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Introduction 

Relevance of the research topic. Electric Power systems (EPSs) are 

undergoing a significant transformation as a result of the increasing integration of 

renewable energy resources, and the advent of the smart grid and its accompanying 

technologies. Such transformation, while it adds convenience, intelligence, and 

reduces environmental impacts, also adds dynamic and stochastic generations and 

loads that increase the systemic variability and uncertainties and so complicate the 

reliability assessment of EPSs. Reliability assessment has an important part in the 

process of adoption of EPS planning and investment [1-6]. The performance of EPS 

in providing adequate electric services within accepted standards to all points of 

consumption at any moment of time (both current and future) can be decided 

unacceptable or acceptable by reliability criteria [2-3, 7]. The reliability analysis 

approaches range from relatively simple deterministic calculations of planning reserve 

margins to rigorous probabilistic reliability indices [8-9].  

The deterministic criterion is relatively easy to implement and interpret, but 

such a worst-case based deterministic approach has a main drawback in that it does 

not adequately reflect levels of operation risk resulted from the stochastic nature and 

uncertain behavior of a power system. From this perspective, probabilistic analysis 

methods that identify power system reliability risks needs to be investigated to better 

reflect the actual system behavior. This probabilistic reliability analysis incorporates 

the effect of uncertainties of input data on the customer service through the 

probabilistic evaluation of reliability indices. The probabilistic reliability indices are 

to identify the degree of reliability of power system through estimating the risk 

(probability or how likely) and the size (the expected value of frequency, duration, 

and magnitude) of energy deficit under a variety of scenarios. Therefore, the 

probabilistic methods result in effective and realistic reliability evaluation of power 

system. The obstacles to applying these methods are primarily computational 

efficiency and the lack of realistic reliability data [9]. These obstacles have been 

significantly overcome in recent years with the development and availability of high-
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speed computation facilities and the efforts have been dedicated to collecting the 

components reliability data. 

After the 2003 Northeast blackout, the North American Power Reliability 

Corporation (NERC) and Canadian Electricity Association (CEA) have been 

organizing with electric utilities to collect reliability data and responsible for 

executing the composite power system reliability studies in North America [10-12]. 

CEA releases reports annually on the probabilistic analysis of transmission equipment 

‘s outage performance. Also, NERC has developed the Generation Availability Data 

System (GADS) and the Transmission Availability Data System (TADS) to gather 

outage data. In industry practice, probabilistic techniques for generation adequacy 

analysis have been used in nearly all regions of North America to calculate the Loss 

of Load Expectation (LOLE) which express the planned figure of outage hours per 

year. The purpose is to ensure the LOLE doesn’t exceed 1 day in 10 years when all 

uncertainties including the forced outages of thermal generators, and renewable 

resources and load uncertainty are included in the simulation [13]. In Western 

European countries, the standard LOLE value is set at a little diverse level (3 hours 

per year) [14]. European Network of Electricity Transmission System Operators 

(ENTSO-E) annually publishes a report on the Norms, requirements, and assessment 

of reliability with recommendations for solving the problems of the existing methods 

for calculating the reliability [15]. Also, in Russia in recent years, there is an 

increasing interest in the problem of calculating the reliability indices. On January 1, 

2019, the Preliminary National Standard of the Russian Federation was published: 

“304-2018: Balance reliability of power systems. Section 1. Overall regulations”, 

which forms the conceptual apparatus in the field of calculating the balance reliability 

of power systems [16]. From September 1, 2019, System Operator of the Unified 

Energy System introduced a technical report 59012820.27.010.005-2018 which 

regulates methodological instructions for carrying out calculations of balance sheet 

reliability [17], and from March 1, 2020, a national technical standard: “GOST R 

58730-2019 Unified power system and isolated power systems. Power/Energy system 

planning. Balance reliability calculations. Norms and requirements” was introduced.  
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With the continuous development of computational resources, tremendous 

amount of research has been done on developing probabilistic methods for power 

system reliability evaluation over the past several decades [18-54]. However, a trade-

off between detailed modeling and computational cost is still an important issue, 

especially with the growing complexity, uncertainty, and dimensionality of a power 

system. A frequently adopted approach for the reliability indices assessment is the 

Monte Carlo simulation (MCS) due to its merits [18-20]. MCS does not impose 

restrictions on the form of the used distribution functions and can be used for 

composite system analysis when the system is highly nonlinear or has many uncertain 

variables. Moreover, a transfer function is not inevitably required. So, it can also be 

implemented in nondifferentiable as well as nonconvex problems. The price for its 

robustness is that MCS requires a great computational effort to guarantee the accuracy 

of the reliability indices results due to the MCS approach depends on sampling the 

whole state space of input variables, regardless where are the states that represent 

events of interest i.e. failure events of the power system meeting the required demand. 

Moreover, the high reliable property of power systems and the enlarged sample space 

with the probabilistic modeling of renewable energy resources and transmission lines 

outages increase more and more the MCS computational burden.  

Researchers handled the MCS computational burden by adopting two research 

tracks: improvement of the state evaluation efficiency and the improvement of the 

sampling efficiency. The first research track is to provide high-performing 

programming patterns [21-35] for the purpose of spending less time in the state 

evaluation stage. The second track could be to develop more efficient sampling means 

[36-50] for focusing the sampling attempt in the regions of concern or approximate 

analytical methods [52-54] for representing the continuous random variables by a 

small number of the states required to be estimated. With the high reliable property of 

power systems, the improvement of the sampling efficiency is the best mean since the 

improvement of the state evaluation efficiency actually does not pay off without a 

good sampling algorithm. Thus, more efficient sampling techniques or approximate 



8 

 

 
 

analytical methods for dominating the calculation burden of the MCS method are 

addressed in this dissertation.  

The degree of scientific elaboration of the problem. A large literature, both 

scientific papers and technical reports, is available about power system reliability 

assessment and management. Considerable studies accounted for 29% articles have 

been addressed the computational efficiency of the probabilistic evaluation of power 

system reliability [55]. Rresearch on the probabilistic reliability assessment did not 

stop and continue until the present time. Among Russian publications, one should 

especially highlight the works of such scientists as: F.L. Byk, N.I. Voropai, M.A. 

Dubitsky, V.Yu. Itkin, V.G. Kitushin, G.F. Kovalev, Yu.N. Kucherov, L.M. 

Lebedeva, N.A. Manov, V.A. Nepomniachtchi, V.P. Oboskalov, M.N. Rozanov, 

Yu.N. Rudenko, I.A. Ushakov, G.A. Fedotova, M.B. Cheltsov, Yu. Chukreev, M. Yu. 

Chukreev, V.D. Shlimovich and others. The world school of reliability is mainly 

represented by such researchers as: R. Allan, R. Billinton, B. Borkowska, Yi Gao, J. 

Endrenyi, and others. In addition, there exist research groups formed within the 

Institute of Electrical and Electronics Engineers (IEEE) and the International Council 

on Large Electrical Systems (CIGRE) and other organizations, such as NERC, 

ENTSO-E and the Council of European Energy Regulators (CEER). Among the 

organizations that participated in the comparison of methods for calculating the 

reliability, algorithms and programs when used as a test, the scheme developed at the 

Siberian Power Institute (named after L.A. Melentieva), included: Siberian Power 

Engineering Institute named after L.A. L. A. Melentieva (software systems Yantar, 

Potok); Department of Energy Cybernetics of the Academy of Sciences of Moldova 

(software package, Composition); Komi Scientific Center of the Ural Branch of the 

Russian Academy of Sciences (software package, Orion) and others [56]. 

