексилтиено[2',3':3,4]пиридо[2,1-b]хиназолин-7-он (60с). Реакционную

массу охлаждали и частично упаривали, добавляли ацетон (2 мл), сформировавшийся осадок отфильтровывали, промывали ацетоном (1 мл) и гексаном (1 мл). Продукт очищали колоночной хроматографией (SiO₂, градиентно от гек-

сана до гексан/ЕtOAc (1/1)). Выход 30 %, Т_{пл} 150–152 °С. ЯМР ¹Н (400 МГц, CDCl₃), δ: 0.88 (т, ³J = 6.1, 3H, CH₃), 1.30 (м, 4H, 2(CH₂)), 1.38 (м, 2H, CH₂), 1.72 (м, 2H, CH₂), 2.87 (т, ³J = 7.6, 2H, CH₂), 6.57 (с, 1H, H-3), 7.06 (м, 4H, Ph), 7.16 (м, 3H, Ph), 7.23 (м, 3H, Ph), 7.33 (м, 1H, H-10), 7.76 (м, 2H, H-8, H-9), 8.15 (д, ³J = 8.01, 1H, H-11). ЯМР ¹³С (100 МГц, CDCl₃), δ: 14.2, 22.6, 28.9, 31.1, 31.5, 31.6, 119.2, 122.5, 124.6, 125.6, 126.1, 127.2, 127.3, 127.4, 127.6, 128.1, 128.9, 130.5, 130.9, 134.6, 136.2, 136.4, 136.7, 142.5, 145.2, 147.8, 154.9, 161.4. Масс-спектр (EI), m/z (І_{отн}, %): 490 [M+2]⁺ (11), 489 [M+1]⁺ (36), 488 [M]⁺ (100), 417 [M-C₅H₁₁]⁺ (15), 43 (13). C₃₂H₂₈N₂OS (488.65). Вычислено, %: С 78.66, H 5.78, N 5.73; найдено, %: С 78.63, H 5.80, N 5.72.

6,7-Дифенил-8*H*-бензо[4',5']тиено[2',3':3,4]пиридо[2,1-*b*]хиназолин-8-он (60d). После охлаждения осадок отфильтровывали и промывали ацетоном (1 мл) и гексаном (1 мл). Продукт очищали колоночной хроматографией (SiO₂, элюент – градиентно: гексан → гексан/ЕtOAc (4/1)). Выход 34 %, Т_{пл} > 300 °C. ЯМР ¹Н (400 МГц,

CDCl₃), δ: 6.49 (д, ³J = 8.3, 1H), 7.06 (м, 1H), 7.15–7.20 (м, 7H, Ph), 7.31–7.35 (м, 3H), 7.35–7.42 (м, 2H), 7.80 (м, 1H, H-10), 7.86 (д, ³J = 8.0, 1H, H-9), 7.95 (д, ³J = 8.0, 1H), 8.19 (д, ³J = 8.0, 1H, H-12). ЯМР ¹H (400 МГц, CDCl₃), δ: 119.4, 123.2, 124.9, 125.3, 125.5, 126.2, 126.5, 127.2, 127.4, 127.7, 128.1, 128.5, 129.0, 131.0, 134.8, 135.8, 135.9, 136.0, 136.7, 137.5, 142.9, 145.2, 147.7, 161.0. Масс-спектр (EI), m/z (І_{отн}, %): 456 [M+2]⁺ (11), 455 [M+1]⁺ (36), 454 [M]⁺ (100), 453 (15), 227 (12). С₃₀H₁₈N₂OS (454.55). Вычислено, %: С 79.27, H 3.99, N 6.16; найдено, %: С 79.25, H 3.97, N 6.14.

4,5-Дифенил-7Н-2-(4-дифениламинофенил)тиено[2',3':3,4]-пиридо[2,1-b]хиназолин-7-он 60е

получали по реакции кросс-сочетания из бромпроизводного **60b** и дифениламинофенилбороновой кислоты аналогично синтезу соединений **8a-g**. Реакционную массу перемешивали в стеклянном автоклаве при 85 °C в течение 14 часов в атмосфере аргона. После охлаждения, к реакционной массе добавляли смесь EtOAc/вода (1/1, по 10 мл). Органический слой отделяли, вод-

ный слой экстаргировали дополнительным количеством EtOAc (2×10 мл). Органический экстракт сушили над MgSO₄, растворитель упаривали под вакуумом. Продукт очищали колоночной хроматографией (SiO₂, элюент градиентно: гексан \rightarrow гексан/EtOAc (1/9)). Выход 69 %, Т_{пл} > 280 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 6.93 (c, 1H, H-3), 7.03–7.17 (м, 16H), 7.26 (м, 3H), 7.28–7.33 (м, 4H), 7.50 (д, ³J = 7.9, 2H), 7.78 (м, 2H, H-8, H-9), 8.16 (д, ³J = 8.0, 1H, H-11). Масс-спектр (EI), m/z (I_{отн}, %): 649 [M+2]⁺ (18), 648 [M+1]⁺ (54), 647 [M]⁺ (100), 485 (10), 484 (38), 483 (18),

482 (33), 404 (29), 324 (34), 201 (13), 57 (12). С44H29N3OS (647.80). Вычислено, %: С 81.58, Н 4.51, N 6.49; найдено, %: С 81.56, Н 4.54, N 6.47.

4,5-Дифенил-9,11-дибром-7*H*-бензо[*b*]тиено[2',3':3,4]пиридо-[2,1-*b*]хиазолин-7-он (60f). К

суспензии **60a** (0.12 г, 0.3 ммоль) в ДМФА (3 мл) добавили раствор NBS (0.127 г, 0.72 ммоль) в ДМФА (2 мл). Смесь перемешивали при 80 °С в течение 6 ч. После охлаждения и частичного упаривания, к реакционной массе до-

бавляли воду (3 мл). Сформировавшийся осадок отфильтровывали и промывали гексаном (2 мл). Продукт очищали колоночной хроматографией (SiO₂, гексан/EtOAc (5/1)). Выход 40 %, Т_{пл} = 249–251 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 6.92 (д, ³J = 5.3, 1H, H-3), 7.06 (м, 4H, Ph), 7.16 (м, 3H, Ph), 7.25 (м, 3H, Ph), 7.73 (d, ³J = 5.3, 1H, H-2), 8.15 (д, ⁴J = 2.0, 1H), 8.25 (d, ⁴J = 2.0, 1H). ЯМР ¹Н (100 МГц, CDCl₃), δ: 117.1, 121.1, 122.0, 125.7, 126.6, 127.5, 127.6, 127.7, 128.2, 128.9, 129.5, 130.3, 133.1, 134.2, 135.6, 135.9, 136.4, 140.4, 142.8, 144.2, 145.7, 159.8. Масс-спектр (EI), m/z (І_{отн}, %): 565 [M+5]⁺ (16), 564 [M+4]⁺ (57), 563 [M+3]⁺ (35), 562 [M+2]⁺ (100), 561 [M+1]⁺ (27), 560 [M]⁺ (50), 484 (19), 483 (13), 482 (19), 374 (20), 373 (23), 372 (24), 281 (11), 186 (14), 77 (13). C₂₆H₁₄Br₂N₂OS (562.28). Вычислено, %: C 55.54, H 2.51, N 4.98; найдено, %: C 55.52, H 2.54, N 4.95.

(1,1,1,3,3,3-Гексафторпропан-2-ил)-2-(2,3,7,8-тетрафенил-1*H*-бензо[*d*,*e*][1,8]-нафтиридин-1-

ил)бензоат (62) получали аналогично соединениям 60а-d. Соотношение 2фенилхиназолин-4(3*H*)-она 33а и дифенилацетилена: 1.0/2.2 ммоль. Реакционную массу охлаждали, полностью упаривали. Продукт очищали колоночной хроматографией (SiO₂, элюент – градиентно: гексан/EtOAc → EtOAc). Выход 52 %,

^{Ph} T_{пл} 218–220 °C. ЯМР ¹Н (600 МГц, CDCl₃), δ: 6.01 (м, 1H, CH(CF₃)₂), 6.60 (д, ³J = 7.4, 1H), 6.88– 7.05 (м, 13H), 7.12–7.26 (м, 5H), 7.27–7.32 (м, 5H), 7.39 (м, 1H), 7.43 (м, 1H), 8.01 (дд, ³J = 8.0, ⁴J = 1.5, 1H). ЯМР ¹Н (100 МГц, CDCl₃), δ: 66.9 (м, CH(CF₃)₂), 116.3, 118.6, 119.6, 120.2, 122.3, 125.5, 126.6, 126.8, 126.9, 127.0, 127.6, 127.7, 127.8, 128.0, 128.0, 128.3, 128.9, 130.3, 131.3, 131.5, 131.6, 131.8, 132.8, 134.9, 135.2, 136.6, 137.1, 138.9, 139.5, 140.9, 141.3, 141.7, 149.1, 152.6, 162.6. Спектр ЯМР ¹⁹F (376 МГц, CDCl₃), δ: -73.15 (м), - 72.73 (м). Масс-спектр (EI), m/z (І_{отн}, %): 744 [M+2]⁺ (20), 743 [M+1]⁺ (55), 742 [M]⁺ (75), 741 (10), 549 (19), 548 (63), 547 (100) [M-C(O)OCH(CF₃)₂]⁺, 546 (12), 469 (10), 371 (11), 287 (11), 273 (17), 272 (10), 265 (14), 264 (11), 234 (14), 233 (11), 77 (10). C4₅H₂₈F₆N₂O₂ (742.21). Вычислено, %: C 72.77, H 3.80, N 3.77; найдено, %: C 79.25, H 3.97, N 6.14.

5,6-Дифенил-8Н-изохинолино[1,2-b]хиназолин-8-он (61) был выделен в качестве побочного

продукта в синтезе соединения **62.** Выход < 5 %, $T_{n\pi}$ 240–242 °C (лит. $T_{n\pi}$ 249–250 °C [58]). ЯМР ¹H (400 МГц, CDCl₃), δ : 7.08–7.13 (м, 7H, Ph), 7.19 (д, ³J = 7.7, 1H, H-4), 7.27 (м, Ph, 3H), 7.41 (м, 1H, H-11), 7.57 (м, 1H, H-2 или H-3), 7.64 (м,

1H, 2-Н или 3-Н), 7.82 (м, 1H, H-10), 7.89 (м, 1H, H-9), 8.17 (д, ³J = 7.9, 1H, H-12), 9.13 (д, ³J = 7.9, 1H, H-1). Масс-спектр (EI), m/z (I_{отн}, %): 399 [M+1]⁺ (31), 398 [M]⁺ (100), 397 (38), 381 (11), 369 (14). С₂₈H₁₈N₂O (398.47). Вычислено, %: С 84.40, Н 4.55, N, 7.03; найдено, %: С 84.38, Н 4.57, N 7.01.

Хиназолин-4(3*H*)-оны **65а-f** получали в две стадии аналогично синтезу хиназолинонов **37а,b**. В качестве интермедиатов были выделены бензамиды **64а-f**. Хиназолин-4(3*H*)-оны **65а-f** очищали перекристаллизацией из ДМСО.

2-(2-Гидроксибензилиденамино)бензамид (64а) получали по описанной ранее методике. Вы-⁰ ход 87 %, Т_{пл} 170–172 °С (лит. Т_{пл} 160–165 °С[164]). С₁₄H₁₂N₂O₂ (240.26).

2-(2-Гидрокси-5-хлоробензилиденамино)бензамид (64b). Выход 88 %, Т_{пл} 186–188 °С. ЯМР ¹H (400 МГц, ДМСО-d₆), δ: 6.94 (д, ³J = 8.8, 1H, СН бензамид), 7.27–7.34 (м, 4H), 7.50 (м, 1H, CH бензамид), 7.67 (м, 2H), 7.78 (уш с, 1H, NH), 8.78 (с, 1H, CH=N), 12.22 (с, 1H, OH). Масс-спектр (EI), m/z (І_{отн}, %): 276 (11) [M+2]⁺, 274 (35) [M]⁺ 273 (12), 257 (11), 229 (20), 147 (64), 121 (10), 120 (100), 119 (22), 105 (25), 92 (38), 77 (70), 76 (11), 75 (13), 65 (26), 64 (13), 63 (9), 51 (16), 39 (11). С₁₄H₁₁ClN₂O₂ (274.05).

2-(2-Гидрокси-5-бромбензилиденамино)бензамид (64с). Выход 79 %, Т_{пл} 165–167 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 6.89 (д, ³J = 8.7, 1H, CH бензамид), 7.27–7.34 (м, 3H), 7.44 (дд, ³J = 8.7, ⁴J = 2.5, 1H), 7.49 (м, 1H, CH бензамид), 7.65 (дд, ³J = 7.5, ⁴J = 1.4, 1H), 7.76 (с, 1H), 7.81 (д, ⁴J = 2.5, 1H, H-6²), 8.78 (с, 1H), 12.27 (с, 1H). Массспектр (EI), m/z (І_{отн}, %):320 (36) [M+2]⁺, 319 (19) [M+1]⁺, 318 (39) [M]⁺, 317 (14),

303 (16), 301 (16), 275 (27), 273 (26), 247 (10), 245 (10), 238 (12), 222 (19), 166 (13), 147 (100), 140 (10), 139 (18), 136 (14), 121 (13), 120 (97), 119 (38), 105 (45), 92 (28), 77 (48), 76 (19), 75 (11), 65 (20), 64 (10), 63 (17), 51 (19), 50 (12), 39 (10). C₁₄H₁₁BrN₂O₂ (319.15).

2-(2-Гидрокси-3,5-дибромбензилиденамино)бензамид (64d). Выход 79 %, Тпл. > 300 °С. ЯМР ¹H (400 МГц, ДМСО-d₆), δ: 7.36 (м, 1H, CH бензамид), 7.38 (уш с, 1H, NH), 7.43 (д, ³J = 7.7, 1H, CH бензамид), 7.52 (м, 1H, CH бензамид), 7.56 (дд, ³J = 7.6, ⁴J = 1.3, 1H, CH бензамид), 7.68 (уш с, 1H, NH), 7.74 (д, ⁴J = 2.4, 1H), 7.81 (д, ⁴J = 2.4, 1H), 8.87 (с, 1H, CH=N), 13.95 (уш с, 1H, OH). Масс-спектр (ЕІ), m/z (Іотн, %): 398 (23) [M+4]⁺, 396 (30) [M+2]⁺, 394 (13) [M⁺]⁺, 147 (79), 136 (12), 120 (100), 119 (62), 92 (63), 91 (19), 90 (17), 77 (14), 76 (10), 65 (28), 64 (20), 63 (27), 62 (14), 39 (13). С₁₄H₁₀Br₂N₂O₂ (398.05).

2-(2-Гидрокси-3,5-ди(*t***-бутил)бензилиденамино)бензамид (64е)** использовали в следующую стадию без выделения.

2-(2-Гидрокси-3-этоксибензилиденамино)бензамид (64f). Осадок образовался после частич-

ного упаривания реакционной массы. Осадок отфильтровывали и промывали этанолом. Выход 64 %, Т_{пл} 94–96 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 1.40 (т, ³J = 7.0, 3H, CH₃), 4.07 (кв, 2H, ³J = 7.0, CH₂), 6.83 (т, ³J = 7.7, 1H), 7.02 (д, ³J = 8.0, 1H), 7.20 (д, ³J = 7.7, 1Н),7.30 (м, 3Н), 7.49 (м, 1Н), 7.62 (д, ³J = 7.7, 1Н), 7.74 (уш с, 1Н, NH₂),

8.79 (с, 1H, -CH=N-), 12.26 (уш с, 1H, OH). Масс-спектр (EI), m/z (Іотн, %): 284 (41) [М]+, 283 (14), 282 (18), 269 (18), 267 (40), 254 (14), 252 (14), 225 (17), 224 (11), 147 (46), 136 (13), 121 (11), 120 (100), 119 (30), 92 (38), 65 (18). C₁₆H₁₆N₂O₃ (284.31).

2-(2-Гидроксифенил)хиназолин-4(3*H***)-он (65а).** Выход 79 %, Тпл 272–274 °С (лит. Тпл 224–226 °С [165]). ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 6.94 (м, 2Н), 7.41 (м, 1Н), 7.51 (м, 1Н), 7.71 (м, 1Н), 7.83 (м, 1Н), 8.17 (м, 1Н), 8.24 (м, 1Н), 12.5 (уш с, 1Н, ОН), 13.9 (уш c, 1H, NH). C₁₄H₁₀N₂O₂ (238.25).

2-(2-Гидрокси-5-хлорфенил)хиназолин-4(3H)-он (65b). Выход 81 %, Т_{пл} > 300 °С (лит.

Тпл 365–366 °С [166]). ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 6.97 (д, ³J = 8.7, 1Н, Н-3'), 7.37 (дд, ³J = 8.7, ⁴J = 2.3, 1Н, Н-4'), 7.52 (м, 1Н), 7.72 (д, ³J = 8.1, 1Н), 7.82 (м, 1H), 8.16 (д, ³J = 7.9, 1H), 8.36 (д, ⁴J = 2.3, 1H, H-6'), 12.53 (уш с, 1H, OH),

13.92 (уш с, 1Н, NН). ЯМР ¹³С (100 МГц, ДМСО-d₆), δ: 115.2, 119.3, 120.6, 122.4, 125.7, 126.8, 127.0, 132.8, 134.5, 145.6, 152.4, 158.3, 160.9. Масс-спектр (EI), m/z (I_{отн}, %): 274 [M+2]⁺ (34), 273 [M+1]⁺(17), 272 [M]⁺(100), 120 (18), 119 (70), 92 (29), 90 (11), 63 (12). C₁₄H₉ClN₂O₂ (272.69).

2-(2-Гидрокси-5-бромфенил)хиназолин-4(3*H***)-он (65с).** Выход 70 %, Т_{пл} > 300 °С (лит. Т_{пл} 280–285 °С [167]). ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 6.98 (д, ³J = 8.7, 1Н), 7.59 но́

(м, 2H), 7.79 (м, 1H), 7.87 (м, 1H), 8.16 (д, ³J = 7.7, 1H), 8.46 (д, ⁴J = 1.8, 1H, H-6'), 12.52 (уш с, 1H, OH), 13.8 (уш с, 1H, NH). ЯМР ¹³С (100 МГц, ДМСО-d₆), δ: 110.0, 115.9, 120.1, 120.9, 126.0, 126.2, 127.3, 130,0, 135.0, 136.0, 146.0, 152.6, 159.0, 161.2. Macc-

спектр (EI), m/z (Іотн, %): 319 [M+3]⁺ (14), 318 [M+2]⁺ (87), 317 [M+1]⁺ (17), 316 [M]⁺ (80), 120 (27), 119 (100), 92 (45), 91 (13), 90 (18), 65 (13), 64 (14), 63 (20). C₁₄H₉BrN₂O₂ (317.14).

2-(2-Гидрокси-3,5-дибромфенил)хиназолин-4(3*H***)-он** (65d). Выход 75 %, Т_{пл} > 300 °С (лит. Тпл 260–262 °С [167]). ЯМР ¹Н (400 МГц, DMCO-d₆), δ: 7.59 (м, 1Н), 7.87 (м, 2H), 7.97 (д, ⁴J = 2.0, 1H, H-4'), 8.16 (дд, ³J = 8.0, ⁴J = 0.9, 1H, H-8), 8.58 (д, ⁴J = 2.0, 1H, H-6'), 12.82 (уш с., 1H, OH), 15.54 (уш с., 1H, NH). ЯМР ¹³С (100 МГц,

144.6, 152.5, 156.8, 161.0. Масс-спектр (ЕІ), m/z (Іотн, %): 398 [М+4]+ (49), 397 [М+3]+ (17), 396 [M+2]⁺ (100), 394 [M]⁺ (50), 236 (11,120 (22), 119 (93), 92 (40), 91 (11), 90 (17), 65 (12), 64 (12), 63 $(14). C_{14}H_8Br_2N_2O_2(396.03).$

ДМСО-d₆), δ: 109.2, 112.4, 115.3, 120.8, 125.4, 125.9, 127.4, 129.0, 135.0, 137.9,

2-(2-Гидрокси-3,5-ди(*t***-бутил)фенил)хиназолин-4(3***H***)-он (65е). Выход 79 %, Тлл 288–290 °С.**

ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 1.33 (с, 9Н, (CH₃)₃), 1.44 (с, 9Н,(CH₃)₃), 7.36 (д, ⁴J = 2,1, 1H, H-4'), 7.48 (м, 1H, аром), 7.69 (м, 1H, аром), 7.80 (м, 1H, аром), 7.97 (д, ⁴J = 2.1, 1H, H-2'), 7.69 (м, 1H, H-8), 12.6 (уш с, 1H, OH), 14.8 (уш с, 1H, NH). C₂₂H₂₆N₂O₂ (350.46).

2-(2-Гидрокси-3-этоксифенил)хиназолин-4(3*H***)-он (65***f*). Выход 72 %, Т_{пл} 292–294 °С. ЯМР

¹H (400 МГц, ДМСО-d₆), δ: 1.42 (т, ³J = 6.9, 3H, CH₃), 4.08 (кв, ³J = 6.9, 2H, CH₂), 6.81 (т, ³J = 8.0, 1H), 7.05 (д, ³J = 8.0, 1H), 7.50 (т, ³J = 7.3, 1H), 7.70 (д, ³J = 8.2, 1H), 7.81 (м, 2H), 8.15 (д, ³J = 8.0, 1H), 12.39 (уш с, 1H, OH), 14.13 (уш с, 1H, NH). ЯМР ¹³С (100 МГц, DMCO-d₆), δ: 14.7 (CH₃), 64.2 (CH₂), 113.5, 117.0, 118.0, 118.9,

120.7, 125.9, 126.0, 127.0, 135.1, 145.9, 147.9, 151.1, 154.0, 161.4. Масс-спектр (EI), m/z (I_{отн}, %): 283 [M+1]⁺ (13), 282 [M]⁺ (66), 268 (18), 267 [M-CH₃]⁺ (100), 254 (22), 253 (23), 239 (14), 238 (24), 225 (52), 197 (16), 120 (31), 119 (53), 92 (29), 65 (13). C₁₆H₁₄N₂O₃ (282.29).

Хиназолин-4(3*H*)-оны **65g и 65h** получали в одну стадию аналогично дифениламинофенилхиназолинону **28.** Продукты перекристаллизовывали из ДМСО.

2-(2-Гидрокси-5-метоксифенил)хиназолин-4(3*H***)-он (65***g*). Выход 52 %, Т_{пл} 260–262 °С (лит.

 $\label{eq:constraint} \begin{array}{l} & T_{\pi\pi} > 300 \ ^{\circ}\text{C} \ [168]). \ \text{MMP} \ ^{1}\text{H} \ (400 \ \text{MFu}, \ \text{ДMCO-d}_{6}), \ \delta: \ 3.80 \ (c, \ 3\text{H}, \ \text{CH}_{3}), \ 6.94 \ (d, \ 3\text{J} = 8.7, \ 1\text{H}), \ 7.08 \ (dd, \ ^{3}\text{J} = 8.9, \ ^{4}\text{J} = 2.7, \ 1\text{H}), \ 7.55 \ (\tau, \ ^{3}\text{J} = 7.3, \ 1\text{H}), \ 7.77 \ (m, \ 2\text{H}), \ 7.86 \ (m, \ 1\text{H}), \ 8.16 \ (d, \ ^{3}\text{J} = 8.2, \ 1\text{H}), \ 12.56 \ (\text{ym} \ c, \ 1\text{H}, \ \text{OH}), \ 13.43 \ (\text{ym} \ c, \ 1\text{H}, \ \text{NH}). \end{array}$

ЯМР ¹³С (100 МГц, DMCO-d₆), δ: 55.9, 110.2, 113.0, 118.9, 120.7, 121.8, 126.0, 126.9, 135.0, 146.1, 151.7, 153.7, 154.4, 161.6. Масс-спектр (EI), m/z (І_{отн}, %): 269 [M+1]⁺ (13), 268 [M]⁺ (73), 254 (15), 253 [M-CH₃]⁺ (100), 120 (25), 92 (13). C₁₅H₁₂N₂O₃ (268.27).

2-(2-Гидрокси-4-диэтиламинофенил)хиназолин-4(3*H***)-он (65h). Выход 52 %, Т_{пл} 260–262 °С. ЯМР ¹H (400 МГц, ДМСО-d₆), δ: 1.12 (т, ³J = 6.8, 6H, 2(CH₃)), 3.39 (кв, ³J = 6.8, 4H, 2(CH₂)), 6.11 (с, 1H, H-3'), 6.29 (д, ³J = 8.7, 1H), 7.42 (м, 1H), 7.60 (д, ³J = HO NEt₂ 7.8, 1H), 7.77 (м, 1H), 8.66 (м, 2H), 12.10 (уш с, 1H, OH), 14.21 (уш с, 1H, NH). ¹³C NMR (ДМСО-d₆), δ: 12.6 (2CH₃), 43.7 (2CH₂), 97.8, 100.6, 103.6, 119.7, 125.4, 126.0, 128.5, 134.8, 151.7, 162.8. Масс-спектр (EI), m/z (І_{отн}, %): 310 [M+1]⁺ (13), 309 [M]⁺ (62), 295 (19), 294**

 $[M-CH_3]^+$ (100), 266 (11), 119 (12). $C_{18}H_{19}N_3O_2$ (309.36).

2-(2-Гидрокси-5-(4-дифениламинофенил)хиназолин-4(3*H***)-он (65i) получали в результате реакции кросс-сочетания, аналогично синтезу хиназолинов 8а-g.** Реакционную массу выдерживали 14 часов в автоклаве. После охлаждения сформировавшийся осадок отфильтровывали и перекристаллизовывали из ДМСО. Выход 40 %, $T_{nn} > 300$ °C. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.06 (м, 9H), 7.33 (м, 4H), 7.56 (т, ³J = 7.0, 1H), 7.72–7.80 (м, 4H), 7.87 (м, 1H), 8.17 (т, ³J = 7.0, 1H), 8.54 (с, 1H, H-6'), 12.82

(уш с, 1H, OH), 14.06 (уш с, 1H, NH). Масс-спектр (EI), m/z (Іотн, %): 482 (37) [M+1]⁺, 481 (100) $[M]^+$, 241 (12), 120 (11). $C_{32}H_{23}N_3O_2$ (481.54).

Общий метод синтеза BF2 комплексов 2-(2-гидроксифенил)хиназолин-4(3H)-онов (66а-і). Суспензию соответствующего хиназолинона 10 (1 ммоль) в смеси толуола (2 мл) и ледяной уксусной кислоты (2 мл) нагревали до 60 °C, затем добавляли BF3·OEt2 (0.68 мл, 4.8 ммоль) и реакционную массу кипятили 5 минут. После охлаждения продукт отфильтровывали и промывали гексаном (2 мл).

BF₂ комплекс 2-(2-гидроксифенил)хиназолин-4(3H)-она (66а). После охлаждения бесцвет-

ный осадок отфильтровали, промыли метанолом (6 мл) и диэтиловым эфиром (4 мл). Выход 76 %, Т_{пл} > 300 °С. ЯМР ¹Н (400 Гц, CDCl₃), δ: 7.17 (м, 1Н), 7.29 (м, 1H), 7.34 (м, 1H), 7.68 (м, 2H), 7.96 (м, 1H), 8.39 (м, 1H), 8.59 (м, 1H). ЯМР ¹⁹F (376 Гц, CDCl₃), δ: -150.74 (м). Масс-спектр (EI), m/z (І_{отн}, %): 286 [М]⁺ (13), 266 (30), 265 (16), 238 (17), 237 (11), 148 (10), 139 (21), 130 (12), 119 (38), 113 (19), 102 (78), 92 (56), 91 (34), 90 (100), 99 (16), 87 (12), 77 (13), 76 (39), 75 (37), 74 (17), 65 (20), 64 (67), 63 (85), 62 (26), 52 (12), 51 (17), 50 (23), 49 (34), 48 (26), 38 (60), 37 (23). С₁₄Н₉ВF₂N₂O (286.05). Вычислено, %: С 58.84, Н 3.21, N 9.73; найдено, %: С 58.79, Н 3.17, N 9.79.

ВF2 комплекс 2-(2-гидрокси-5-хлорфенил)хиназолин-4(3*H***)-она (66b**). Выход 93 %, Т_{пл} >

300 °С. Масс-спектр (ЕІ), m/z (Іотн, %): 322 [M+2]+ (12), 320 [M]+ (36), 302 (34), 301 (32), 300 (100), 299 (49), 272 (24), 271 (11), 119 (14), 92 (23), 90 (19), 76 (10), 64 (14), 63 (22). С₁₄H₈BClF₂N₂O₂ (320.5). Вычислено, %: С 52.47, Н 2.52, N 8.74; найдено, %: C 52.52, H 2.56, N 8.69.

ВF₂ комплекс 2-(2-гидрокси-5-бромфенил)хиназолин-4(3*H*)-она (66с). Выход 83 %, Т_{пл} >

300 °С. Масс-спектр (ЕІ), m/z (Іотн, %): 366 (31) [M+2]⁺, 365 (13) [M+1]⁺, 364 _Br (33) [M]⁺, 347 (16), 346 (95), 345 (56), 344 (100), 343 (40), 318 (12), 316 (13), 265 (11), 237 (27), 236 (16), 49 (19), 92 (21), 90 (19), 76 (10), 64 (13), 63 (24), 50 (10).

C14H8BBrF2N2O2 (365). Вычислено, %: С 46.08, Н 2.21, N 7.68; найдено, %: С 46.10, Н 2.23, N 7.65.

ВF2 комплекс 2-(2-гидрокси-3,5-дибромфенил)хиназолин-4(3*H***)-она (66d)**. Выход 84 %, Т_{пл} >

300 °С. Масс-спектр (ЕІ), m/z (Іотн, %): 446 [М+4]⁺ (21), 444 [М+2]⁺ (37), 443 [M+1]⁺ (13), 442 [M]⁺ (21), 426 (46), 425 (35), 424 (100), 423 (46), 422 (52), 421 (20), 315 (12), 119 (21), 92 (33), 91 (13), 90 (29), 76 (18), 65 (10), 64 (16), 63 (26), 62 (13), 50 (13), 39 (13). С14H7BBr2F2N2O2 (442). Вычислено, %: С 37.89, Н 1.59,

N 6.31; найдено, %: С 37.95, Н 1.64, N 6.26.