The purpose of the dissertation research is to develop computationally more 

efficient probabilistic means than the MCS method for assessing the reliability of 

power systems with conserving the high computation accuracy of the MCS method. 
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This purpose has been declaimed to diverse degrees in the publications and the 

chapters on which the dissertation is based.   

The objectives of the dissertation research.  

• Reviewing the probabilistic approaches employed to reliability assessment of the 

power systems to deduce their shortcomings and so seek for an alternative 

approach based on developing enhancement to existing methods or a totally new 

method.  

• Proposing probabilistic techniques with the following features: low computational 

time and good degree of accuracy compared with the MCS method.  

• Evaluating the effectiveness of approximate analytical methods in calculating the 

probabilistic reliability indices. 

• Developing an efficient sampling technique for focusing the sampling in the 

domains of interest in which loss of loads occurred to avoid the surplus time 

associated with the evaluation of states that make no contribution to the reliability 

indices.  

• Studying the problem of modelling accurately based on real historical data the 

uncertainties of electricity demand and weather variables and representing the 

correlation that exists among them in a probabilistic model. 

• Evaluating efficiently annual reliability indices of composite power system with 

renewable energy integrated (wind- solar) considering the stochastic 

characteristics of electricity demand and renewable energy resources. 

The object of the research includes a concentrated EPS and a composite 

power system with limited capacities of transmission lines and concentrated EPS as 

separate nodes. 

Scientific novelty of the dissertation research:  

• The proposition of new approach based on the cross entropy-based importance 

sampling (CE-IS) in order to improve the sampling efficiency and convergence 

characteristics of the MCS method. The statistical characterization of the new 

approach- named ECE-IS is presented. The ECE-IS based optimization algorithm 
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is more efficient and robust in sampling most states that are important to the 

estimators of the reliability indices than other discussed methods in literature. 

From the reported results, the proposed method contributes to accurately 

evaluating the reliability indices and further enhancing the convergence of the 

indices in comparison with other methods. Moreover, a great speed-up was 

shown in terms of computation time with respect to the standard MCS method. 

By reducing the number of samples required for the simulation and so enabling 

more time to be exhausted on evaluating each sample, the proposed method paves 

the way for further complete model of the EPS and so obtaining highly realistic 

and accurate reliability indices. 

• In the case of renewable energy reliability studies, a new approach combines the 

ECE-IS for extracting the loss of load events and the multivariate Gaussian 

mixture model (MGMM) for estimating the joint probability distribution of the 

random variables (demand and weather variables) based on real historical data to 

include the load and solar and wind power uncertainties and the dependence 

relationships among them in the reliability assessment of EPSs. The ECE-IS 

approach is proposed for approximating accurately the optimal ISD of the 

obtained MGMM and so assist IS in sampling the region of interest for the system 

reliability indicators (i.e., the region in which the weather variables have lower 

values and electricity demand has higher value). Using the ECE-IS makes the 

load loss events more likely to be drawn and allows us to enlarge the sample 

space with the probabilistic state modeling of the renewable energy conversion 

systems (wind turbine generators and photovoltaic arrays) and the transmission 

system. Based on the author’s knowledge, no work considers all these RVs in the 

reliability assessment problem that develop more accurate estimates of the annual 

reliability indices.  

The theoretical significance of the work lies in the development of alternative 

computationally efficient methods based on developing enhancement to previously 

methods or a wholly new method for probabilistic assessment of the reliability indices 
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with the purpose of striking a compromise between the detailed modelling of power 

system uncertainties and the computational burden of reliability indices. 

The practical significance of the work. With the increasing robustness of 

EPSs, the occurrence of loss of load events is becoming rarer. For example, the LOLP 

in a real power system does not exceed 0.0001. This means that the power deficit is 

observed, on average, no more than 0.876 hours per year.  However, sequence of rare 

loss of load events could lead to large blackout in a power system. Therefore, all 

possible combinations of rare loss of load events must be sampling efficiently. This is 

achieved by developing the efficient rare events simulation method (ECE-IS) for 

defining the approximately optimal ISD of the power system random variables 

making rare loss of load events more likely to be drawn. When the number of states 

needed to be evaluated is decreased and at the same time preserving the estimator 

accuracy, the efficiency of the approach will wholly computationally enhance.  

The application of the proposed approach in reliability evaluation could enable 

to enlarge the sample space with the probabilistic modeling of more uncertainties and 

so matching the reality of the proposed EPS model. The impact of transmission 

network outages, and spatially correlated demand and renewable energy resources 

model, could be incorporated into the EPS model. This is accomplished by 

considering electricity demand and weather variables uncertainties based on real 

historical data. Use of real data and proper represent the uncertainties give a more 

realist attitude of power grid performance on the basis of actual reliability indicators 

and so proper reserve allocation which are dispatched according to the customers’ 

reliability requirements and the location of renewable energy resources.   

This realistic model integrated with the efficient ECE-IS method can also be 

included into the many problems in both operation and planning phases, such as the 

proper allocation of spinning reserve to allow more integration of renewable powers 

and improve system and nodal reliability. Using adequacy indices assessments and 

knowing the critical nodes during system disturbance, planners can better manage the 

penetration and coordination of renewable energy resources, ensuring sustainable and 
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reliable operation at both the system and nodal level. In the context of power system 

operation, operators schedule the generating units and allocate enough generation 

reserve amounts to ensure a lower the probability of load loss than the maximum 

allowed.  

Research methodology. The research is carried out on the basis of the 

theoretical foundations of electrical engineering, probability theory and mathematical 

statistics. The considered methods and algorithms are tested on EPS systems. 

Evaluation of the effectiveness in terms of the computational efficiency and accuracy 

is estimated by the MCS method. Moreover, the practical applicability of the 

developed algorithms with respect to the reliability assessment problem is highlighted. 

For calculations and software implementation of the algorithms, the MATLAB 

software package is used. All calculations are executed on an Intel Core i5-8 G 

memory computer using MATLAB 2017. 

The main contributions of the dissertation submitted for defense: 

• The assessment of the efficiency and accuracy of the probabilistic-analytical 

methods and procedures with respect to the reliability evaluation problem.  

• The analysis and identification of the best importance sampling strategy in 

estimating the optimal IS distribution of the uncertain input variables for the 

composite system reliability assessment problem.  

• Enhancing the existing cross entropy-based importance sampling procedure to 

extract most the rare loss of load events in power systems; 

• Integrating the ECE-IS procedure in the reliability evaluation framework that can 

greatly accelerate the calculation efficiency of the MCS method while not losing 

the accuracy. The computational efficiency and adaptability of the proposed 

approach are validated by the results of case studies. 

• The analysis and identification of the accurate probabilistic model to handle with 

the historical real data complexity of the demand and weather variables for proper 

incorporating the random variation and chronological characteristics of electricity 
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demand and renewable energy resources (wind- solar) in the reliability assessment 

problem.  

• Evaluating accurately and efficiently power system annual reliability indices with 

integration of a large-scale PV power stations and wind farms using the ECE-IS 

technique. The ECE-IS will assist IS in sampling the region of interest for the 

system reliability indicators (i.e., the region in which the wind farms and PV 

power stations have lower power generation). Moreover, it preserves the 

dependence structure of and renewable and load powers in the reliability 

evaluation procedure, thus the efficiency degradation is avoided. This ensures 

that the reliability indices are evaluated with an acceptable computation burden. 