ВF2 комплекс 2-(2-гидрокси-3,5-ди-(t-бутил)фенил)хиназолин-4(3H)-она (66е). После охла-

ждения реакционную массу упаривали до 1/3 объема. Отфильтровали светложелтый осадок и промывали гексаном (4 мл). Выход 87 %, Т_{пл} 268–270 °С. ЯМР ¹H (400 МГц, CDCl₃), δ: 1.43 (с, 9H, (CH₃)₃), 1.54 (с, 9H, (CH₃)₃), 7.65 (м, 1H, аром), 7.72 (д, 1H, H-4', ⁴J = 2.0), 7.76 (д, 1H, H-6', ⁴J = 2.0), 7.97 (м, 1H, аром), 8.38 (м, 1H, аром), 8.59 (м, 1H, аром), 11.4 (уш с, 1H, NH). ЯМР ¹⁹F (376 МГц, CDCl₃), δ: -136.01 (м). ЯМР ¹¹B (128 МГц, CDCl₃), δ: 1.10 м. Масс-спектр (EI), m/z (І_{отн}, %): 398 [М]⁺ (41), 397 (11), 384 (18), 383 (79), 382 (19), 364 (23), 363 (100), 362 (26), 347 (14), 335 (12), 307 (17), 160 (20), 57 (35), 41 (18). C₂₂H₂₅BF₂N₂O₂ (398.26). Вычислено, %: C 66.40, H 6.39, N 6.97; найдено, %: C 66.35, H 6.33, N 7.03.

ВF2 комплекс 2-(2-гидрокси-3-этоксифенил)хиназолин-4(3*H***)-она (66***f***)**. Выход 68 %, Т_{пл} >

300 °С. Масс-спектр (EI), m/z (І_{отн}, %): 330 [*M*]⁺ (46), 329 (11), 302 (19), 283 (14), 282 (100), 281 (42). С₁₆H₁₃BF₂N₂O₃ (330.10). Вычислено, %: С 58.22, Н 3.97, N 8.49; найдено, %: С 58.29, Н 4.03, N 8.43.

ВF2 комплекс 2-(2-гидрокси-5-метоксифенил)хиназолин-4(3*H***)-она (66g)**. Выход 38 %, Т_{пл} >

300 °C. ЯМР ¹H (400 МГц, CDCl₃), δ: 3.91 (c, 3H, CH₃), 7.15 (д, ³J = 8.8, 1H), 7.28 (м, 2H), 7.65 (м, 1H), 7.94 (м, 1H), 8.36 (д, ³J = 8.1, 1H), 8.60 (д, ³J = 8.4, 1H). ЯМР ¹⁹F (376 МГц, CDCl₃), δ: -133.21 (м). ЯМР ¹¹B (128 МГц, CDCl₃), δ:

1.27 (м). Масс-спектр (EI), m/z (I_{отн}, %): 316 (40) [M]⁺, 315 (10), 297 (13), 296 (70), 295 (100), 294 (21), 267 (15), 266 (29), 265 (11), 253 (10), 207 (12), 90 (10), 63 (11). С₁₅H₁₁BF₂N₂O₃ (316.07). Вычислено, %: С 57.00, Н 3.51, N 8.86; найдено, %: С 57.04, Н 3.55, N 8.82.

ВF2 комплекс 2-(2-гидрокси-4-диэтиламинофенил)хиназолин-4(3H)-она (66h). Выход 91 %,

Т_{пл} > 295–295 °С. Масс-спектр (ЕІ), m/z (І_{отн}, %): 357 (41) [*M*]⁺, 356 (12), 342 (17), 337 (17), 323 (20), 322 (100), 321 (25), 294 (21), 293 (15). С₁₈H₁₈BF₂N₃O₂ (357.17). Вычислено, %: С 60.53, H 5.08, N 11.76; найдено, %: С 60.61, H 5.11, N 11.70.

2-(2-Гидрокси-5-(4-дифениламинофенил)хиназолин-4(3*H***)-она (66i)**. Выход 47 %, Т_{пл} >

300 °C. SMP ¹H (400 MFu, CDCl₃), δ : 7.04–7.19 (m, 7H), 7.26–7.32 (m, 6H), 7.43 (t, ³J = 7.6, 1H), 7.59 (g, ³J = 8.0, 2H), 7.88 (m, 2H), 8.29 (m, 2H), 8.58 (g, ³J = 8.6, 1H). SMP ¹⁹F (376 MFu, CDCl₃), δ : –133.02 (m). SMP ¹¹B (128

МГц, CDCl₃), δ: 1.25 (м). Масс-спектр (EI), m/z (І_{отн}, %): 529 [М]⁺ (18), 511 (23), 510 (72), 509 (21), 508 (14), 482 (23), 124 (100). С₃₂H₂₂BF₂N₃O₂ (529.18). Вычислено, %: С 72.61, Н 4.19, N 7.94; найдено, %: С 72.58, Н 4.22, N 7.89.

Синтез 2-(2-гидроксифенил)-4-фенилхиназолинов 68а-к.

Способ 1: Согласно описанному методу [169]. Суспензию соответствующего 2аминобензофенона **67а-с** (2 ммоль), ацетата аммония (6.5 ммоль), 2-гидроксибензальдегида **63а, b, e, g** (2 ммоль), и CuCl·2H₂O (4 ммоль) кипятили в абсолютном этаноле (25 мл) при 80 °C в течение 6 ч. После охлаждения образовавшийся осадок отфильтровывали и перекристаллизовывали из этанола.

Способ 2. Согласно описанному методу [170]. Смесь 2-аминобензофенона **67а-с** (2 ммоль), 2-гидроксибензальдегида **63а,b,e,g** (2 ммоль), ацетата аммония (5 ммоль) и йода (0.1 ммоль) нагревали в абсолютном этаноле (5 мл) при 75 °C в течение 2.5 ч. После охлаждения раствор частично упаривали и образовавшийся осадок отфильтровывали, промывали этанолом (3 мл).

Способ 3. Смесь 2-аминобензофенона **67а-с** (2 ммоль), 2-гидроксибензальдегида **63а,b,e,g** (2 ммоль) нагревали в абсолютном этаноле (5 мл) при 75 °C в течение 2.5 ч. После охлаждения раствор частично упаривали, образовавшийся осадок отфильтровывали. К неочищенному продукту добавляли ацетат аммония (5 ммоль), йод (0.1 ммоль) и абсолютный этанол (5 мл), смесь нагревали при 75 °C в течение 2.5 ч. После охлаждения раствор частично упаривали, промывали этанолом и высушили.

Способ 4. Смесь 2-аминобензофенона 67а-с (2 ммоль), 2-гидроксибензальдегида 63а, b, e, g (2 ммоль) нагревали в абсолютном этаноле (2.7 мл) при 75 °C в течение 2.5 ч. Затем добавляли ацетат аммония (5 ммоль), йод (0.1 ммоль), смесь продолжали нагревать при 75 °C ещё в течение 2.5 ч. После охлаждения раствор частично упаривали, образовавшийся осадок отфильтровывали, промывали этанолом и высушивали.

2-(2-Гидроксифенил)-4-фенилхиназолин (68а). Способ 1. Выход 35 %, Тпл 175–177 °С (лит.

T_{пл} 169–171 °C [169]). ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 6.96 (м, 2H), 7.39 (м, 1H), 7.67 (м, 4H), 7.89 (м, 2H), 8.04 (м, 1H), 8.16 (м, 2H), 8.65 (д, ³J = 8.0, 1H, H-8), 13.56 (с, 1H, OH). C₂₀H₁₄N₂O (298.35).

2-(2-Гидрокси-5-хлорфенил)-4-фенилхиназолин (68b). Способ 4. Выход 14 %, Т_{пл} 225–227 °С ЯМР ¹H (400 МГц, ДМСО-d₆), δ: 7.06 (д, ³J = 8.5, 1H), 7.48 (дд, ³J = 8.5, ⁴J = 1.7, 1H), 7.71 (м, 3H), 7.79 (т, ³J = 7.5, 1H), 8.14 (м, 2H), 8.23 (д, ³J = 8.4, 1H), 8.54 (д, ⁴J = 1.7, 1H, H-6'), 13.72 (с, 1H, OH). Масс-спектр (ЕІ), m/z (І_{отн}, %): 334 (33) [M+2]⁺, 333 (32) [M+1]⁺, 332 (100) [M]⁺, 331 (33), 152 (11), 134 (14), 77 (24).

C₂₀H₁₃ClN₂O (332.79).

2-(2-Гидроксифенил)-4-фенил-6-хлорхиназолин (68с). Способ 1. Выход 41 %, Тпл 207-210 °С

(лит. Т_{пл} 198–200 °C [169]). ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 6.96 (м, 2Н), 7.40 (м, 1Н), 7.70 (м, 3Н), 7.88 (м, 2Н), 8.02 (м, 1Н), 8.08 (с, 1Н, Н-5), 8.20 (м, 1Н), 8.63 (д, ³J = 8.0, 1Н, Н-8), 13.28 (с,1Н, ОН). С₂₀Н₁₃ClN₂O (332.79).

2-(2-Гидроксифенил)-4-(2-хлорфенил)-6-хлорхиназолин (68d). Способ 4. Выход 58 %, Т_{пл}

190–192 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ : 7.02 (м, 2H), 7.48 (т, ³J = 7.5, 1H), 7.59 (д, ⁴J = 1.9, 1H), 7.65–7.79 (м, 4H), 8.12 (дд, ³J = 8.6, ⁴J = 1.9, 1H), 8.32 (д, ³J = 9.2, 1H), 8.51 (д, ³J = 8.2, 1H), 13.20 (с, 1H, OH). Масс-спектр (ЕІ), m/z (І_{отн}, %): 370 (12) [M+4]⁺, 369 (16) [M+3]⁺, 368 (66) [M+2]⁺, 367 (27) [M+1]⁺, 366

(100) [M]⁺, 166 (11), 133 (24), 75 (11). С₂₀H₁₂Cl₂N₂O (367.23). Вычислено, %: С 65.41, Н 3.29, N 7.63; найдено, %: С 65.38, Н 3.31, N 7.60.

2-(2-Гидрокси-5-хлорфенил)-4-фенил-6-хлорхиназолин (68е). Способ 4. Выход 19 %, Тпл

250–252 °C. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.02 (д, ³J = 8.8, 1Н), 7.42 (дд, ³J = 8.7, ⁴J = 2.3, 1Н), 7.70 (м, 3Н), 7.89 (м, 2Н), 8.08 (м, 2Н), 8.24 (д, ³J = 9.0, 1Н), 8.49 (д, ⁴J = 2.3, 1Н, Н-6³), 13.37 (с, 1Н, ОН). Масс-спектр (ЕІ), m/z (І_{отн}, %): 370 (12) [M+4]⁺, 369 (17) [M+3]⁺, 368 (66) [M+2]⁺, 367 (35) [M+1]⁺, 366

(100) [M]⁺, 365 (21), 331 (11) [M-Cl]⁺, 151 (12), 133 (18), 77 (11), 75 (11). С₂₀H₁₂Cl₂N₂O (367.23). Вычислено, %: С 65.41, Н 3.29, N 7.63; найдено, %: С 65.37, Н 3.32, N 7.61.

2-(2-Гидрокси-5-хлорфенил)-4-(2-хлорфенил)-6-хлорхиназолин (68f). *Способ 4*. Выход 24 %, Тпл 205–207 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 7.09 (д, ³J = 8.8, 1H), 7.51 (дд, ³J = 8.8, ⁴J = 2.5, 1H), 7.62–7.78 (м, 5H), 8.17 (дд, ³J = 9.0, ⁴J = 2.2, 1H), 8.36 (д, ³J = 9.0, 1H), 8.44 (д, ⁴J = 2.6, 1H, H-6'), 13.19 (с, 1H, OH). Масс-спектр (EI), m/z (І_{отн}, %): 404 (33) [M+4]⁺, 403 (24) [M+3]⁺, 402 (96) [M+2]⁺, 401 (29)

[M+1]⁺, 400 (100) [M]⁺, 150 (10), 133 (15), 75 (14). С₂₀H₁₁Cl₃N₂O (401.67). Вычислено, %: С 59.80, Н 2.76, N 6.97; найдено, %: С 59.78, Н 2.80, N 6.95.

2-(2-Гидрокси-3,5-ди(*t***-бутил)фенил)-4-фенилхиназолин (68g).** Выход 19 % (*Cnoco6 1*), 52 % (*Cnoco6 2*), 39 % (*Cnoco6 3*), Т_{пл} 208–210 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 1.38 (с, 9H, (CH₃)₃), 1.50 (с, 9H, (CH₃)₃), 7.40 (с, 1H), 7.66 (м, 4H), 7.89 (м, 2H), 8.02 (м, 1H), 8.14 (м, 2H), 8.57 (с, 1H), 14.24 (с, 1H, OH). Масс-спектр (EI), m/z (І_{отн}, %): 411 [M+1]⁺ (22), 410 [M]⁺ (70), 396 (33), 395 [M–CH₃]⁺ (100), 367 (24),

339 (21), 77 [C₆H₅]⁺ (13), 57 (11). C₂₈H₃₀ClN₂O (410.56). Вычислено, %: C 81.91, H 7.37, N 6.82; найдено, %: C 81.97, H 7.50, N 6.76.

2-(2-Гидрокси-3,5-ди(t-бутил)фенил)-4-фенил-6-хлорхиназолин (68h). Выход 50 % (Способ

2), 43 % (*Cnocoб 3*), T_{пл} 235–237 °C. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 1.36 (с, 9H, (CH₃)₃), 1.49 (с, 9H, (CH₃)₃), 7.43 (д, ⁴J = 2.7, 1H), 7.72 (м, 3H), 7.89 (м, 2H), 8.07 (м, 2 H), 8.23 (с, 1H, H-5), 8.55 (д, ⁴J = 2.7, 1H), 14.04 (с, 1H, OH). Масс-спектр (EI), m/z (I_{отн}, %): 446 [M+2]⁺ (26), 445[M+1]⁺ (22), 444 [M]⁺

(68), 432 (11), 431 (36), 430 (32), 429 [M–CH₃]⁺ (100), 401 (22), 373 (21), 207 (14), 193 (10), 77 (17), 57 (41), 41(30). С₂₈H₂₉ClN₂O (445.00). Вычислено, %: С 75.57, Н 6.57, N 6.30; найдено, %: С 75.59, Н 6.61, N 6.27.

2-(2-Гидрокси-3,5-ди(t-бутил)фенил)-4-(2-хлорфенил)-6-хлорхиназолин (68i). Способ 3. Вы-

ход 27 %, Т_{пл} 250–252 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 1.30 (с, 9H, 3(CH₃)), 1.47 (с, 9H, 3(CH₃)), 7.48 (м, 1H), 7.59 (м, 1H), 7.74–7.78 (м, 4H), 8.13 (м, 1H), 8.31 (м, 1H), 8.48 (м, 1H), 13.95 (с, 1H, OH). Масс-спектр (EI), m/z (І_{отн}, %): 482 (12) [M+4]⁺, 481 (21) [M+3]⁺, 480 (48) [M+2]⁺, 479 (23)

[M+1]⁺, 478 (67) [M]⁺, 467 (15), 466 (26), 465 (68), 464 (31), 463 (100) [M-CH₃]⁺, 437 (12), 435 (18), 409 (13), 407 (21), 57 (28), 41 (20). С₂₈H₂₈Cl₂N₂O (479.45). Вычислено, %: С 70.14, Н 5.89, N 5.84; найдено, %: С 70.12, Н 5.93, N 5.83.

2-(2-Гидрокси-5-метоксифенил)-4-фенилхиназолин (68j). Выход 25 % (Способ 1), 52 % (Спо-

соб 2), 62 % (*Способ 3*), Т_{пл} 155–157 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 3.83 (с, 3H, OCH₃), 6.88 (д, ³J = 8.8, 1H), 6.98 (дд, ³J = 8.8, ⁴J = 3.1, 1H), 7.66 (м, 4H), ¹е 7.87 (м, 2H), 8.02 (т, ³J = 7.7, 1H), 8.13 (м, 3H), 13.03 (с, 1H, OH). Масс-спектр (EI), m/z (І_{отн}, %): 329 [M+1]⁺ (14), 328 [M]⁺ (59), 314 (23), 313 [M–CH₃]⁺ (100),

77 (13). С₂₁Н₁₆N₂O₂ (328.37). Вычислено, %: С 76.81, Н 4.91, N 8.53; найдено, %: С 76.74, Н 4.98, N 8.45.

2-(2-Гидрокси-5-метоксифенил)-4-фенил-6-хлорхиназолин (68к). Выход 61 % (Способ 2), 59

% (*Cnocoб 3*), Т_{пл} 197–200 °С. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 3.83 (с, 3H, OCH₃), 6.88 (д, ³J = 8.8, 1H), 7.02 (дд, ³J = 8.8, ⁴J = 3.1, 1H), 7.69 (м, 3H), 7.87 (м, 2H), 8.01–8.09 (м, 3H), 8.17 (м, 1H), 12.80 (с, 1H, OH). Масс-спектр (EI), m/z (І_{отн}, %): 364 (22) [M+2]⁺, 363 (15) [M+1]⁺, 362 (61) [M]⁺, 349 (34), 348

(22), 347 [M–CH₃]⁺ (100), 77 (15). С₂₁H₁₅ClN₂O₂ (362.82). Вычислено, %: С 69.52, Н 4.17, N 7.72; найдено, %: С 69.48, Н 4.25, N 7.70.

ВF₂ комплексы **69а-к** синтезировали аналогично BF₂ комплексам **69**. Реакционную массу кипятили в течение 30–90 минут. После охлаждения раствор частично упаривали (на 2/3 объёма) и добавляли Et₂O (1 мл). Образовавшийся осадок отфильтровывали, промывали Et₂O.

ВF2 комплекс 2-(2-гидроксифенил)-4-фенилхиназолина (69а). Реакционную массу кипятили

90 минут. Выход 78 %, Т_{пл} 235–237 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 7.08 (т, ³J = 7.4, 1H), 7.21 (д, ³J = 8.2, 1H), 7.61 (м, 1H), 7.67–7.78 (м, 4H), 7.95 (м, 2H), 8.11 (м, 1H), 8.28 (д, ³J = 8.1, 1H), 8.68 (дд, ³J = 7.9, ⁴J = 1.4, 1H), 8.98 (д, ³J = 8.4, 1H). ЯМР ¹³С (100 МГц, CDCl₃), δ: 116.3, 119.5, 120.3, 121.9, 124.3, 128.6 (2C), 129.1 (2C, Ph),

129.9, 130.7 (2С, Ph), 132.0, 136.1, 136.8, 136.9, 143.2, 156.2, 158.0, 173.6. ЯМР ¹⁹F (376 МГц, CDCl₃), δ: –130.02 (м). ЯМР ¹¹B (128 МГц, CDCl₃), δ: 2.04 (м). Масс-спектр (EI), m/z (I_{отн}, %): 346 (100) [M]⁺, 345 (47), 326 (23), 325 (67), 324 (17), 163 (22), 139 (12), 102 (17), 77 (13), 76 (23), 50 (11). С₂₀H₁₃BF₂N₂O (346.14). Вычислено, %: С 69.40, Н 3.79, N 8.09, найдено, %: С 69.36, Н 3.83, N 8.02.

ВF2 комплекс 2-(2-гидрокси-5-хлорфенил)-4-фенилхиназолина (69b). Реакционную массу

кипятили 30 минут. После охлаждения добавляли Et₂O (1 мл), образовавшийся осадок отфильтровывали и промывали Et₂O (1 мл). Выход 74 %, T_{пл} 245–247 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 7.13 (д, ³J = 8.9, 1Н), 7.52 (дд, ³J = 8.7, ⁴J = 2.4, 1Н),

 F F O 7.67–7.79 (м, 4H), 7.92 (м, 2H), 8.11 (т, 3 J = 7.8, 1H), 8.28 (д, 3 J = 8.4, 1H), 8.61 (д, 4 J = 2.5, 1H), 8.95 (д, 3 J = 8.9, 1H). ЯМР 13 С (100 МГц, CDCl₃), δ : 117.3, 121.1, 122.1, 124.3, 125.3, 128.8, 128.8, 129.1, 129.2, 130.8, 132.2, 135.8, 136.7, 137.1, 143.2, 155.1, 156.5, 174.0. ЯМР 19 F (376 МГц, CDCl₃), δ : –129.87 (м). ЯМР 11 B (128 МГц, CDCl₃), δ : 2.01 (м). Масс-спектр (EI), m/z (I_{отн}, %): 382 (33) [M+2]⁺, 381 (35) [M+1]⁺, 380 (100) [M]⁺, 379 (41), 361 (21), 360 (22), 359 (57), 358 (13), 180 (16), 162 (13), 139 (11), 102 (18), 77 (14), 76 (27), 75 (11), 51 (11), 50 (13). С₂₀H₁₂BCIF₂N₂O (380.59). Вычислено, %: C 63.12, H 3.18, N 7.36; найдено, %: C 63.09, H 3.21, N 7.31.

ВF₂ комплекс 2-(2-гидроксифенил)-4-фенил-6-хлорхиназолина (69с). Реакционную массу

кипятили 90 минут. Выход 64 %, Т_{пл} 269–271 °С. ЯМР ¹Н (400 МГц, CDCl₃), δ: 7.09 (т, ³J = 7.1, 1H), 7.20 (д, ³J = 8.2, 1H), 7.62 (м, 1H), 7.68–7.79 (м, 3H), 7.93 (м, 2H), 8.03 (дд, ³J = 9.7, ⁴J = 2.9, 1H), 8.22 (д, ⁴J = 2.4, 1H, H-5), 8.66 (дд, ³J = 8.1, ⁴J = 1.5, 1H), 8.93 (д, ⁴J = 9.3, 1H). ЯМР ¹³С (100 МГц, CDCl₃), δ: 116.0, 119.6,

120.5, 122.7, 126.1, 127.3, 129.4 (2С, Ph), 130.0, 130.6 (2С, Ph), 132.3, 134.8, 135.6, 137.3, 137.4, 141.8, 156.3, 158.1, 172.8. ЯМР ¹⁹F (376 МГц, CDCl₃), δ: –129.65 (м). ЯМР ¹¹B (128 МГц, CDCl₃), δ: 1.99 (м). Масс-спектр (EI), m/z (І_{отн}, %): 382 (33) [M+2]⁺, 381 (33) [M+1]⁺, 380 (100) [M]⁺, 379 (43), 361 (15), 360 (13), 359 (41), 345 (12), 325 (44), 324 (12), 162 (25), 139 (22), 110 (14), 100 (11), 77 (12), 75 (27). С₂₀H₁₂BClF₂N₂O (380.59). Вычислено, %: С 63.12, Н 3.18, N 7.36; найдено, %: С 63.31, Н 3.23, N 7.28.

ВF2 комплекс 2-(2-гидроксифенил)-4-(2-хлорфенил)-6-хлорхиназолина (69d). Кипятили 60

минут. После охлаждения, сформировавшийся осадок отфильтровывали и промывали Et₂O (1 мл). Выход 58 %, Т_{пл} 257–259 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 7.04 (т, ³J = 7.6, 1H), 7.18 (д, ³J = 8.2, 1H), 7.52–7.68 (м, 5H), 7.71 (д, ⁴J = 2.1, 1H), 8.00 (дд, ³J = 9.5, ⁴J = 2.3, 1H), 8.56 (дд, ³J = 8.1, ⁴J = 1.4, 1H), 8.90 (д, ³J = 9.2, 1H).

ЯМР ¹³С (100 МГц, CDCl₃), δ: 115.9, 119.6, 120.6, 123.5, 126.0, 127.0, 127.6, 130.2, 130.7, 130.9, 132.3, 132.7, 134.5, 135.1, 137.5, 137.9, 141.2, 156.7, 158.1, 171.9. ЯМР ¹⁹F (376 МГц, CDCl₃), δ: -129.19 (м), -128.75 (м). ЯМР ¹¹В (128 МГц, CDCl₃), δ: 2.05 (м). Масс-спектр (EI), m/z (І_{отн}, %): 418 (12) [M+4]⁺, 417 (17) [M+3]⁺, 416 (65) [M+2]⁺, 415 (40) [M+1]⁺, 414 (100) [M]⁺, 413 (31), 379 (16), 359 (26), 179 (15), 139 (16), 110 (14), 100 (10), 75 (25). С₂₀H₁₁BCl₂F₂N₂O (415.03). Вычислено, %: С 57.88, H 2.67, N 6.85; найдено, %: С 57.86, H 2.70, N 6.82.

ВF₂ комплекс 2-(2-гидрокси-5-хлорфенил)-4-фенил-6-хлорхиназолин (69е). Кипятили 30 минут. После охлаждения и частичного упаривания (до 1/3 объёма), добавляли Еt₂O (1 мл). Сформировавшийся осадок отфильтровывали и промывали смесью NEt₃ и толуола (2 мл), затем гексаном (1 мл). Выход 47 %, $T_{пл}$ 285–287 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 7.11 (д, ³J = 8.9, ⁴J = 2.5 Гц, 1Н), 7.74 (м,

Ph, 3H), 7.91 (м, Ph, 2H), 8.02 (дд, ${}^{3}J = 9.3$, ${}^{4}J = 2.3$, 1H), 8.22 (д, ${}^{4}J = 1.9$, 1H), 8.88 (д, ${}^{3}J = 9.3$, 1H), 8.93 (д, ${}^{3}J = 9.3$, 1H). ЯМР 13 С (100 МГц, CDCl₃), δ : 117.0, 121.2, 122.9, 125.4, 126.1, 127.4, 128.8, 129.5, 130.7, 132.5, 135.3, 135.3, 137.1, 137.7, 141.7, 155.2, 156.6, 173.2. ЯМР 19 F (376 МГц, CDCl₃), δ : -129.52 (м). ЯМР 11 B (128 МГц, CDCl₃), δ : 1.94 (м). Масс-спектр (EI), m/z (I_{отн}, %): 418 (11) [M+4]⁺, 417 (17) [M+3]⁺, 416 (63) [M+2]⁺, 415 (42) [M+1]⁺, 414 (100) [M]⁺, 413 (36), 395 (21), 394 (13), 393 (31), 361 (11), 360 (10), 359 (33), 179 (22), 110 (13), 100 (11), 75 (22). C₂₀H₁₁BCl₂F₂N₂O (415.03). Вычислено, %: C 57.88, H 2.67, N 6.85; найдено, %: C 57.86, H 2.70, N 6.82.

ВF2 комплекс 2-(2-гидрокси-5-хлорфенил)-4-(2-хлорфенил)-6-хлорхиназолин (69f). Кипяти-

ли 60 минут. После охлаждения, сформировавшийся осадок отфильтровывали и промывали Et₂O (1 мл). Выход 91 %, Т_{пл} 260–262 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 7.13 (д, ³J = 8.9, 1H), 7.53 (м, 2H), 7.59 (т, ³J = 7.0, 1H), 7.62–7.68 (м, 2H), 7.74 (д, ⁴J = 2.1, 1H), 8.02 (дд, ³J = 9.5, ⁴J = 2.3, 1H), 8.51 (д, ⁴J = 2.6, 1H),

8.90 (μ , ${}^{3}J$ = 9.3, 1H). 9MP ${}^{13}C$ (100 MF μ , CDCl₃), δ : 116., 121.2, 123.8, 125.6, 126.0, 127.1, 127.6, 129.0, 130.8, 130.9, 132.5, 132.7, 134.3, 135.6, 137.3, 138.2, 141.2, 155.6, 156.6, 172.3. 9MP ${}^{19}F$ (376 MF μ , CDCl₃), δ : -129.21 (M), δ -128.57 (M). 9MP ${}^{11}B$ (128 MF μ , CDCl₃), δ : 1.98 (M). Macc-cnektr (EI), m/z (I_{0TH}, %): 452 (32) [M+4]⁺, 451 (32) [M+3]⁺, 450 (98) [M+2]⁺, 449 (49) [M+1]⁺, 448 (100) [M]⁺, 447 (30), 413 (11), 395 (16), 393 (23), 197 (14), 196 (21), 110 (20), 100 (13), 75 (32).

С₂₀H₁₀BCl₃F₂N₂O (449.47). Вычислено, %: С 53.44, Н 2.24, N 6.23; найдено, %: С 53.41, Н 2.26, N 6.20.

ВF2 комплекс 2-(2-гидрокси-3,5-ди(t-бутил)фенил)-4-фенилхиназолина (69g). Реакционную

массу кипятили 90 минут. После охлаждения реакционную массу полностью упаривали, продукт экстрагировали гексаном. Выход 72 %, Т_{пл} 198–201 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 1.37 (с, 9H, 3(CH₃)), 1.55 (с, 9H, 3(CH₃)), 7.65–7.71 (м, 5H), 7.92 (м, 2H), 8.07 (м, 1H), 8.22 (дд, ³J = 8.4, ⁴J = 1.1, 1H, H-5), 8.52 (д, ⁴J = 2.7, 1H), 8.93 (д, ³J = 8.4, 1H). ЯМР ¹³С (100 МГц, CDCl₃), δ: 29.8 (3C,

3(CH₃)), 31.6 (3C, 3(CH₃)), 34.7 (1C, C(CH₃)₃), 35.3 (1C, C(CH₃)₃), 116.1, 121.5, 123.7, 124.2, 128.1, 128.4, 129.1 (2C, Ph), 130.7 (2C, Ph), 131.7, 131.8, 136.3, 136.6, 138.9, 141.9, 143.2, 155.2, 157.1, 173.0. ЯМР ¹⁹F (376 МГц, CDCl₃), δ: –132.11 (м). ЯМР ¹¹B (128 МГц, CDCl₃), δ: 1.99 (м). Масс-спектр (EI), m/z (І_{отн}, %): 459 (13) [M+1]⁺, 458 (40) [M]⁺, 444 (32), 443 (100) [M–CH₃]⁺, 442 (26), 423 (27), 407 (12), 367 (24), 190 (19), 77 (16) [C₆H₅]⁺, 57 (27), 41(24). C₂₈H₂₉BF₂N₂O (458.36). Вычислено, %: C 73.37, H 6.38, N 6.11; найдено, %: C 73.42, H 6.43, N 6.06.

ВF2 комплекс 2-(2-гидрокси-3,5-ди(t-бутил)фенил)-4-фенил-6-хлорхиназолина (69h). Реак-

полностью упаривали, продукт экстрагировали гексаном. Выход 67 %, Т_{пл} 193–195 °С. ЯМР ¹Н (400 МГц, CDCl₃), δ: 1.39 (с, 9H, 3(CH₃)), 1.56 (с, 9H, 3(CH₃)), 7.70–7.76 (м, 4H), 7.92 (м, 2H), 8.00 (дд, ³J = 8.4, ⁴J = 2.2, 1H), 8.19

ционную массу кипятили 90 минут. После охлаждения реакционную массу

(д, ⁴J = 2.4, 1H), 8.52 (д, ⁴J = 2.4, 1H), 8.92 (д, ³J = 8.4, 1H). ЯМР ¹³С (100 МГц, CDCl₃), δ : 29.7 (3C, 3(CH₃)), 31.6 (3C, 3(CH₃)), 34.7 (1C, C(CH₃)₃), 35.4 (1C, C(CH₃)₃), 115.9, 122.3, 123.7, 126.0, 127.1, 129.3 (2C, Ph), 130.5 (2C, Ph), 132.1, 132.2, 134.4, 135.8, 137.1, 139.0, 141.8, 142.1, 155.3, 157.2, 172.2. Спектр ЯМР ¹⁹F (376 МГц, CDCl₃), δ : –131.75 (м). ЯМР ¹¹B (128 МГц, CDCl₃), δ : 2.00 (м). Масс-спектр (EI), m/z (I_{отн}, %): 494 (14) [M+2]⁺, 493 (15) [M+1]⁺, 492 (38) [M]⁺, 480 (11), 479 (38), 478 (39), 477 (100) [M–CH₃]⁺, 476 (26), 458 (10), 457 (26), 441 (11), 401 (21), 207 (14). С28H₂₈BClF₂N₂O (492.80). Вычислено, %: C 63.12, H 3.18, N 7.36; найдено, %: C 63.40, H 3.28, N 7.25.