The author's personal contribution is the development of software for testing 

the effectiveness of existing and proposed statistical algorithms and methods; the 

proposition of new efficient simulation techniques for solving the problem of 

reliability assessment; studying the problem of selection of probabilistic approach 

which is capable of accurately modelling the uncertainties within the power system 

network in spite of  their probability distribution and characterize the correlation 

among uncertainties in the power network. 

The reliability of the results is validated by the results of computational tests 

on 5-node and IEEE-RTS 79 test schemes.  

Approbation of work results were reported and discussed at 4 conferences:  

• International Scientific Conference Energy Management of Municipal 

Facilities and Sustainable Energy Technologies (EMMFT 2018) Samara, 

Russia; 

• Scientific Symposium on Electric Power Engineering 

(ELEKTROENERGETIKA 2019), Stara Lesna, Slovakia; 

• 2019 IEEE 60th International Scientific Conference on Power and Electrical 

Engineering of Riga Technical University (RTUCON), 2019, Riga, Latvia. 
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• International Conference on Industrial Engineering, Applications and 

Manufacturing (ICIEAM 2020), Sochi, Russia. 

 Publications: According to the results of the work, 7 works were published 

and indexed in the international citation bases Scopus and Web of Science.  

Dissertation structure. The dissertation consists of an introduction, 4 

chapters, a conclusion, symbol list and 140 reference list. It contains 110 pages, 19 

figures and 10 tables. 
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Chapter1 Fundamental concepts and mathematical foundation of 

probabilistic evaluation of power system reliability  

This chapter discusses the main concepts related to power system reliability and 

presents the probabilistic means concerning the power system’s reliability evaluation. 

The model of power system uncertainties is described. After that, an overview of the 

reliability indices is presented.  Finally, the chapter formulates the statistical 

foundation of the MCS method and is concluded with a short discussion that outline 

the main deficiencies of the MCS method. 

1.1. Probabilistic Approaches for Reliability Evaluation 

A probabilistic analysis of power system reliability incorporates three steps: 

modeling of uncertainty, uncertainty expansion, and assessing the reliability indices 

[57-61]. Modelling of uncertainty is a mean to exemplify the state space according to 

the probabilistic characteristics of the renewable generation, load, and the availability 

of the various components in a system [58-59]. Second, the uncertainty expansion 

handles the impact of the input uncertainties to the customer service. By modelling 

the stochastic variation of uncertainties and severity associated with them, reliability 

indices in the third stage are calculated to quantify how reliable the system could be. 

The probabilistic reliability index does not only consider the probability or likelihood 

of incidence of uncertain events but also measures the consequence of the incidence 

of that event [61]. Thus, the probabilistic reliability index is estimated as the product 

of the probability of occurrence and the consequence of an event. Based on the 

measure of consequence, the reliability indices are named. The consequence can be 

measured in power system operation by the occurrence or magnitude or duration of 

loss of load faced by the users or customers of the network. 

There are generally two types of probabilistic approaches for modelling the 

uncertainties:  analytical-based methods and simulation-based methods (MCS) [58-

64]. The main difference between these methods is to utilize different approaches for 

describing the probability density function (PDF) of power system parameters. Both 

approaches have advantages and disadvantages in how they model the uncertainty. 
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The analytical approaches analyze the PDFs using mathematical expressions such as 

convolution method, cumulants method, point estimate method (PEM) and unscented 

transformation. The analytical method in contrast to simulation method (MCS), give 

the same solution when recalculated. The convolution method gives highly accurate 

solution. However, it entails complex mathematics which obstruct its application. 

Approximate analytical methods such as cumulants method, PEM, and unscented 

transformation can act as alternatives to the MCS method and the exact analytical 

method (convolution method) [65]. But for their implementation it is necessary to 

know all the mathematical relations of the input random variables, which is not always 

possible. As a result, some assumptions adopted in the calculation procedure lead to 

calculation errors. Therefore, the MCS technique is currently still used in 

benchmarking the performance of approximate analytical techniques due to its 

accuracy [64-65]. 

The MCS can be generally grouped into sequential and non-sequential 

simulations [66-67]. The Sequential MCS method (state duration sampling) represents 

the uncertainties over a chronological time span to incorporate time-varying 

characteristics. This technique is effective in modelling the time series of renewable 

energy resources and electricity demand keeping the timely and spatially correlation 

between them. Moreover, it has the advantages of modelling any component state-

duration PDF, and the ability to compute directly duration and frequency reliability 

indices. However, it needs significantly more computation time to reach the 

convergence than non-sequential MCS and maybe unfeasible for some non-sequential 

applications. The non-sequential MCS can be classified into the state transition 

sampling and state sampling. The state sampling method is extensively utilized for 

power system reliability evaluation since it is relatively simple and easy to implement 

and has a faster convergence rate [68].  

Approaches to renewable energy resources modelling and reliability 

assessment in individual countries apply different methodologies [9-12, 14-15]. A 

variety of reliability evaluation and renewable generation modelling standards within 

different countries are illustrated in Table 1.1. The MCS is the widely used method in 
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practice. As shown in the table, the modelling of renewable energy resources based 

on climate datasets is the frequently used approach in different countries. 

Table 1.1- Comparison among different countries regarding reliability evaluation approaches.  

Country Type of the 

assessment 

model 

Used 

Reliability 

Indicators 

Renewable 

generation 

modelling 

Correlation 

Great 

Britain 

Probabilistic: 

Non-

sequential 

Monte Carlo 

LOLE Detailed 

modelling based 

on climate data 

for the generation 

site. 

Not 

considered. 

France  Probabilistic: 

Sequential 

Monte Carlo 

LOLE Detailed 

modelling based 

on climate data 

for the generation 

site. 

Spatial 

correlation of  

wind and PV 

is considered. 

Belgium Probabilistic: 

Analytical 

LOLE 

P95* 

RES unavailable 

capacity is  

estimated with 

historical data.  

 

 

Ireland Probabilistic: 

Analytical 

LOLE RES unavailable 

capacity is  

estimated with 

historical data.  

 

 

Spain Deterministic Reserve 

margin 

Take a certain 

percentage (5, 7, 

20%) as available 

generation.  

 

 

Portugal Probabilistic: 

Sequential 

Monte Carlo 

Reserve 

margin 

RES unavailable 

capacity is  

estimated with 

historical data.  

 

 

Netherlands Probabilistic: 

Analytical 

approach 

Reserve 

margin 

Take a certain 

percentage (5, 7, 

20%) as available 

generation. 

 

Pentalateral 

region 

(Central 

Western 

Europe 

countries)  

Probabilistic: 

Sequential 

Monte Carlo 

LOLE Detailed 

modelling based 

on climate data 

for the generation 

site. 

Correlation 

between  

wind, 

demand and  

PV is 

considered. 

* LOLE P95 is a percentile 0.95 over the future states simulated. 
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1.2. Statistical foundations of state sampling MCS 

The state sampling MCS method depends on three main steps: Sampling the 

state space, evaluating each state, and computing the convergence and calculating the 

reliability indicators. The states are randomly sampled from the PDF of the input 

random variables using the concept of proportionality, i.e. states are sampled 

proportional to their probability of occurrence. Since the MCS is a fluctuating and 

iterative process, the reliability indices are estimated with a confidence level. An 

appropriate convergence criterion is essential to ensure the accuracy of the MCS 

method.  The coefficient of variation is mostly utilized as the stopping rule for the 

MCS algorithm. The MCS is described in these steps.  