ВF2 комплекс 2-(2-гидрокси-3,5-ди(*t*-бутил)фенил)-4-(2-хлорфенил)-6-хлорхиназолин (69i).

Кипятили 60 минут. После охлаждения раствор упаривали, продукт извлекали гексаном. Выход 58 %, Т_{пл} 240–242 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 1.34 (с, 9H, 3CH₃), 1.54 (с, 9H, 3CH₃), 7.52–7.69 (м, 6H), 7.97 (дд, ³J = 9.3, ⁴J = 2.2, 1H), 8.41 (д, ⁴J = 2.4, 1H), 8.89 (д, ³J = 9.2, 1H). ЯМР ¹³С (100 МГц,

CDCl₃), δ: 29.7, 29.9, 31.5, 34.7, 35.4, 115.8, 123.1, 124.0, 125.9, 126.8, 127.5, 130.8, 131.0, 132.1, 132.5, 132.9, 134.6, 134.7, 137.6, 139.0, 141.2, 142.3, 155.3, 157.6, 171.2. ЯМР ¹⁹F (376 МГц, CDCl₃), δ: –131.23 (м). ЯМР ¹¹В (128 МГц, CDCl₃), δ: 1.97 (м). Масс-спектр (EI), m/z (І_{отн}, %):

528 (25) [M+2]⁺, 527 (16) [M+1]⁺, 526 (37) [M]⁺, 515 (13), 513 (69), 512 (46), 511 (100) [M-CH₃]⁺, 510 (25), 493 (113), 491 (19), 437 (12), 435 (18), 57 (25), 41 (16). С₂₈H₂₇BCl₂F₂N₂O (527.24). Вычислено, %: С 63.78, H 5.16, N 5.31; найдено, %: С 63.76, H 5.19, N 5.33.

ВF2 комплекс 2-(2-гидрокси-5-метоксифенил)-4-фенилхиназолина (69j). Реакционную массу

кипятили 90 минут. Выход 56 %, Т_{пл} 225–227 °C. ЯМР ¹Н (400 МГц, CDCl₃), δ: 3.86 (c, 3H, OCH₃), 7.12 (d, ³J = 8.7, 1H), 7.23 (дд, ³J = 8.8, ⁴J = 2.9, 1H), 7.67– ^{2.0Me} 7.75 (м, 4H), 7.91 (м, 2H), 8.09 (м, 2H), 8.24 (д, ³J = 8.7, 1H), 8.96 (д, ³J = 9.2, 1H). Спектр ЯМР ¹³С (100 МГц, CDCl₃), δ: 56.2 (1C, OMe), 111.5, 116.0, 120.5,

121.9, 124.3, 125.5, 128.6, 129.1 (2С, Ph), 130.7 (2С, Ph), 131.9, 136.1, 136.9, 143.4, 152.8, 153.2, 156.0, 173.6. ЯМР ¹⁹F (376 МГц, CDCl₃), δ: –130.10 (м). ЯМР ¹¹B (128 МГц, CDCl₃), δ: 2.12 (м). Масс-спектр (EI), m/z (І_{отн}, %): 377 (25) [M+1]⁺, 376 (100) [M]⁺, 375 (30), 362 (19), 361 (85) [M–CH3]⁺, 360 (21), 313 (13), 305 (13), 178 (11), 152 (13), 77 (12). C₂₁H₁₅BF₂N₂O₂ (376.17). Вычислено, %: С 67.05, H 4.02, N 10.10; найдено, %: С 66.99, H 4.18, N 10.07.

ВF₂ комплекс 2-(2-гидрокси-5-метоксифенил)-4-фенил-6-хлорхиназолина (69k). Реакцион-

ную массу кипятили 90 минут. Выход 56 %, Т_{пл} 253–255 °C. ЯМР ¹Н (400 МГц, ДМСО-d₆), δ: 3.86 (с, 3H, OCH₃), 7.12 (д, ³J = 8.7, 1H), 7.24 (м, 1H), 7.68–7.75 (м, 3H), 7.89 (м, 2H), 8.00 (дд, ³J = 9.3, ⁴J = 2.1, 1H), 8.05 (д, ⁴J = 2.9, 1H), 8.18 (д, ⁴J = 2.3, 1H), 8.90 (д, ³J = 9.3, 1H). ЯМР ¹³С (100 МГц,

СDCl₃), δ: 56.2 (1С, OMe), 111.4, 115.8, 120.6, 122.7, 125.9, 126.1, 127.3, 129.4 (2С, Ph), 130.6 (2С, Ph), 132.2, 134.8, 135.6, 137.4, 141.9, 152.9, 153.3, 156.1, 172.8. ЯМР ¹⁹F (376 МГц, CDCl₃), δ: –129.75 (м). ЯМР ¹¹B (128 МГц, CDCl₃), δ: 2.07 (м). Масс-спектр (EI), m/z (I_{отн}, %): 412 (35) [M+2]⁺, 411 (32) [M+1]⁺, 410 (100) [M]⁺, 409 (26), 397 (26), 396 (24), 395 (76), 394 (19), 339 (13), 177 (12), 152 (11), 77 (12), 49 (21). С₂₁H₁₄BClF₂N₂O₂ (410.61). Вычислено, %: С 61.43, H 3.44, N 6.82; найдено, %: С 61.39, H 3.48, N 6.80.

Заключение

1. Разработаны способы получения широкого ряда π-конъюгированных систем Д-π-А и Д-π-А-π-Д типа с хиназолиновым, хиназолин-4(3*H*)-оновым или хиноксалиновым остовом, содержащих требуемый для проведения фотофизических исследований набор заместителей с различной электронной природой, пространственным расположением и способностью к комплексообразованию.

2. Получена серия донорно-акцепторных систем на основе хиназолина с широким спектральным диапазоном излучения как в растворе, так и в твёрдом состоянии: 2-арил/тиенил-4-(морфолин-4-ил)хиназолины, 2-арил/тиенил-4-цианохиназолины, 2-арил/тиенилхиназолин-4(3*H*)-оны, 2,4-диарилхиназолины, а также 2-азинил-4-арилхиназолины.

3. Проведён анализ влияния электронодонорного и электроноакцептороного фрагментов, а также π-спейсера на фотофизические свойства 2,4-дизамещённых хиназолинов. Выявлены сольватохромные, галохромные свойства, а также нелинейно оптические свойства для некоторых производных хиназолина.

4. Синтезированы V-образные производные 2,3-бис(арилтиофен-2-ил)хиноксалина и их дибензоаналоги. Продемонстрирована хорошая чувствительность хромофоров данного класса к различным по природе нитросоединениям.

5. Построены полициклические соединения в результате Rh(III)-катализируемого аннелирования дифенилацетилена к 2-(тиофен-2-ил)хиназолин-4(3*H*)-ону. Показано, что в случае 2фенилхиназоли-4(3*H*)-она те же самые условия способствуют формированию производного бензонафтиридина в результате алкоголиза амидной группы и двойного аннелирования фенилацетилена.

6. Изучено влияние заместителей в фенольном фрагменте на явление фотоиндуцированного внутримолекулярного переноса протона в ряду 2-(2-гидроксифенил)хиназолин-4(3*H*)-онов, а также усиление эмиссии в результате агрегации.

7. Выполнен синтез BF₂ комплексов на основе 2-(2-гидроксифенил)хиназолин-4(3*H*)онов и 2-(2-гидроксифенил)-4-арилхиназолинов, отмечена интенсивная люминесценция как в растворе, так и в твёрдом состоянии, а также большие значения сдвига Стокса.

Перспективы дальнейшей разработки темы

Представленные в работе различные типы флуорофоров на основе хиназолинов, хиназолин-4(3*H*)-онов и хиноксалинов проявили высокие квантовые выходы в растворах и порошках и имеют значительный интерес для более детального изучения с целью практического применения. Выявленные закономерности позволяют в дальнейшем осуществлять дизайн и направленный синтез флуорофоров, обладающих заданными свойствами.

Список условных обозначений и сокращений

Abs – absorption, абсорбция,

AIE – aggregation-induced emission, возникновение эмиссии, вызванное агрегацией,

AIEE – aggregation-induced emission enhancement, усиление эмиссии, вызванное агрегацией,

BODIPY – boron-dipyrromethene, бордипиррометен,

COSY – correlation spectroscopy, корреляционная спектроскопия,

DDQ – 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, 2,3-дихлор-5,6-дициано-1,4-бензохинон,

Em – emission, эмиссия,

EQE – external quantum efficiency, внешняя квантовая эффективность,

Ex – excitation, возбуждение,

Hal – галоген,

HFIP - 1,1,1,3,3,3-hexafluoro-2-propanol, 1,1,1,3,3,3-гексафтор-2-пропанол

IFE – inner-filter effect, эффект внутреннего фильтра

LOD – limit of detection, предел обнаружения,

NLO properties – non-linear optical properties, нелинейно-оптические свойства,

NOESY – nuclear Overhauser effect spectroscopy, ядерная спектроскопия с эффектом Оверхаузера,

TICT – twisted intramolecular charge transfer, внутримолекулярный перенос заряда скрученного состояния,

ТФУК – трифторуксусная кислота,

А – акцептор,

ВЗМО – высшая занятая молекулярная орбиталь,

ВПЗ – внутримолекулярный перенос заряда,

Д – донор,

ДМСО – диметилсульфоксид,

ДМФА – *N*,*N*-диметилформамид,

ДНК – дезоксирибонуклеиновая кислота,

ДХЭ – дихлорэтан,

ИК-спектроскопия – инфракрасная спектроскопия;

КР-спектроскопия – спектроскопия комбинационного рассеяния,

м. д. – миллионные доли,

НСМО – низшая свободная молекулярная орбиталь,

РСА – рентгеноструктурный анализ,

ТАЗФ – термически активированная задержанная флуоресценция,

ТГФ – тетрагидрофуран,

ОСИД (OLED) – органический светоизлучающий диод (organic light-emitting diode),

УФ-спектроскопия – ультрофиолетовая спектроскопия,

Экв – эквивалент,

ЯМР – ядерный магнитный резонанс.

Список литературы

- Klikar M. и др. Alphabet-inspired design of (hetero)aromatic push-pull chromophores // Chem. Rec. 2016. T. 16, № 4. C. 1886–1905.
- Bureš F. Fundamental aspects of property tuning in push-pull molecules // RSC Adv. 2014. T. 4, № 102. C. 58826–58851.
- 3. Nosova E.V. и др. Functionalized benzazines as luminescent materials and components for optoelectronics // Russ. Chem. Rev. 2019. T. 88, № 11. C. 1128–1178.
- 4. Liu D. и др. A novel approach towards white photoluminescence and electroluminescence by controlled protonation of a blue fluorophore // Chem. Commun. 2013. T. 49, № 85. C. 10001–10003.
- 5. Mphahlele M.J. и др. Synthesis and photophysical property studies of the 2,6,8-triaryl-4-(phenylethynyl)quinazolines // Molecules. 2014. T. 19, № 1. С. 795–818.
- 6. Achelle S., Rodríguez-López J., Robin-Le Guen F. Synthesis and photophysical studies of a series of quinazoline chromophores // J. Org. Chem. 2014. T. 79, № 16. C. 7564–7571.
- Charpiot B. и др. Quinazolines: combined type 3 and 4 phosphodiesterase inhibitors // Bioorg. Med. Chem. Lett. 1998. T. 8. C. 2891–2896.
- Garcia Y. и др. Theoretical bond dissociation energies of halo-heterocycles: Trends and relationships to regioselectivity in palladium-catalyzed cross-coupling reactions // J. Am. Chem. Soc. 2009. T. 131, № 18. C. 6632–6639.
- Zhang Z. и др. Synthesis, photophysical and optoelectronic properties of quinazoline-centered dyes and their applications in organic light-emitting diodes // Dye. Pigment. 2016. T. 125. C. 299–308.
- Kim S.M. и др. A design strategy of bipolar host materials for more than 30 times extended lifetime in phosphorescent organic light-emitting diodes using benzocarbazole and quinazoline // J. Mater. Chem. C. 2017. T. 5, № 35. C. 9072–9079.
- Li B. и др. Quinazoline-based thermally activated delayed fluorecence for high-performance OLEDs with external quantum efficiencies exceeding 20% // Adv. Opt. Mater. 2019. T. 7, № 9. С. 1801496.
- 12. Li B. и др. Stable deep blue organic light emitting diodes with CIE of y < 0.10 based on quinazoline and carbazole units // Chinese Chem. Lett. 2020. T. 31, № 5. C. 1188–1192.
- Li B. и др. Realizing Efficient Single Organic Molecular White Light-Emitting Diodes from Conformational Isomerization of Quinazoline-Based Emitters // ACS Appl. Mater. Interfaces. 2020. T. 12, № 12. C. 14233–14243.
- Wang Z. и др. Preparation and photophysical properties of quinazoline-based fluorophores // RSC Adv. 2020. T. 10, № 51. С. 30297–30303.

- 15. Plaza-Pedroche R. и др. Effect of protonation on the photophysical properties of 4-substituted and 4,7-disubstituted quinazoline push-pull chromophores // Dye. Pigment. 2021. T. 185. C. 108948.
- 16. Gudeika D. и др. Carbazolyl-substituted quinazolinones as high-triplet-energy materials for phosphorescent organic light emitting diodes // Dye. Pigment. 2017. T. 142. C. 394–405.
- Deiana M. и др. A Light-up Logic Platform for Selective Recognition of Parallel G-Quadruplex Structures via Disaggregation-Induced Emission // Angew. Chemie - Int. Ed. 2020. T. 59, № 2. C. 896–902.
- 18. Chang M. и др. The design of quinoxaline based unfused non-fullerene acceptors for high performance and stable organic solar cells // Chem. Eng. J. 2022. T. 427. C. 131473.
- Jiang M.L. и др. High-Performance Organic Dyes with Electron-Deficient Quinoxalinoid Heterocycles for Dye-Sensitized Solar Cells under One Sun and Indoor Light // ChemSusChem. 2019. T. 12, № 15. C. 3654–3665.
- Gupta S., Milton M.D. Y-shaped novel AIEE active push-pull quinoxaline derivatives displaying acidochromism and use towards white light emission by controlled protonation // Dye. Pigment. 2021. T. 195. C. 109690.
- Gupta S., Milton M.D. Design and synthesis of novel V-shaped AIEE active quinoxalines for acidochromic applications // Dye. Pigment. 2019. T. 165. C. 474–487.
- Gupta S., Milton M.D. Y-shaped AIEE active quinoxaline-benzothiazole conjugate for fluorimetric sensing of nitroaromatics in aqueous media // J. Photochem. Photobiol. A Chem. 2021. T. 419, № June. C. 113444.
- 23. Cao X. и др. Triphenylamine-modified quinoxaline derivatives as two-photon photoinitiators // New J. Chem. 2009. T. 33, № 7. C. 1578–1582.
- 24. Wang W. и др. Electropolymerization of V-shape D-A-D type monomers for efficient and tunable electrochromics // Dye. Pigment. 2021. T. 194. C. 109615.
- 25. Boxi S., Jana D., Ghorai B.K. Synthesis and optical properties of bipolar quinoxalinetriphenylamine based stilbene compounds // Opt. Mater. X. 2019. T. 1, № January. C. 100013.
- Rajalakshmi A.V., Palanisami N. Investigation on Y-shaped tri-fluoromethyl substituted quinoxalines: synthesis, optical and morphological studies // Chem. Pap. 2020. T. 74, № 12. C. 4507–4516.
- 27. Yu L. и др. An efficient exciton harvest route for high-performance OLEDs based on aggregation-induced delayed fluorescence // Chem. Commun. 2018. T. 54, № 11. C. 1379–1382.
- 28. Yu L. и др. Pure Organic Emitter with Simultaneous Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence: Thermal-Controlled Triplet Recycling
Channels // Adv. Opt. Mater. 2017. T. 5, № 24. C. 1–8.