1.) Sampling the state space of all components and the uncertain inputs of a 

power system. The state sampling is implemented on both the availability 

of components (transmission lines, transformers, generating units, etc.) but 

also to the forecast uncertainty of power system variables (renewable 

generation, load levels, and weather states). While outages is depicted as 

discrete events, forecast uncertainty is represented by a continuous PDF. 

The states of the system can be represented by the matrix [𝑥𝑖,𝑗 , ∀ 𝑖 ∈ 𝑁; 𝑗 ∈

𝑛], 𝑁 the set of simulated states and 𝑛 is the set of random variables.  

2.) Select a state of the power system and categorize it whether a non-loss-of-

load (success) state or a loss-of-load (failure) state. The failure state is 

achieved if the total load is higher than the available capacity in reliability 

studies of concentrated EPS. While the failure state in composite power 

system may be based on technical limits violation or power deficit. Then, 

failure states are passed to the optimal power flow (OPF) algorithm. The 

OPF is utilized to mitigate any technical violation and to avert load 

curtailment so far as possible or to decrease the total load curtailment if 

inevitable through rescheduling of generators and load curtailments in 

according to the priority order. 
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• Once the state has been classified and the severity or consequence of failure 

states is computed, the estimate of reliability index (ℛ
∧

) is usually 

represented by the coefficient of variation ℂ𝕧. The reliability index ℛ can 

be one of the power system reliability indices (LOLP- LOLE- EPNS- 

EENS, etc.). Besides ℂ𝕧 of one or some or all reliability indices, pre-

specified number of samples 𝑁 can also be used as stopping criteria. 

Calculation of ℂ𝕧 is described as (1.1) below.  

ℂ𝕧𝑘 (ℛ
∧

) =
√𝕍(ℛ

∧

)

𝔼 (ℛ
∧

)
 

 

(1.1) 

where 𝑘 is the number of sampled states up to this iteration, 𝕍 is the 

variance operator, and 𝔼 is expectation operator. 

3.) If the stopping criterion is satisfied (ℂ𝕧𝑘 ≤ Stopping Value or 𝑘 = 𝑁) then 

stop the simulation 𝑁 = 𝑘 and calculate the final value of the reliability 

indices, otherwise, return to step 2.  

1.3. Modelling of power system uncertainties 

The uncertainty models used vary in complexity and detail but commonly 

mimic the variability and stochastically of the power system factors. The modelling 

of power system uncertainties includes the state random sampling of component 

outages such as transformers, transmission lines, and generators and forecast 

uncertainty deviations of power system variables such as renewable generations, load 

levels, and weather states. While outages can be described as discrete events with 

likelihoods of occurrence based on historical data, forecast uncertainty is represented 

by a continuous random variable with corresponding PDF which can be obtained by 

historical data analysis or through forecasts. Integrating forecast uncertainty is to 

investigate the likelihood that the parameter diverges from the expected forecast 

value. 

 

 

 



20 

 

 
 

Transmission line model  
 The state space of transmission line components can be represented by either 

by the Bernoulli distribution (one transmission line), or by binomial distribution (a 

group of lines connected in parallel) [69]. In the case of Bernoulli distribution 

𝑆𝑙~ℬ𝑟(1, 𝑞 𝑙), each transmission line state 𝑆𝑙 is either failure state or operation state 

depending on the transmission line failure probability or forced outage rate (FOR) 𝑞 𝑙. 

In this case, the MCS method generates random numbers in the range of 0 to 1 

uniformly distributed in place of sampling a distribution function. The state 𝑆 of 

transmission line 𝑙 is defined as follows: 

𝑆𝑙 = {
0  for 𝑟𝑙 ≤ 𝑞𝑙
1   otherwise

 

where 𝑟𝑙 is the pseudo-random number and 𝑞𝑙 is the FOR of transmission line 𝑙 can 

be expressed as follows: 

𝑞𝑙 =
𝜏𝛼

𝜏𝛼 + 8760
 (1.2) 

where 𝛼 is the outage rate [frequency/year] and 𝜏 is the outage duration per year [h].  

When 𝑆𝑙 equals zero, the transmission line 𝑙 is in the failure state. Otherwise, the 𝑆𝑙  

is equal to one. Each sample of 𝑆𝑙 is randomly selected independently from following 

and previous samples. 

Generation model  

Fundamental for the generation model is the operating characteristics of the 

generating units which are utilized to model the available capacity [66,70]. The 

operating characteristics can be characterized as a two-state (failure or operation 

states) or multi-state model (operation, failure and derated states). The uncertainties 

of power generation depends on the probabilities of derated and failure states which 

is dependent on the type of generator. Since the number of generators is large, a group 

of same type generators (equally capacity and 𝑞). The available capacity of a group 

of similar generators is described by a binomial distribution for the two-state model 

of each generator or a multinomial distribution for the multi-state model of each 

generator. The two-state model is considered in the dissertation.  
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The available capacity of the generator group is equal to the sum of the capacity 

of available generators and is represented by a binomial probability mass function 

{𝐺𝑔, 𝑤𝑔 = ℬ(𝑔; 𝑛𝑔 , 𝑞), 𝑔 = 0,… , 𝑛𝑔}, where 𝑛𝑔 is the number of generators in the 

group, 𝐺𝑔 is the sum of (𝑛𝑔 − 𝑔) generation capacity. The failure probability 𝑤𝑔 of 

number of generators 𝑔 in a group of 𝑛𝑔 elements can be determined by the binomial 

distribution:  

ℬ(𝑔; 𝑛𝑔, 𝑞) ≈ 𝐶𝑛𝑔
𝑔
𝑞𝑔(1 − 𝑞)𝑛𝑔−𝑔 (0.31) 

where 𝐶𝑛𝑔
𝑔
=

𝑛𝑔!

𝑔!(𝑛𝑔−𝑔)!
 is the Binomial coefficient. Figure 1.1 illustrates the binomial 

distribution for the 𝑔 generators failure with the same capacity (50 MW) and 

probability of failure (𝑞 = 5%) in a group including different number of generators 

i.e. 𝑛𝑔 = 5, 10, 20, 40, 80. As 𝑛𝑔→ ∞, the binomial distribution with the expectation 

𝜇 = 𝑞 𝑛𝑔 and variance 𝜎2 = 𝑞(1 − 𝑞)𝑛𝑔 is asymptotically normal distribution. 

According to the limit theorem of Moivre-Laplace, the binomial distribution can be 

replaced with a normal one if 𝜎2≥9 [71]. Since for a real concentrated EPS (reliability 

zone) the number of generators is large enough, the generation system can be 

represented by a Gaussian distribution without a sufficiently large error. However, in 

order to achieve a greater accuracy of generation modeling, a group of the most 

powerful generators can be distinguished, described by a binomial distribution with 

the equivalent of the rest of the generating system to a normal distribution [71-72]. 

The normal distribution extends from −∞ to +∞, which may result in errors where 

there exist constraints on the values of distribution. In order to avoid extreme values 

outside a range of interest, a truncated normal distribution (TND) is used for the 

available generation variables. 

Electricity demand 

Uncertainties of electricity demand can be considered in a probabilistic 

reliability assessment by two methods. First, the chronological demand curve is 

converted into a multi-state distribution model. From the hourly system demand over 

a period (maybe a year), a clustered model is formulated for the demand based on 

demand levels (for example a range of 100 MW) and each system demand level has 
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its probability (number of hours of this demand level /8760) which is utilized as a 

weight parameter to obtain the annual reliability indicators [18,73]. The MCS method 

is executed for each demand level and reliability indices are accumulated. Second, a 

Gaussian distribution is used to describe the variation of total system demand [68, 74]. 

Usually, the total demand of an EPS, consisting of large number of demand levels, 

according to the Lyapunov limit theorem, is described by a normal (Gaussian) law of 

probability distribution, 𝐿~𝒩(𝜇𝐿, 𝜎𝐿
2), where 𝜇𝐿 and 𝜎𝐿 are the mean and standard 

deviation, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1- Binomial distribution for several numbers of generators in groups. 

1.4. Power Flow Modeling and Optimization Framework 

After system states are sampled, the system states are evaluated to select the 

system failure states. In CPS, if one of the subsequent two conditions is achieved for 

any sampled state, we can define this state as a failure state without solving the power 

flow model: the total load is higher than the total generation and the loading at a node 

is higher than the sum of the generation at that node and the capacity of the lines 

connected to that node. In case of power deficit states, the purpose of OPF is how to 

distribute the power deficit among load nodes [18, 20, 62-64, 74-80].  According to 

the selected criterion by which the power deficit distribution is carried out, the 

objective function is formed, independent variables are selected, a system of 

limitations and assumptions is determined [77]. A load curtailment sharing 
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philosophy is considered in this work. Unserved demand is shared across all the load 

nodes of a power system. Using weight factors in the objective function, a priority 

order policy is employed for nodes. The objective function is presented in a quadratic 

form: 

𝑚𝑖𝑛(∑𝜋𝑑𝑃𝑁𝑆𝑑
2

𝐷

𝑑=1

) (1.4) 

where 𝜋𝑑 is the weight or priority of load node 𝑑 and 𝑃𝑁𝑆𝑑 is the amount of load 

curtailment or power not supplied (PNS) at each load node 𝑑. 

 In addition to the objective function, the power system equalities and 

inequalities constraints such as generation capacity limits, transmission lines 

capacities, and power balance equation, are essential and will strongly impact 

obtained reliability indices [78-85]. The power flow equations utilized for analysis is 

either DC or AC model. The DC power flow model is suitable for studies that need 

large computational burden such as security assessment and composite system 

reliability. As there are several procedures in the evaluation of a state, the DC power 

flow model has been extensively utilized in reliability assessment of power systems 

due to its simplicity of execution being linear model [77]. However, the DC 

representation cannot analyze the impact of bus voltages and reactive power on the 

system reliability. This simplification is acceptable, since the reliability studies mainly 

treat with long term power system analysis. The nodal power balance constraint can 

be written in the next form: 

𝑃𝑑 + 𝐺𝑑 + 𝑃𝑁𝑆𝑑 − 𝐿𝑑 = 0, ∀ 𝑑 ∈ 𝐷 (1.5) 

In addition to (1.5), a system power balance equation is used considering the 

summation of line power losses in the electric network: 

𝑃𝛴 + 𝐿𝑆𝛴 = 0 (1.6) 

Using the nodal power injection vector (𝑃), the line power flows vector (𝐿𝐹) is 

calculated using a simplified form of DC power flows equations based on Ohm's and 

Kirchhoff's laws [77]: 

𝐿𝐹 = −[𝐵𝑏𝑟]𝐴
𝑡𝐵−1𝑃. (1.7) 
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Power losses for each Monte Carlo simulation sample are calculated based on the 

assumption that all nodal voltages are equal to the nominal ones. 

𝐿𝑆𝛴 =∑
𝑅𝑙
𝑉2

𝑁𝑙

𝑙=1

𝐿𝐹𝑙
2 (1.8) 

Power flows through transmission lines are limited by maximum transmission line 

capacities: 

−𝐿𝐹𝑙
𝑚𝑎𝑥 ≤ 𝐿𝐹𝑙 ≤ 𝐿𝐹𝑙

𝑚𝑎𝑥 (1.9) 

The generation and curtailed load in each node are restricted by supply and demand 

limits: 

0 ≤ 𝐺𝑑 ≤ 𝐺𝑑
𝑎𝑣, (1.10) 

0 ≤ 𝑃𝑁𝑆𝑑 ≤ 𝐿𝑑.  

1.5. Convergence and Reliability Indices Evaluation 

 Once the states have been classified and the severity of failure states are 

computed, the reliability indices can be computed. The most significant among 

reliability indices are probability, mathematical expectation and variance of power or 

energy deficit in EPS. On their basis, other indices can be obtained, for example LOLP 

(Loss of Load Probability), expected power not supplied (EPNS), LOLE (Loss of 

Load Expectation), expected energy not supplied (EENS), etc. [9-13, 86-87]. The 

reliability indices can be estimated for nodes and system. System reliability indices 

are necessary for both planners and operators to determine the likelihood of 

interruption of supply, while nodal reliability indices provide information on the most 

important nodes during system interruption. The system LOLP and EPNS can be 

expressed as follows: 

𝐿𝑂𝐿𝑃 =
1

𝑁
∑𝐼𝐹(𝑥𝑖)

𝑁

𝑖=1

, (1.11) 

𝐸𝑃𝑁𝑆 =
1

𝑁
∑(∑𝑃𝑁𝑆𝑑

𝐷

𝑑=1

(𝑥𝑖))

𝑁

𝑖=1

.  

where 𝑥𝑖 = {𝑥𝑖,𝑗 , 𝑗 = 1,… , 𝑛} is the sampled state of the uncertain inputs and 𝐼𝐹(𝑥𝑖) 

is the failure indicator function and can be written by this formula: 
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𝐼𝐹(𝑥𝑖) ≔

{
 
 

 
 1   for ∑𝑃𝑁𝑆𝑑

𝐷

𝑑=1

(𝑥𝑖) > 0

0   for ∑𝑃𝑁𝑆𝑑

𝐷

𝑑=1

(𝑥𝑖) = 0

 

A non-zero value of failure indicator function points out that the occurrence of load 

loss and a zero value points out that there is no loss of load. Similarly, the nodal LOLP 

and EPNS can be rewritten as follows: 

𝐿𝑂𝐿𝑃𝑑 =
1

𝑁
∑𝐼𝐹

𝑑(𝑥𝑖)

𝑁

𝑖=1

,   ∀ 𝑑 ∈ 𝐷 
 

(1.12) 

𝐸𝑃𝑁𝑆𝑑 =
1

𝑁
∑(𝑃𝑁𝑆𝑑(𝑥𝑖))

𝑁

𝑖=1

, ∀ 𝑑 ∈ 𝐷  

in which 

 𝐼𝐹
𝑑(𝑥𝑖) ≔ {

1   for 𝑃𝑁𝑆𝑑(𝑥𝑖) > 0

0   for 𝑃𝑁𝑆𝑑(𝑥𝑖) = 0
  

The system LOLE and EENS can be calculated from these indices as follows: 

𝐿𝑂𝐿𝐸 = 𝑡 𝐿𝑂𝐿𝑃, (1.13) 

𝐸𝐸𝑁𝑆 = 𝑡 𝐸𝑃𝑁𝑆.  

where 𝑡 is the period of study in hours. When assessing the reliability indices is carried 

out annually with the hourly resolution, the period of study is equal to 8760 h. 