- 29. Zheng K. и др. Polymorph-Dependent Thermally Activated Delayed Fluorescence Emitters: Understanding TADF from a Perspective of Aggregation State // Angew. Chemie - Int. Ed. 2020. T. 59, № 25. C. 9972–9976.
- 30. Yu L. и др. Molecular design to regulate the photophysical properties of multifunctional TADF emitters towards high-performance TADF-based OLEDs with EQEs up to 22.4% and small efficiency roll-offs // Chem. Sci. 2018. T. 9, № 5. C. 1385–1391.
- Singh P.S., Chacko S., Kamble R.M. The design and synthesis of 2,3-diphenylquinoxaline amine derivatives as yellow-blue emissive materials for optoelectrochemical study // New J. Chem. Royal Society of Chemistry, 2019. T. 43, № 18. C. 6973–6988.
- Kanekar D.N., Chacko S., Kamble R.M. Quinoxaline based amines as blue-orange emitters: Effect of modulating donor system on optoelectrochemical and theoretical properties // Dye. Pigment. 2019. T. 167. C. 36–50.
- 33. Reddy M.R. и др. Synthesis and characterization of quinoxaline derivative for high performance phosphorescent organic light-emitting diodes // Dye. Pigment. 2018. T. 153, № January. C. 132–136.
- 34. Pashazadeh R. и др. Multicolor Luminescence Switching and Controllable Thermally Activated Delayed Fluorescence Turn on/Turn off in Carbazole-Quinoxaline-Carbazole Triads // J. Phys. Chem. Lett. 2018. T. 9, № 5. C. 1172–1177.
- Pashazadeh R. и др. Multifunctional asymmetric D-A-D' compounds: Mechanochromic luminescence, thermally activated delayed fluorescence and aggregation enhanced emission // Chem. Eng. J. 2020. T. 401. C. 125962.
- 36. Han H. и др. Novel ratio fluorescence probes for selectively detecting zinc ion based on Y-type quinoxaline framework // J. Lumin. 2017. T. 183. C. 513–518.
- 37. More Y.W. и др. Proton triggered colorimetric and fluorescence response of a novel quinoxaline compromising a donor-acceptor system // Sensors. 2018. T. 18, № 10.
- 38. Ge Y., Huang B. Light-emitting analogues based on triphenylamine modified quinoxaline and pyridine[2,3-b]pyrazine exhibiting different mechanochromic luminescence // New J. Chem. 2021. T. 45, № 25. C. 11304–11312.
- 39. Ни М. и др. Bipolar carbazole/quinoxaline-based host materials for efficient red PhOLEDs // Dye. Pigment. 2018. T. 150. C. 185–192.
- 40. Ishi-i T., Moriyama Y. Bis(thiadiazole)quinoxaline- and bis(thiadiazole)phenanthroquinoxaline-based donor-acceptor type dyes showing simultaneous emission efficiency and color changes from molecular aggregation and twisted intramolecular charge transfer // Tetrahedron. 2017. T. 73, № 8. C. 1157–1164.

- 41. Gidron O. и др. Oligofuran-containing molecules for organic electronics // J. Mater. Chem. C. 2013. T. 1, № 28. C. 4358.
- 42. Hutchison G.R., Ratner M.A., Marks T.J. Intermolecular Charge Transfer between Heterocyclic Oligomers. Effects of Heteroatom and Molecular Packing on Hopping Transport in Organic Semiconductors // J. Am. Chem. Soc. 2005. T. 127, № 48. C. 16866–16881.
- 43. Cinar M.E., Ozturk T. Thienothiophenes, Dithienothiophenes, and Thienoacenes: Syntheses, Oligomers, Polymers, and Properties // Chem. Rev. 2015. T. 115, № 9. C. 3036–3140.
- 44. Mei J. и др. Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors // J. Am. Chem. Soc. 2013. T. 135, № 18. C. 6724–6746.
- 45. Mahadik S.S., Chacko S., Kamble R.M. 2,3-Di(thiophen-2-yl)quinoxaline Amine Derivatives:
 Yellow-Blue Fluorescent Materials for Applications in Organic Electronics // ChemistrySelect.
 2019. T. 4, № 34. C. 10021–10032.
- 46. Merkt F.K. и др. Three-Component Activation/Alkynylation/Cyclocondensation (AACC) Synthesis of Enhanced Emission Solvatochromic 3-Ethynylquinoxalines // Chem. - A Eur. J. 2018. T. 24, № 32. C. 8114–8125.
- 47. Merkt F.K., Müller T.J.J. Synthesis and electronic properties of expanded 5-(hetero)aryl-thien2-yl substituted 3-ethynyl quinoxalines with AIE characteristics // Sci. China Chem. 2018. T.
 61, № 8. C. 909–924.
- Verbitskiy E. V. и др. Synthesis and characterization of linear 1,4-diazine-triphenylamine– based selective chemosensors for recognition of nitroaromatic compounds and aliphatic amines // Dye. Pigment. 2020. T. 178. C. 1–10.
- 49. Khan I. и др. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications // Eur. J. Med. Chem. 2014. T. 76. C. 193–244.
- Kshirsagar U.A. Recent developments in the chemistry of quinazolinone alkaloids // Org. Biomol. Chem. 2015. T. 13, № 36. C. 9336–9352.
- 51. Sonawane A.D. и др. In situ air oxidation and photophysical studies of isoquinoline-fused Nheteroacenes // Org. Biomol. Chem. 2020. T. 18, № 11. C. 2129–2138.
- 52. Chatterjee S. и др. Cu-Catalyzed Direct Diversification of 2-(2-Bromophenyl)quinazolin-4(3 H)-ones through Orthogonal Reactivity Modulation // Org. Lett. 2019. T. 21, № 22. C. 9028–9032.
- 53. Lee J. Bin и др. Direct diversification of unmasked quinazolin-4(3: H)-ones through orthogonal reactivity modulation // Chem. Commun. 2017. T. 53, № 75. C. 10394–10397.
- 54. Banerji B. и др. Regioselective Synthesis of Quinazolinone-/Phenanthridine-Fused Heteropolycycles by Pd-Catalyzed Direct Intramolecular Aerobic Oxidative C-H Amination

from Aromatic Strained Amides // Chem. - A Eur. J. 2016. T. 22, № 10. C. 3506–3512.

- 55. Yu Y. и др. Modular Synthesis of Quinazolinone-Fused Phenanthridinones by a Palladium-Catalyzed Cascade C-H/N-H Arylation Process // Synth. 2016. T. 48, № 22. C. 3941–3950.
- 56. Gupta P.K. и др. Palladium-Catalyzed Synthesis of Phenanthridine/Benzoxazine-Fused Quinazolinones by Intramolecular C-H Bond Activation // Chem. A Eur. J. 2015. T. 21, № 38. C. 13210–13215.
- 57. Lu H. и др. Cross-Coupling/Annulations of Quinazolones with Alkynes for Access to Fused Polycyclic Heteroarenes under Mild Conditions // Org. Biomol. Chem. 2014. T. 12, № 5. C. 758–764.
- Kumaran S., Parthasarathy K. Cobalt(III)-Catalyzed Synthesis of Fused Quinazolinones by C-H/N-H Annulation of 2-Arylquinazolinones with Alkynes // European J. Org. Chem. 2020. T. 2020, № 7. C. 866–869.
- 59. Lingayya R. и др. Ruthenium as a Single Catalyst for Two Steps: One-Pot Ruthenium(II)-Catalyzed Aerobic Oxidative Dehydrogenation of Dihydroquinazolinones and Cross-Coupling/Annulation to give N-Fused Polycyclic Heteroarenes // Asian J. Org. Chem. 2015. T. 4, № 5. C. 462–469.
- 60. Feng Y. и др. Construction of Fused Polyheterocycles through Sequential [4 + 2] and [3 + 2]
 Cycloadditions // Org. Lett. 2017. T. 19, № 7. С. 1658–1661.
- 61. Zheng L., Hua R. Modular assembly of ring-fused and π-extended phenanthroimidazoles via C-H activation and alkyne annulation // J. Org. Chem. 2014. T. 79, № 9. C. 3930–3936.
- Zheng L. и др. Synthesis of isoquinolines and heterocycle-fused pyridines via three-component cascade reaction of aryl ketones, hydroxylamine, and alkynes // J. Org. Chem. 2012. T. 77, № 13. C. 5794–5800.
- 63. Qi Z. и др. Rhodium(III)-catalyzed annulation of arenes with alkynes assisted by an internal oxidizing N-O bond // Org. Biomol. 2015. T. 13, № 45. C. 10977–10980.
- 64. Zheng L. и др. Synthesis of Natural Product-like Polyheterocycles via One-Pot Cascade Oximation, C-H Activation, and Alkyne Annulation // J. Org. Chem. 2016. T. 81, № 19. C. 8911–8919.
- Devkota S. и др. Direct Construction of Diverse Polyheterocycles Bearing Pyrrolidinediones via Rh(III)-Catalyzed Cascade C-H Activation/Spirocyclization // Adv. Synth. Catal. 2019. Т. 361, № 24. С. 5587–5595.
- 66. Li X., Zhao M. Rhodium(III)-catalyzed oxidative coupling of 5-Aryl-1 H -pyrazoles with alkynes and acrylates // J. Org. Chem. 2011. T. 76, № 20. C. 8530–8536.
- 67. Zhang J. и др. Synthesis of C6-Substituted Isoquinolino[1,2-b]quinazolines via Rh(III)-Catalyzed C-H Annulation with Sulfoxonium Ylides // J. Org. Chem. 2020. T. 85, № 5. C.

3192–3201.

- Zhang X., Waibel M., Hasserodt J. An Autoimmolative Spacer Allows First-Time Incorporation of a Unique Solid-State Fluorophore into a Detection Probe for Acyl Hydrolases // Chem. - A Eur. J. 2010. T. 16, № 3. C. 792–795.
- 69. Zhang X.B. и др. A fluorescent chemical sensor for Fe³⁺ based on blocking of intramolecular proton transfer of a quinazolinone derivative // Talanta. 2007. T. 71, № 1. C. 171–177.
- 70. Liu L.Y. и др. Theoretical insights into excited-state intramolecular and multiple intermolecular hydrogen bonds in 2-(2-Hydroxy-phenyl)-4(3*H*)-quinazolinone // Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2019. T. 207. C. 61–67.
- 71. Wang H. и др. Deciphering the Mechanism of Aggregation-Induced Emission of a Quinazolinone Derivative Displaying Excited-State Intramolecular Proton-Transfer Properties: A QM, QM/MM, and MD Study // J. Chem. Theory Comput. 2019. T. 15, № 10. C. 5440–5447.
- 72. Shang C. и др. Tuning fluorescence behavior and ESIPT reaction of 2-(2-Hydroxy-phenyl)-4(3*H*)-quinazolinone by introducing different groups // J. Lumin. 2021. T. 235. C. 118059.
- 73. Qi Y. и др. A new interpretation of the ESIPT mechanism of 2-(benzimidazol-2-yl)-3hydroxychromone derivatives // Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2020. T. 224. C. 117359.
- 74. Liu L. и др. Design of a quinazolinone-based environment-sensitive fluorescent dye: Solvatochromic fluorescence and application for one-photon and two-photon bioimaging // Dye. Pigment. 2019. T. 165. C. 58–64.
- 75. Dwivedi B.K. и др. Substituent-directed ESIPT-coupled Aggregation-induced Emission in Near-infrared-emitting Quinazoline Derivatives // ChemPhysChem. 2018. T. 19, № 20. C. 2672–2682.
- Yang W. и др. Hydroxyphenylquinazolinone-based turn-on fluorescent probe for β-galactosidase activity detection and application in living cells // Dye. Pigment. 2018. T. 156, № 30. C. 100–107.
- 77. Sedgwick A.C. и др. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents // Chem. Soc. Rev. 2018. T. 47, № 23. C. 8842–8880.
- 78. Xing Z. и др. Recent advances in quinazolinones as an emerging molecular platform for luminescent materials and bioimaging // Org. Chem. Front. 2021. T. 8, № 8. C. 1867–1889.
- 79. Huang Z. и др. A novel fluorogenic substrate for detecting alkaline phosphatase activity in situ // J. Histochem. Cytochem. 1993. T. 41, № 2. C. 313–317.
- 80. Zhou L. и др. An ESIPT-based two-photon fluorescent probe detection of hydrogen peroxide in live cells and tissues // J. Photochem. Photobiol. B Biol. 2017. T. 167. C. 264–268.
- 81. Lindberg E., Winssinger N. High Spatial Resolution Imaging of Endogenous Hydrogen

Peroxide in Living Cells by Solid-State Fluorescence // ChemBioChem. 2016. C. 1612–1615.

- 82. Zhao Z. и др. A novel HPQ-based turn-on fluorescent probe for detection of fluoride ions in living cells // Tetrahedron Lett. 2017. T. 58, № 43. C. 4129–4132.
- 83. Zhou Y. и др. Fluorescence turn-on detection of fluoride using HPQ-silyl ether reactive probes and its in vivo application // Dye. Pigment. 2018. T. 158. C. 277–284.
- 84. Gao M. и др. Fluorescent Light-Up Detection of Amine Vapors Based on Aggregation-Induced Emission // ACS Sensors. 2016. Т. 1, № 2. С. 179–184.
- 85. Liu W. и др. An excited-state intramolecular photon transfer fluorescence probe for localizable live cell imaging of cysteine // Methods Appl. Fluoresc. 2017. T. 5, № 1.
- 86. Zhou L. и др. Localizable and photoactivatable fluorophore for spatiotemporal two-photon bioimaging // Anal. Chem. 2015. T. 87, № 11. C. 5626–5631.
- 87. Anthony S.P. Polymorph-dependent solid-state fluorescence and selective metal-ion-sensor properties of 2-(2-hydroxyphenyl)-4(3*H*)-quinazolinone // Chem. An Asian J. 2012. T. 7, № 2. C. 374–379.
- 88. Zhang W.-J. и др. 2-(2'-Hydroxyphenyl)-4(3*H*)-quinazolinone derivatives based fluorescent probes for mercury(II) via an intramolecular proton transfer mechanism // Int. J. Environ. Anal. Chem. 2012. T. 92, № 7. C. 810–820.
- Khan K.M. и др. Synthesis and β-glucuronidase inhibitory activity of 2-arylquinazolin-4(3H)ones // Bioorganic Med. Chem. 2014. T. 22, № 13. C. 3449–3454.
- 90. Hecht M. и др. Fluorinated boron-dipyrromethene (BODIPY) dyes: Bright and versatile probes for surface analysis // ChemistryOpen. 2013. T. 2, № 1. С. 25–38.
- 91. Li W. и др. Phenanthro[9,10-d]imidazole-quinoline boron difluoride dyes with solid-state red fluorescence // Org. Lett. 2013. T. 15, № 7. С. 1768–1771.
- 92. Frath D. и др. Luminescent materials: Locking π-conjugated and heterocyclic ligands with boron(III) // Angew. Chemie Int. Ed. 2014. T. 53, № 9. C. 2290–2310.
- 93. Liao C.-W., Rao M. R., Sun S.-S. Structural diversity of new solid-state luminophores based on quinoxaline-β-ketoiminate boron difluoride complexes with remarkable fluorescence switching properties // Chem. Commun. 2015. T. 51, № 13. C. 2656–2659.
- 94. Wu Z. и др. Nontraditional π Gelators Based on β-Iminoenolate and Their Difluoroboron Complexes: Effect of Halogens on Gelation and Their Fluorescent Sensory Properties Towards Acids // Chem. - A Eur. J. 2017. T. 23, № 8. C. 1901–1909.
- 95. Zakrzewska A. и др. Substituent effects on the photophysical properties of fluorescent 2benzoylmethylenequinoline difluoroboranes: A combined experimental and quantum chemical study Dedication: This publication is dedicated to the memory of Prof. Jerzy Pączkowski. // Dye. Pigment. 2013. T. 99, № 3. C. 957–965.