Due to the iterative behavior of MCS method, the estimated reliability indices 

always come with a confidence band [88-89]. The coefficient of variation (ℂ𝕍) is 

regarded as the measure of error for the estimators of reliability indices. A 

convergence criterion should be employed to halt the MCS algorithm when reaching 

a low level of variation in the estimated reliability indices. For example, the EPNS 

estimator can be calculated as follows: 

𝐸𝑃𝑁𝑆
∧

=
1

𝐾
∑(𝑃𝑁𝑆(𝑥𝑖))

𝐾

𝑖=1

 

𝑃𝑁𝑆(𝑥𝑖) = ∑𝑃𝑁𝑆𝑑

𝐷

𝑑=1

(𝑥𝑖) 

 

 

(1.14) 
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To know how accurate is 𝐸𝑃𝑁𝑆
∧

 as an estimate of 𝐸𝑃𝑁𝑆, the coefficient of variation 

(expectation and variance) of the estimator are calculated as shown in (1.15). 

Considering the sample size is sufficiently large, the estimated value converges 

almost surely to the true value i.e. the estimator is unbiased as illustrated in (1.15).  

𝔼 [𝐸𝑃𝑁𝑆
∧

] =
1

𝐾
∑𝔼[𝑃𝑁𝑆(𝑥𝑖)]

𝐾

𝑖=1

= 𝐸𝑃𝑁𝑆 (1.15) 

𝕍 [𝐸𝑃𝑁𝑆
∧

] = 𝕍 [
1

𝐾
∑(𝑃𝑁𝑆(𝑥𝑖))

𝐾

𝑖=1

] =
1

𝐾2
∑𝕍[𝑃𝑁𝑆(𝑥𝑖)]

𝐾

𝑖=1

=
1

𝐾
𝕍[𝑃𝑁𝑆] 

Unfortunately, in a practical situation, we cannot actually calculate the 𝕍[𝑃𝑁𝑆], we 

typically use an estimate of 𝕍[𝑃𝑁𝑆] assuming the estimate of 𝕍[𝑃𝑁𝑆] is unbiased. 

So, the variance becomes as follows:  

𝕍 [𝐸𝑃𝑁𝑆
∧

] =
1

𝐾(𝐾 − 1)
∑(𝑃𝑁𝑆(𝑥𝑖) − 𝐸𝑃𝑁𝑆

∧

)
2

𝐾

𝑖=1

 

Similarly, the LOLP estimator can be computed as follows: 

𝐿𝑂𝐿𝑃
∧

=
1

𝐾
∑𝐼𝐹(𝑥𝑖)

𝐾

𝑖=1

, (1.16) 

𝔼(𝐿𝑂𝐿𝑃
∧

) =
1

𝐾
𝔼 [∑𝐼𝐹(𝑥𝑖)

𝐾

𝑖=1

] =
1

𝐾
∑𝔼[𝐼𝐹(𝑥𝑖)]

𝐾

𝑖=1

=
𝐾

𝐾
 𝐿𝑂𝐿𝑃 = 𝐿𝑂𝐿𝑃 

We can use the central limit theorem to show that 𝐿𝑂𝐿𝑃
∧

 is normally distributed for 

large 𝐾 with mean 𝐿𝑂𝐿𝑃 and variance, 

𝕍 [𝐿𝑂𝐿𝑃
∧

] =
1

𝐾
𝕍[𝐿𝑂𝐿𝑃] =

1

𝐾
(𝐿𝑂𝐿𝑃 − 𝐿𝑂𝐿𝑃2) 

The ℂ𝕍 is given as follows: 

ℂ𝕍𝑘 [𝐿𝑂𝐿𝑃
∧

] =
√1
𝐾𝕍(𝐿𝑂𝐿𝑃)

𝐿𝑂𝐿𝑃
= √

(1 − 𝐿𝑂𝐿𝑃)

𝐾 𝐿𝑂𝐿𝑃
 

(1.17) 

From (1.17), it can be derived the following points: 

• The MCS convergence doesn’t depend on the number of random variables 𝑛.  

• The MCS convergence decreases with increasing the square root of the sample 

size, K. In other words, to decrease the variability in the LOLP estimator by a 
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factor of 10 requires a factor of 100 increase in the number of Monte Carlo 

samples. 

• For high reliability power systems (small 𝐿𝑂𝐿𝑃), the needed number of 

samples 𝐾 become larger for getting a low level of variation and so an accurate 

estimate i.e. 𝐾 ≅ 105 for ℂ𝕍 = 0.1 and 𝐿𝑂𝐿𝑃 = 0.001. 

Conclusion 

The MCS method is suitable for composite and high-dimensional system 

analysis. However, it can be greatly slow as large number of samples are essential to 

assure the convergence of the reliability indices results. The high computational time 

of MCS is a significant obstacle to its application in power systems, especially with 

the nonlinearity of the objective function and constraints of OPF algorithm and thus 

necessitating the proposition of other techniques. Two approaches are adopted here. 

In place of the MCS, the approximate analytical methods can be utilized in the 

reliability evaluation problem. The assessment of their efficiency and accuracy is 

presented in Chapter 2. Another approach is to use variance reduction techniques 

(VRTs) to make the MCS method more computationally efficient The objective of 

VRTs is to reduce the variance of the reliability indices estimators so that the number 

of samples required for achieving convergence can be decreased and so, the 

convergence is accelerated. This is investigated in Chapter 3.  
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Chapter 2 Generation Reliability Evaluation using Probabilistic- 

Analytical Methods 

Analytical methods, in contrast to simulation methods, give the same solution 

when re-calculated. Approximate analytical methods are discussed in this chapter in 

place of the exact analytical method (convolution method) due to its computational 

complexity disadvantage and the MCS method due to its high computational time 

disadvantage. The solution of approximate analytical methods is formed in the process 

of a certain sequence of mathematical operations. But for their implementation it is 

necessary to know all the mathematical relations of the input random variables, which 

is not always possible. As a result, some assumptions adopted in the calculation 

procedure lead to calculation errors.  This chapter discusses the effectiveness of 

approximate analytical methods and procedures in determining the generation 

reliability in terms of the probability, mathematical expectation and standard deviation 

of power not supplied (LOLP-EPNS-SPNS) in a concentrated EPS (system: 

generation-load) and composite EPSs. Composite system analysis contains the 

transmission network configuration in the assessment. Compared to concentrated 

EPS, additional data is needed when conducting a composite reliability assessment 

reliability assessment, includes such as FORs and capacity limits of transmission 

lines. 

In concentrated EPS, the mathematical basis and calculation procedures for 

determining the probabilistic indicators of power shortages are executed by different 

probabilistic analytical techniques such as convolution method, the method of 

combined cumulants and Gram-Charlier expansion and, the method of combined 

cumulants and Von Mises function. Also presented are numerical results for the 

probabilistic indicators of the power shortage and compared with the MCS method, 

in two generation cases (identical – diverse generation unit sizes).  

In composite generation and transmission power system, approximate 

analytical methods based on a point estimate of probability distributions, are proposed 

and compared. The effectiveness of using the Rosenblueth and Hong schemes for 
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assessing the probabilistic indicators of power deficit has been determined. The first 

four moments can be used in representing the nature of a variable distribution as they 

give key information about the distribution which are mean or expectation, variance 

or standard deviation, skewness, and kurtosis.  A modification of Hong's scheme is 

proposed, which consists in connecting an additional block of combination of 

variables. The effectiveness of the methods based on the accuracy and computation 

time of obtaining the solution are compared with the MCS method. 