- 96. Ošmiałowski B. и др. Influence of substituent and benzoannulation on photophysical properties of 1-benzoylmethyleneisoquinoline difluoroborates // J. Org. Chem. 2015. T. 80, № 4. C. 2072– 2080.
- 97. Grabarz A.M. и др. Photophysical Properties of Phenacylphenantridine Difluoroboranyls: Effect of Substituent and Double Benzannulation // J. Org. Chem. American Chemical Society, 2017. T. 82, № 3. C. 1529–1537.
- 98. Jędrzejewska В. и др. Influence of the Nature of the Amino Group in Highly Fluorescent Difluoroborates Exhibiting Intramolecular Charge Transfer // J. Org. Chem. 2018. T. 83, № 15. C. 7779–7788.
- 99. Xia M., Wu B., Xiang G. Synthesis, structure and spectral study of two types of novel fluorescent BF2 complexes with heterocyclic 1,3-enaminoketone ligands // J. Fluor. Chem. 2008. T. 129, № 5. C. 402–408.
- 100. Yao Q.-C. и др. Study on the structure–property relationship in a series of novel BF2 chelates with multicolor fluorescence // J. Organomet. Chem. 2013. T. 743. C. 1–9.
- 101. Ma R.-Z. и др. Synthesis, characterization and photoluminescence properties of strong fluorescent BF₂ complexes bearing (2-quinolin-2-yl)phenol ligands // J. Fluor. Chem. Elsevier B.V., 2012. T. 137. C. 93–98.
- Balijapalli U., Iyer S.K. Synthesis and Optical Properties of a Series of Green-Light-Emitting 2-(4-Phenylquinolin-2-yl)phenol-BF₂ Complexes (Boroquinols) // European J. Org. Chem. 2015. T. 2015, № 23. C. 5089–5098.
- 103. Zhou J. и др. Asymmetric Difluoroboron Quinazolinone-Pyridine Dyes with Large Stokes Shift: High Emission Efficiencies Both in Solution and in the Solid State // Chem. - A Eur. J. 2018. T. 24, № 68. C. 17897–17901.
- 104. Zhou J. и др. Synthesis and Luminescent Properties of 6-Methoxy-quinazolinone-pyridine Difluoroboron Dyes // Chinese J. Org. Chem. 2019. T. 39, № 5. C. 1444–1449.
- 105. Dwivedi B.K. и др. Controlling Aggregation and Excited-State Intramolecular Proton Transfer in BODIPYs by Incorporation of 2-(2-Hydroxyphenyl)quinazoline and Variation of Substituents // J. Phys. Chem. C. 2020. T. 124, № 28. C. 15523–15532.
- 106. Wang C. и др. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: From mechanisms to rational designs of bright and sensitive fluorophores // Chem. Soc. Rev. 2021. T. 50, № 22. C. 12656–12678.
- 107. Abdel-Jalil R.J., Voelter W., Saeed M. A novel method for the synthesis of 4(3*H*)quinazolinones // Tetrahedron Lett. 2004. T. 45, № 17. C. 3475–3476.
- 108. Kopchuk D.S. и др. The Extension of Conjugated System in Pyridyl-Substituted Monoazatriphenylenes for the Tuning of Photophysical Properties // Chem. Heterocycl. Compd.

2014. T. 50, № 6. C. 871–879.

- 109. Abreu A.S. и др. Sonogashira cross-couplings of dehydroamino acid derivatives and phenylacetylenes // European J. Org. Chem. 2004. № 19. С. 3985–3991.
- 110. Ooyama Y. и др. Specific solvatochromism of D–π-A type pyridinium dyes bearing various counter anions in halogenated solvents // Tetrahedron. 2013. T. 69, № 6. C. 1755–1760.
- 111. Melhuish W.H. Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute // J. Phys. Chem. 1961. T. 65, № 2. C. 229–235.
- Borisevich N.A., Zelinsky V. V., Neporent B.S. Reports of USSR Academy of Sciences. // Reports USSR Acad. Sci. 1954. T. XCIV. C. 37–39.
- 113. Nigam S., Rutan S. Principles and Applications of Solvatochromism // Appl. Spectrosc. 2001.
 T. 55, № 11. C. 362A-370A.
- 114. Sun P. и др. Compound AD110 Acts as Therapeutic Management for Alzheimer's Disease and Stroke in Mouse and Rat Models // ACS Chem. Neurosci. 2020. T. 11, № 6. С. 929–938.
- 115. Hu, Wenhui; Zhong, Guifa; Yang, Ling; Xu H. US2013/245033, A1: пат. US2013/245033, A1 USA. 2013.
- 116. Miyashita А. и др. Preparation of Heteroarenecarbonitriles by Reaction of Haloheteroarenes with Potassium Cyanide Catalyzed by Sodium p-Toluenesulfinate // Heterocycles. 1994. Т. 39, № 1. С. 345.
- 117. Karami B., Khodabakhshi S. A facile synthesis of phenazine and quinoxaline derivatives using magnesium sulfate heptahydrate as a catalyst // J. Serbian Chem. Soc. 2011. T. 76, № 9. C. 1191–1198.
- 118. Go A. и др. One-pot synthesis of quinoxalines from reductive coupling of 2-nitroanilines and 1,2-diketones using indium // Tetrahedron. 2015. T. 71, № 8. C. 1215–1226.
- Sasaki S., Drummen G.P.C., Konishi G.I. Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry // J. Mater. Chem. C. 2016. T. 4, № 14. C. 2731–2743.
- Reichardt C. Solvatochromic dyes as solvent polarity indicators // Chem. Rev. 1994. T. 94, № 8.
 C. 2319–2358.
- 121. Brixner T. и др. Exciton Transport in Molecular Aggregates From Natural Antennas to Synthetic Chromophore Systems // Adv. Energy Mater. 2017. T. 7, № 16. C. 1–33.
- 122. Deshmukh A.P. и др. Design Principles for Two-Dimensional Molecular Aggregates Using Kasha's Model: Tunable Photophysics in near and Short-Wave Infrared: research-article // J. Phys. Chem. C. 2019. T. 123, № 30. C. 18702–18710.
- 123. Abdollahi-Alibeik M., Shabani E. Nanocrystalline sulfated zirconia as an efficient solid acid catalyst for the synthesis of 2,3-dihydroquinazolin-4(1*H*)-ones // J. Iran. Chem. Soc. 2014. T.

11, № 2. C. 351–359.

- 124. Tímea M. и др. Synthesis of 2-(hetero)arylquinazolinones in aqueous media // Arkivoc. 2016.
 T. 2016, № 6. С. 247–258.
- 125. Jiao Y. и др. Effects of meta or para connected organic dyes for dye-sensitized solar cell // Dye.
 Pigment. Elsevier, 2018. T. 158. C. 165–174.
- 126. Wu Y., Zhu W. Organic sensitizers from D-π-A to D-A-π-A: Effect of the internal electronwithdrawing units on molecular absorption, energy levels and photovoltaic performances // Chem. Soc. Rev. 2013. T. 42, № 5. C. 2039–2058.
- 127. Quinton C. и др. Triphenylamine/tetrazine based π-conjugated systems as molecular donors for organic solar cells // New J. Chem. 2015. T. 39, № 12. C. 9700–9713.
- 128. Quinton C. и др. Novel s-tetrazine-based dyes with enhanced two-photon absorption crosssection // J. Mater. Chem. C. 2015. T. 3, № 32. C. 8351–8357.
- 129. Achelle S. и др. Luminescence behavior of protonated methoxy-substituted diazine derivatives: Toward white light emission // J. Phys. Chem. C. 2016. T. 120, № 47. C. 26986–26995.
- 130. Wang J. μ др. Solution-processed aggregation-induced delayed fluorescence (AIDF) emitters based on strong π -accepting triazine cores for highly efficient nondoped OLEDs with low efficiency roll-off // Org. Electron. Elsevier, 2019. T. 65. C. 170–178.
- 131. Хие J. и др. High-Efficiency Near-Infrared Fluorescent Organic Light-Emitting Diodes with Small Efficiency Roll-Off: A Combined Design from Emitters to Devices // Adv. Funct. Mater. 2017. T. 27, № 45.
- 132. Layeva A.A. и др. Synthesis of 5-and 7-fluoroquinazolin-4(1*H*)-ones // Russ. Chem. Bull. 2007.
 Т. 56. С. 1821–1827.
- 133. W. N. Harnish A.A.R. US3998951 A. 1976.
- 134. Mukhopadhyay A., Maka V.K., Moorthy J.N. Remarkable influence of 'phane effect' on the excited-state properties of cofacially oriented coumarins // Phys. Chem. Chem. Phys. 2017. T. 19, № 6. C. 4758–4767.
- 135. Mataga N., Kaifu Y., Koizumi M. Solvent Effects upon Fluorescence Spectra and the Dipolemoments of Excited Molecules // Bull. Chem. Soc. Jpn. 1956. T. 29, № 4. C. 465–470.
- 136. Lippert E. Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand // Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für Phys. Chemie. 1957. T. 61, № 8. C. 962–975.
- Lakowicz J.R. Principles of Fluorescence Spectroscopy. Third Edit / под ред. Lakowicz J.R. Boston, MA: Springer US, 2006. 954 с.
- J.F. Rabek. Progress in photochemistry and photophysics, vol. V. Boca Raton: CRC Press, 2016. 1–208 c.

- 139. Bai X.J. и др. A «turn-on» fluorescent chemosensor for the detection of Zn2+ ion based on 2-(quinolin-2-yl)quinazolin-4(3*H*)-one // Heterocycl. Commun. 2018. T. 24, № 3. C. 135–139.
- 140. Valeur B., Berberan-Santos M.N. Molecular Fluorescence. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012.
- 141. Fabbrizzi L. и др. Sensing of transition metals through fluorescence quenching or enhancement: A review // Analyst. 1996. T. 121, № 12. C. 1763–1768.
- Borase P.N., Thale P.B., Shankarling G.S. Dihydroquinazolinone based "turn-off" fluorescence sensor for detection of Cu²⁺ ions // Dye. Pigment. 2016. T. 134. C. 276–284.
- 143. Díaz F.R. и др. Synthesis, characterization, electropolymerization, and theoretical study of 2,3di-(2-thienyl)quinoxaline // Polym. Bull. 2006. T. 56, № 2–3. C. 155–162.
- 144. Burrows H.D. и др. Fluorescence Study of Dehydroabietic Acid-Based Bipolar Arylamine-Quinoxalines // J. Fluoresc. 2006. T. 16, № 2. C. 227–231.
- 145. Shrivastava A., Gupta V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods // Chronicles Young Sci. 2011. T. 2, № 1. C. 21.
- 146. Verbitskiy E. V. и др. New V-shaped push-pull systems based upon 4,5-di(hetero)aryl substituted pyrimidines: their synthesis and application for the detection of nitroaromatic explosives // Arkivoc. 2016. T. 2016, № 3. C. 360–373.
- 147. Tanwar A.S. и др. Inner Filter Effect and Resonance Energy Transfer Based Attogram Level Detection of Nitroexplosive Picric Acid Using Dual Emitting Cationic Conjugated Polyfluorene // ACS Sensors. 2018. T. 3, № 8. C. 1451–1461.
- 148. Sahoo S.K. и др. Iron(iii) selective molecular and supramolecular fluorescent probes // Chem. Soc. Rev. 2012. T. 41, № 21. C. 7195–7227.
- 149. Sheldrick G.M. A short history of SHELX // Acta Crystallogr. Sect. A Found. Crystallogr. 2008. T. 64, № 1. C. 112–122.
- 150. Dolomanov O. V. и др. OLEX2: A complete structure solution, refinement and analysis program // J. Appl. Crystallogr. International Union of Crystallography, 2009. T. 42, № 2. C. 339–341.
- 151. Ulrich G. и др. BODIPY-bridged push-pull chromophores for nonlinear optical applications // ChemPhysChem. 2014. T. 15, № 13. C. 2693–2700.
- 152. Yale H.L., Kalkstein M. Substituted 2,3-Dihydro-4(1H)-quinazolinones. A New Class of Inhibitors of Cell Multiplication // J. Med. Chem. 1967. T. 10, № 3. C. 334–336.
- 153. Zhan D. и др. A recyclable CuO-catalyzed synthesis of 4(3H)-quinazolinones // RSC Adv. 2013. T. 3, № 24. C. 9325–9329.
- 154. Mei Q. и др. A highly selective and naked-eye sensor for Hg²⁺ based on quinazoline-4(3H)thione // New J. Chem. 2012. T. 36, № 9. С. 1879–1883.

- 155. Meerwein H. и др. 34. Hans Meerwein, Peter Laasch, Rudolf Mersch und Joachim Nentwig: uber Nitriliumsalze, 11. Mitteil.l: Eine neue Chinazolinsynthese. 1955.
- 156. Wang X. и др. Copper-Catalyzed Synthesis of Substituted Quinazolines from Benzonitriles and 2-Ethynylanilines via Carbon-Carbon Bond Cleavage Using Molecular Oxygen // J. Org. Chem. 2018. T. 83, № 10. C. 5458–5466.
- 157. Chen J. и др. Gallium(III) triflate-catalyzed one-pot selective synthesis of 2,3dihydroquinazolin-4(1*H*)-ones and quinazolin-4(3*H*)-ones // Tetrahedron Lett. 2008. T. 49, № 23. C. 3814–3818.
- 158. Yu X. и др. Synthesis of Quinazolin-4(3*H*)-ones via the Reaction of 2-Halobenzamides with Nitriles // J. Org. Chem. 2018. T. 83, № 17. C. 10352–10358.
- 159. Mhaske S.B., Argade N.P. Regioselective Quinazolinone-Directed Ortho Lithiation of Quinazolinoylquinoline: Practical Synthesis of Naturally Occurring Human DNA Topoisomerase I Poison Luotonin A and Luotonins B and E // J. Org. Chem. 2004. T. 69, № 13. C. 4563–4566.
- 160. S. Basf, P. Murer, T. Gebner, C. Eickhoff, J. Birnstock, F. May K.K. WO2016/20516. 2016.
- 161. Thomas R. и др. Novel Tin Complexes Containing an Oximato Ligand: Synthesis, Characterization, and Computational Investigation // Helv. Chim. Acta. 2013. T. 96, № 9. C. 1740–1749.
- 162. Dornow A., Jurgen K., Dietrich H. Alfred dornow, klaus jurgen fust. 1957.
- 163. Mastalerz M. и др. Conjugated oligothienyl dendrimers based on a pyrazino[2,3-g]quinoxaline core // Org. Lett. 2009. T. 11, № 20. C. 4500–4503.
- 164. Ch X. и др. Influence of Bond Fixation in Benzo-Annulated N -Salicylideneanilines and Their ortho -C (dO) X Derivatives. 2007. C. 5598–5607.
- 165. Zhang J. и др. CuO Nanoparticles Catalyzed Simple and Efficient Synthesis of 2, 3-Dihydroquinazolin-4(1*H*)-ones and Quinazolin-4(3*H*)-ones under Ultrasound Irradiation in Aqueous Ethanol under Ultrasound Irradiation in Aqueous Ethanol // Tetrahedron. 2014. T. 4.
- 166. Richard P. 2-Aryl-4(3*H*)quinazolinones // J. Heterocycl. Chem. 1971. T. 8, № 9. C. 699–702.
- 167. Deligeorgiev T.G. и др. Novel environmentally benign procedure for the synthesis of 2-aryland 2-hetaryl-4(3*H*)-quinazolinones // Color. Technol. 2010. T. 126, № 1. С. 24–30.
- 168. Ghorbani-Vaghei R. и др. Efficient synthesis of novel quinazoline-4(1H)-one derivatives by Nhalosulfonamides // Res. Chem. Intermed. Springer Netherlands, 2017. T. 43, № 2. C. 983–993.
- 169. Saad S.M. и др. A new and facile CuCl₂·2H₂O-catalyzed one-pot three-component synthesis for quinazolines // Monatshefte fur Chemie. 2015. T. 146, № 11. C. 1877–1880.
- 170. Panja S.K., Dwivedi N., Saha S. I₂-Catalyzed three-component protocol for the synthesis of quinazolines // Tetrahedron Lett. 2012. T. 53, № 46. C. 6167–6172.