2.1. Mathematical formulation of the reliability evaluation problem in a 

concentrated power system  

 In concentrated EPS, the uncertainties of the aggregated available generating 

power (𝐺𝑎𝑣) and aggregated required load (𝐿) are considered. While, the constraints 

of power transmission system within concentrated EPS are not considered. Power 

deficit between load and generation (𝑃𝑁𝑆 =  𝐿 − 𝐺𝑎𝑣) is observed at 𝐿 > 𝐺𝑎𝑣 and is 

equal to zero at 𝐿 ≤ 𝐺𝑎𝑣. Usually, the total load of a concentrated EPS, consisting of 

an almost infinite number of electrical customers, according to the Lyapunov limit 

theorem, is described by a continuous normal probability distribution 𝐿~𝒩(𝜇𝐿, 𝜎𝐿
2), 

with a known mean 𝜇𝐿and variance 𝜎𝐿
2. The available capacity of a group of same-

type generators is usually described by a discrete binomial distribution 

𝐺𝑎𝑣~ℬ(𝑛𝑔, 𝑞), where 𝑛𝑔 is the number of generating units in the group and 𝑞 is the 

generator probability of failure or FOR.  

 The sought probabilistic parameters of the power deficit (probability 𝕡𝑃𝑁𝑆, 

mean 𝜇𝑃𝑁𝑆 = 𝑚𝑃𝑁𝑆,1, and variance 𝜎𝑃𝑁𝑆
2 ) under condition of mixed  distributions  i.e. 

the generation is a discrete random variable and is described by a probability mass 

function (PMF) {𝐺𝑔, 𝑤𝑔 = ℬ(𝑔; 𝑛𝑔 , 𝑞), 𝑔 = 0,… , 𝑛𝑔} in which 𝐺𝑔 is the available 

generation capacity at state 𝑔 and the load is continuous, can be obtained as follows 

[71]:  
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𝕡𝑃𝑁𝑆 =∑𝑤𝑔(1 − 𝐹𝐿(𝐺𝑔))

𝑛𝑔

𝑔=0

; 

𝑚𝑃𝑁𝑆,1 =∑𝑤𝑔∫ (𝑥 − 𝐺𝑔)𝑑𝐹𝐿(𝑥);
∞

𝐺𝑔

𝑛𝑔

𝑔=0

 

𝑚𝑃𝑁𝑆,2 =∑𝑤𝑔∫ (𝑥 − 𝐺𝑔)
2𝑑𝐹𝐿(𝑥)

∞

𝐺𝑔

𝑛𝑔

𝑔=0

; 

𝜎𝑃𝑁𝑆
2 = 𝑚2,𝑃𝑁𝑆 −𝑚𝑃𝑁𝑆

2 , 

𝑓𝐿(𝑥) = 𝒩(𝑥; 𝜇𝐿 , 𝜎𝐿
2) =

1

√𝜎𝐿
22𝜋

 𝑒
(−
(𝑥−𝜇𝐿)

2

2𝜎𝐿
2 )

 

 

 

 

 

(2.1) 

where 𝑓𝐿(𝑥) and 𝐹𝐿(𝑥) are the distribution density and the cumulative distribution 

function of load, respectively, and 𝑚2,𝑃𝑁𝑆  is the second order raw moment of the 

power deficit. The integrals of the above expressions on the right-hand side can be 

written as follow [5]: 

𝑚𝑃𝑁𝑆 =∑𝑤𝑔[(𝜇𝐿 − 𝐺𝑔)(1 − 𝐹𝐿(𝐺𝑔)) + 𝜎𝐿
2𝑓𝐿(𝐺𝑔)];

𝑛𝑔

𝑔=0

 

𝑚2,𝑃𝑁𝑆 =∑𝑤𝑔 {[(𝜇𝐿 − 𝐺𝑔)
2
+ 𝜎𝐿

2] [1 − 𝐹𝐿(𝐺𝑔)] + 𝜎𝐿
2(𝜇𝐿 − 𝐺𝑔)𝑓𝐿(𝐺𝑔)} .

𝑛𝑔

𝑔=0

 

 

 

 

 

(2.2) 

As a result, with a relatively small number of generating sets, the calculation of the 

probabilistic indicators of the power deficit does not present any problems. In reality, 

a large number of different types of generators are installed in the EPS. Therefore, the 

PMF  convolution method is used to represent the generation PMF for a number of 

generators groups  {𝐺𝒾~ℬ (𝑛𝑔 𝒾
, 𝑞 𝒾) , 𝒾 = 1,… ,𝑁𝑔}, where 𝑁𝑔 is the number of 

generator groups. 

2.1.1 Convolution method 

One of the most widely used methods for representing the PMF of the 

generation with a complex structure, is the PMF convolution method [5, 65, 69, 90-

91].  It has advantages over other techniques.  First, the PMF convolution can be used 

for a nonstandard PDF description. second, the PDF of the random variables sum with 

different PDFs can be applied in a mathematically simple manner by the convolution 
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of distribution functions. Finally, the probabilistic characteristics (distribution 

moments, semi-invariants, etc.) can be calculated quite simply with the help of PMF 

convolution. 

Mathematically, the convolution of the PMF of several generator groups is the 

product of probabilities related to the possible operational conditions of the generator 

groups. In particular, for the convolution of  a  PMF  of  two  different  generators  

groups with available generation power {𝐺𝐴,𝑖}, {𝐺𝐵,𝑗} and probabilities of the 

corresponding states {𝑤𝐴,𝒾 , ∑ 𝑤𝐴,𝒾
𝑛𝐴
𝒾=1 = 1}, {𝑤𝐵,𝒿, ∑ 𝑤𝐴,𝒿 = 1

𝑛𝐵
𝒿=1 } given as 

{𝐺𝐴,𝒾, 𝑤𝐴,𝒾, 𝒾 = 0,… , 𝑛𝐴}, {𝐺𝐵,𝒿, 𝑤𝐵,𝒿, 𝒿 = 0,… , 𝑛𝐵}, the two matrices are 

constructed representing the equivalent PMF: {𝐺Σ,𝒾𝒿 = 𝐺𝐴,𝒾 + 𝐺𝐵,𝒿,   𝑤Σ,𝒾𝒿 =

 𝑤𝐴,𝒾𝑤𝐵,𝒿, };  { 𝒾 = 0,… , 𝑛𝐴, 𝒿 = 0,… , 𝑛𝐵 }. Algorithmically, these matrices are 

transformed into connected vectors. In case of representing the probabilities and 

available generation capacity in the vector form, the resultant matrices can be 

expressed as follows:  𝑤Σ = 𝑤̅𝐴 𝑤̅𝐵
𝑇, 𝐺Σ = 𝐺̅𝐴𝑒̅𝐵

𝑇 + 𝑒̅𝐴𝐺̅𝐵
𝑇, where 𝑒̅𝐴, 𝑒̅𝐵 – are unit 

vectors having the same dimension as the corresponding vectors 𝐺̅𝐴, 𝐺̅𝐵. The 

dimension of equal PMFs expands exponentially with the number of generators 

groups, and the computational burden becomes significant.  

2.1.2 The method of combined cumulants and Gram-Charlier expansion 

The use of cumulants and the approximation of a PDF by Gram Charlier 

expansion series is presented. The main objective of using the cumulant method is to 

replace the complicated convolution of the PDFs of input variables with a simple 

arithmetic process [21]. The cumulants have properties superior to moments. The 

additive property of cumulant (not moments) is particularly useful in power systems. 