Приложения

Рисунок 59 – Спектры NOESY 1 H- 1 H (a), COSY 1 H- 1 H (b) в DCCl₃ соединения 20а

Приложение Б

Сопоставление фотофизических характеристик 4-замещённых 2-арил(тиенил)хиназолинов измеренных в толуоле.

	4-(морфолин-4-ил)хиназолины			4-цианохиназолины			хиназолин-4(3 <i>H</i>)-оны					
π-спейсер	<i>π</i> -спейсер			CN ≁			OH ~					
	соед.	λabs, HM	λem, HM	Φ _F , %	соед.	λabs, HM	λem, HM	Φ _F , %	соед.	λabs, HM	λem, HM	ΦF, %
∑s, _	8 e	405	476	71	11a	402, 475 пл	485, 670	< 1	14a	410	490	71
	8 f	398	462	60	11b	397, 440 пл	485, 623	5	14b	405	470	82
	8g	366	441	45	11c	365	452, 538	22	14c	370	430, 456	26
\mathbf{x}	20a	365	443	69	23a	370, 425 пл	460, 600	7	25a	370	450	84
	20b	363	430	75	23b	368, 415 пл	465, 555	< 1	25b	370	445	89
\checkmark	20c	341	400	12					25c	342	415	3
	21a	315	457	8					26a	310	460	14
	21b	325	419	14	24b	337	468	15	26b	328	430	23
	21c	341	429	< 1					26c	310	430	< 1
)))	29	374	427	56	30	432	570	15	28	367	430	71

Приложение В

Приложение Г торноние фотофизических хоронтористик 4 роконских у сруги (ротории) у инструми со накорони и р. тор

Сопоставление фотофизических характеристик 4-замещённых 2-арил(гетерил)хиназолинов, измеренных в толуоле.

Ar(Het)	Донор	Соед.	λabs, HM	λem, HM	Ф _F , %, (λех, нм)
	Et ₂ N	35a	391	448	82
	Ph ₂ N	35b	387	468	59
	Карбазол-9-ил	35c	341	431	< 1
	Et ₂ N	40a	405	468	63
	Ph ₂ N	40b	393	488	70
	Карбазол-9-ил	40c	340	446	31
	Me ₂ N	40d	_ ^a	461	69
	Ph ₂ N	40e	_ ^a	482	65
	Карбазол-9-ил	40f	- ^a	441	15
+	Ph ₂ N	45	390	472	54
	Et ₂ N	4 6a	398	461	39
	Ph ₂ N	46b	394	472	46
	Карбазол-9-ил	46c	340	450	< 1

^ане регистрировали

Приложение Д

Параметр	8b	8f (a)	8f (b)	11a	29		
CCDC	1457383	2110736	2110738	1540006	2111404		
Цвет и форма	Жёлтая призма	Светло жёлтая	Тёмно жёлтая	Красная призма	Жёлтая призма		
кристалла	_	призма	призма		_		
Размер кристал-	0.25×0.20×0.15	0.41×0.25×0.11	0.46×0.32×0.27	0.38×0.26×0.17	0.49×0.37×0.18		
ла/мм							
Молекулярная	$C_{20}H_{17}N_2OS_2$	C24H28N4OS	C24H29N4OS	$C_{22}H_{20}N_4S$	$C_{20}H_{24}N_4O$		
формула	02011/11/3002	03411281 (400	03411281 (400	02311201 (40	03011201140		
Молекулярный	379.50	540.66	540.66	384.49	458.55		
вес							
T/K	295(2)	293(2)	293(2)	295(2)	293(2)		
λ/pm	71.073	71.073	71.073	154.184	71.073		
Сингония	орторомбиче-	триклинная	триклинная	моноклинная	триклинная		
	ская	-			_		
Пространствен-	Pbca	P-1	<i>P</i> -1	<i>P21/c</i>	<i>P</i> -1		
ная группа							
a/Å	13.7737(11)	9.4351(6)	9.5980(6)	11.566(4)	10.4128(10)		
b/Å	12.1284(7)	11.4261(7)	10.0534(7)	9.527(6)	11.2385(12)		
c/Ă	21.504(2)	13.5847(9)	14.5728(9)	18.088(9)	12.7102(11)		
а/град	90.00	93.269(5)	82.248(5)	90.00	113.065(9)		
β/град	90.00	104.945(6)	87.948(5)	90.57(4)	112.872(9)		
ү/град	90.00	100.442(5)	80.919(5)	90.00	91.496(8)		
V, A^3	3592.3(5)	1383.22(16)	1375.70(16)	1993.1(18)	1232.6(2)		
Z	8	2	2	4	2		
μ/MM^{-1}	7.086	0.152	0.153	1.554	0.077		
<i>F(000)</i>	1584	568	568	808	484		
20-область ска-	2.34 - 30.740	3.648 - 30.496	3.522 - 30.494	3.82 - 65.95	3.495 - 30.899		
нирования/град	11410	12092	10057	15(0)	11007		
Оощее количе-	11419	13082	12856	15626	11897		
Ство отражении	4440	7411	7228	2/11	6672		
число незави-	4449	/411	1320	5411	0072		
ний							
Число отраже-	2513	3833	3962	1747	2975		
ний с $I > 2\sigma(I)$	2515	5055	5702	17.17	2715		
Число уточняе-	284	361	446	303	349		
мых параметров					• •		
GOOF ($\pi o F_2$)	1.009	1.033	1.021	1.034	1.009		
R факторы (по отражениям с $I > 2\sigma(I)$)							
R_1	0.0624	0.0735	0.0583	0.0481	0.0608		
wR_2	0.1596	0.1843	0.1329	0.1026	0.1233		
<i>R</i> факторы (по всем отражениям)							
R_1	0.1177	0.1354	0.1136	0.0851	0.1471		
wR_2	0.1965	0.2486	0.1859	0.1076	0.1821		
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, e \text{Å}^{-3}$	0.342 /-0.358	0.62 /-0.36	0.26/-0.35	0.261/-0.171	0.21/-0.20		

Таблица 25 – Данные рентгеноструктурного анализа

Таблица 26 – Данные рентгеноструктурного анализа. Продолжение.

Параметр	30	35b	35c	51a	51b		
CCDC	2141460	2095186	1547817	1968924	1974620		
Цвет и форма кристалла	Красный блок	Жёлтая призма	Светло жёлтая призма	Красная призма	Оранжевая призма		
Размер кристал- ла/мм	0.45×0.35×0.25	0.49×0.41×0.28	0.25×0.2×0.15	0.48×0.37×0.25	0.41×0.26×0.11		
Молекулярная формула	$C_{27}H_{18}N_4$	C ₃₂ H ₂₃ N ₃	$C_{32}H_{21}N_3$	$C_{36}H_{36}N_4S_2$	$C_{52}H_{36}N_4S_2$		
Молекулярный вес	398.45	449.53	447.54	588.81	780.97		
T/K	295(2)	293(2)	295(2)	295(2)	295(2)		
λ/pm	71.073	71.073	154.184	71.073	71.073		
Сингония	триклинная	моноклинная	триклинная	моноклинная	триклинная		
Пространствен-	P-1	P2(1)/n	P-1	P2(1)/n	P-1		
ная группа							
a/Å	9,1982(9)	12.6011(13)	9.008(6)	10.3323(8)	9,5931(11)		
h/Å	9,8103(10)	10.1982(7)	9.415(9)	20.2294(11)	13.8511(16)		
c/Å	12.9224(11)	18.895(2)	22.97(2)	15.9614(15)	15.4934(17)		
a/2pad	96.908(8)	90	85.33(7)	90.00	84.805(9)		
в/град	107.028(8)	100.876(11)	86.14(6)	108.740(8)	82,456(9)		
v/2pad	105.834(9)	90	76.88(6)	90.00	81.572(10)		
V. Å ³	1046.95(18)	2384.6(4)	1889(3)	3159.3(4)	2013.5(4)		
7	2	4	3	4	2013.5(1)		
<u>и</u> /мм ⁻¹	0.076	0.074	0.542	0.200	0.175		
F(000)	416	944	702	1248	816		
20-область ска- нирования/град	3.61–30.98	7.18 - 62.2	3.87 - 67.11	3.95 - 25.87	3.51 - 26.37		
Общее количе- ство отражений	8589	17243	21883	22080	14028		
Число незави- симых отраже- ний	5685	6475	6459	8335	8178		
Число отраже- ний с <i>I</i> > 2σ(<i>I</i>)	2512	2634	4491	4157	2883		
Число уточняе- мых параметров	297	349	946	436	523		
GOOF (по <i>F</i> 2)	0.991	1.004	1.0188	1.015	0.943		
R факторы (по отражениям с $I > 2\sigma(I)$)							
R_1	0.0668	0.0573	0.0505	0.0630	0.0731		
wR_2	0.1481	0.1325	0.1292	0.1584	0.0940		
<i>R</i> факторы (по всем отражениям)							
R_1	0.1425	0.1563	0.0633	0.1317	0.0940		
wR ₂	0.2096	0 1933	0.1339	0.2223	0.1416		
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}$, eÅ ⁻³	0.263/-0.203	0.15/-0.15	0.1943/-0.2300	0.311/-0.341	0.248/-0.248		

Таблица 27 – Данные рентгеноструктурного анализа. Продолжение.

Параметр	60a	60b	62	66e	69e		
CCDC	2004850	2004711	1999651	1887121	1959115		
Цвет и форма кристалла	Оранжевый блок	Жёлтая призма	Жёлтая призма	Светло жёлтая призма	Жёлтая призма		
Размер кристал- ла/мм	0.47×0.31×0.11	0.45×0.35×0.25	0.44×0.36×0.27	0.44×0.26×0.13	0.48×0.39×0.31		
Молекулярная формула	$C_{26}H_{16}N_2OS$	C ₂₆ H ₁₅ BrN ₂ OS	$C_{45}H_{28}F_6N_2O_2$	$C_{22}H_{25}BF_2N_2O_2$	$C_{20}H_{11}BCl_2F_2N_2O$		
Молекулярный вес	404.47	483.37	742.69	398.25	415.02		
T/K	295(2)	295(2)	295(2)	295(2)	295(2)		
λ/pm	71.073	71.073	71.073	71.073	71.073		
Сингония	триклинная	триклинная	триклинная	моноклинная	моноклинная		
Пространствен-	<i>P</i> -1	P-1	P-1	P21/n	C2/c		
ная группа							
a/Å	8.9557(7)	12.3877(11)	10.8731(13)	5.8565(5)	22,5039(13)		
b/Å	9.9486(8)	13.2907(12)	12.7566(16)	19.0571(13)	10.7760(6)		
c/Å	22.5422(17)	14.7438(13)	14.5064(19)	18.0895(18)	14,4731(9)		
a/2pad	98.812(6)	105.626(8)	66.069(12)	90.00	90.00		
в/град	91.216(9)	107.407(8)	86.317(10)	95,777(7)	92.243(5)		
<i>y/2pad</i>	97 590(6)	103 726(8)	85 015(10)	90.00	90.00		
V. Å ³	1965.6(3)	2092.9(3)	1831.2(4)	2008.7(3)	3507.1(4)		
7	4	4	2	4	8		
<u>//</u> MM ⁻¹	0.186	2.085	0 104	0.096	0.405		
F(000)	840	976	764	840	1680		
20-область ска- нирования/град	3.50 - 31.01	3.64 - 28.28	3.50 - 26.37	3.56 - 30.86	3.54 - 31.00		
Общее количе- ство отражений	17949	21802	12984	13192	9815		
Число незави- симых отраже- ний	10435	10261	7267	5436	4607		
Число отраже- ний с <i>I</i> > 2σ(<i>I</i>)	4298	4046	2594	2529	3057		
Число уточняе- мых параметров	565	560	508	307	265		
GOOF ($\pi o F_2$)	1.001	0.982	1.001	1.000	1.015		
R факторы (по отражениям с $I > 2\sigma(I)$)							
R_1	0.0740	0.0624	0.0718	0.0661	0.0592		
wR ₂	0.1492	0.1255	0.1256	0.1577	0.1677		
<i>R</i> факторы (по всем отражениям)							
R_1	0.1891	0.1786	0.1986	0.1497	0.0882		
$\frac{1}{wR_2}$	0.2254	0.1862	0.1826	0.2154	0.2107		
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, e \text{Å}^{-3}$	0.366/-0.364	0.644/-0.648	0.200/-0.268	0.200/-0.316	0.295/-0.483		

Параметр		69g	69h		
	CCDC	1852405	1852406		
	Цвет и форма	Жёлтая призма	Жёлтая призма		
	кристалла				
	Размер кристал-	0.47×0.36×0.28	0.45×0.31×0.10		
	ла/мм				
	Молекулярная	CasHaoBEaNaO	CasHasBCIFaNaO		
	формула	028112901 21120	C281128DCH 21120		
	Молекулярный	458.34	492.78		
	вес				
	T/K	295(2)	295(2)		
	λ/pm	71.073	71.073		
	Сингония	моноклинная	моноклинная		
	Пространствен-	P21/c	C2/c		
	ная группа				
	a/Å	13.5003(8)	28.3310(19)		
	b/Å	17.2567(12)	11.4180(7)		
	c/Å	21.1554(18)	16.3509(16)		
	а/град	90.00	90.00 104.418(8)		
	β/град	91.500(6)			
у/град		90.00	90.00		
	<i>V</i> , Å ³	4926.9(6)	5122.7(7)		
	Ζ	8	8		
	μ/MM^{-1}	0.085	0.187		
<i>F(000)</i> 20-область ска-		1936	2064		
		3.40-26.37	3.79–29.56		
	нирования/град				
Общее количе-		28454	24548		
	ство отражений				
	Число незави-	10050	7269		
	симых отраже-				
	НИИ	5172	2077		
	число отраже-	51/5	38//		
	Ний с $I > 20(I)$	656	212		
	число уточняе-	050	343		
	$GOOE(\pi_0 E_0)$	1.006	1 003		
		1.000	1.005		
	R_1	0.0630	0.0583		
wR ₂		0.0050	0.1551		
		м отражениям)	0.1331		
	R_1	0.1322	0.1199		
	wR_2	0.2072	0.2101		
	$\Delta \rho_{max} / \Delta \rho_{min} e Å^{-3}$	0.219/-0.243	0.262/-0.290		
		0.217, 0.210			

Таблица 28 – Данные рентгеноструктурного анализа. Продолжение.