By determining the cumulant of available power of generator groups, the cumulants 

of the load and generator groups can be easily added and so the cumulants of the 𝑃𝑁𝑆 

are computed. Then, Gram Charlier approximate series [92-94] in getting the 

distribution of the output variable (power deficit) from its cumulants is used by 
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approximating it with a normal distribution. In this case, the CDF and PDF of the 

normalized power deficit 𝑃𝑁𝑆̃ = (𝑃𝑁𝑆 − 𝜇𝑃𝑁𝑆)/𝜎𝑃𝑁𝑆 can be expressed as follows: 

𝐹𝑃𝑁𝑆̃(𝑥) =∑
𝒸𝒾
𝒾!
𝛷(𝒾)(𝑥)

𝓇 

𝒾=0

; 
 

 

(2.3) 

𝑓𝑃𝑁𝑆̃(𝑥) =∑
𝒸𝑖
𝒾!
𝜑(𝒾)(𝑥)

𝓇 

𝒾=0

,  

where 𝛷(𝒾)(𝑥) and 𝜑(𝒾)(𝑥)– 𝒾-th derivative of CDF and PDF of the standard normal 

distribution; 𝓇 is the accepted maximum order of the Gram-Charlier series (usually 

𝓇 = 4 or 6). Coefficients of the Gram-Charlier series can be calculated from its central 

moments [95-97] and formulated as follows: 

𝒸0 = 1;  𝒸1 = 𝒸2 = 0;   𝒸3 = −
𝑀3

𝜎3
= −

𝒦3

𝜎3
;   𝒸4 =

𝑀4

𝜎4
− 3 =

𝒦4

𝜎4
; 

𝒸5 = −
𝑀5

𝜎5
+ 10

𝑀3

𝜎3
= −

𝒦5

𝜎5
;   𝒸6 =

𝑀6

𝜎6
−
15𝑀4

𝜎4
+ 30 =

𝒦6 + 10𝒦3
2

𝜎6
, 

(2.1) 

where 𝑀𝒿, 𝒦𝒿 are the central moment and the cumulants of the 𝒿-th order of the 

variable 𝑃𝑁𝑆. The division of the cumulant 𝒦𝒿 by 𝜎𝒿 is related to the normalization 

of 𝑃𝑁𝑆. Considering that 𝛷(1)(𝑥) = 𝜑(𝑥), the equation (2.3) can be written in this 

form: 

𝐹𝑃𝑁𝑆̃(𝑥) = 𝛷(𝑥) +∑
𝒸𝒾
𝒾!
𝜑(𝒾−1)(𝑥)

𝓇 

𝒾=3

. 

The first six derivatives of the density of the standard normal distribution can be 

written as follows: 

𝜑(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2 ; 

𝜑(1)(𝑥) = −𝑥𝜑(𝑥); 

𝜑(2)(𝑥) = (𝑥2 − 1)𝜑(𝑥); 

𝜑(3)(𝑥) = (3𝑥 − 𝑥3)𝜑(𝑥); 

𝜑(4)(𝑥) = (𝑥4 − 6𝑥2 + 3)𝜑(𝑥); 

𝜑(5)(𝑥) = −(𝑥5 − 10𝑥3 + 15𝑥)𝜑(𝑥); 

𝜑(6)(𝑥) = (𝑥6 − 15𝑥4 + 45𝑥2 − 15)𝜑(𝑥). 

A disadvantage of the method is the need to determine cumulants of higher 

orders (> 4), which is difficult for most distribution functions, including the binomial 

distribution. 
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2.1.3 The method of combined cumulants and Von Mises function 

The use of cumulants and the approximation of a PDF based on Von Mises 

function have been proposed. In this approach, the discrete and continuous 

distributions of input variables are addressed separately. The continuous distribution 

considered here is the normal distribution for describing the load. The cumulants for 

a discrete distribution of generation power are calculated, then, converted to moments, 

and after that use the Von Mises process to calculate impulses and corresponding 

weights. Based on the Von Mises function for generation power and continuous 

normal distribution of load power, the PDF and CDF of the power deficit are obtained. 

As proposed by Richard Von Mises [98], the equivalent PDF of the available capacity 

of a generator group can be considered as the weighted sum of impulses. The Von 

Mises function allows the definition of a discrete distribution characterized by 𝓋 

impulses from the first (2 𝓋 -1) raw moments [98]. For obtaining the equivalent 

impulses and their weights, the determinants of the matrices are determined from the 

moments in the following form: 

𝐷0 = |𝑚0|; 𝐷1 = |
𝑚0 𝑚1

𝑚1 𝑚2
| ; . . . 𝐷𝓋 = |

𝑚0 𝑚1 . . . 𝑚𝓋

𝑚1 𝑚2 . . . 𝑚𝓋+1

. . . . . . . . . . . .
𝑚𝓋 𝑚𝓋+1 . . . 𝑚2𝓋−1

| 

The maximum order of the positive determinant determines the maximum number of 

impulses. In practice, the number of used impulses is not more than 5. However, in 

our calculations, acceptable accuracy is achieved only when the number of impulses 

is at least 7. Solving a group of linear equations with a matrix of coefficients similar 

to the structure 𝐷𝓋  allows determining the coefficients {𝒸𝒾} of the polynomial 

∑ 𝒸𝒾𝑥
𝒾𝓋

𝒾=0 = 0. The roots of the polynomial determine the coordinates {𝑥𝒾} of 

equivalent impulses. The coefficients {𝒸𝒾} are determined by the equation corresponds 

to 

(

𝑚0 𝑚1 . . . 𝑚𝓋
𝑚1 𝑚2 . . . 𝑚𝓋+1
. . . . . . . . . . . .
𝑚𝓋 𝑚𝓋+1 . . . 𝑚2𝓋−1

)(

𝒸0
𝒸1
…
𝒸𝓋

) = (

−𝑚𝓋+1
−𝑚𝓋+2
…

−𝑚2𝓋−1

). 

 

(2.5) 
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Finally, the probabilities 𝑤𝒾 of equivalent impulses 𝑥𝒾 are determined from the system 

of equations of the raw moments 

(

1 1 . . . 1
𝑥1 𝑥2 . . . 𝑥𝓋
. . . . . . . . . . . .
𝑥1
𝓋 𝑥2

𝓋 . . . 𝑥𝓋
𝓋

)(

𝑤1
𝑤2
…
𝑤𝓋

) = (

1
𝑚1

…
𝑚𝓋

) 

 

(2.6) 

The PDF of power deficit can be formulated as follows: 

𝑓𝑃𝑁𝑆(𝑥) =∑𝑤𝒾 𝑓𝐿(𝑥 − 𝑥𝒾)

𝓋

𝒾=1

 
 

(2.7) 

The high order raw moments needed to obtain the required number of impulses 

limits the von Mises’s method range of applications. There are only three known 

distributions, where obtaining the raw moments of higher orders is not a problem. 

These are normal, Poisson, and Bernoulli. Mathematical expressions for the raw 

moments of the fourth and higher orders of other distributions have a complex 

structure and are given in the reference literature to a limited extent and rarely. As a 

rule, the sum of several probabilistic variables which are described by different PDFs 

with the moments or cumulants that can be calculated, form the required probabilistic 

variable.  The high order moments of the required variable can be calculated by means 

of the cumulants of the elements that form the variable. More often, the considered 

random variable is represented as a sum of random variables with probability 

distributions for which raw moments or higher order cumulants can be obtained. With 

the known cumulants of the sum, it is possible to get the moments of higher orders of 

the considered RV. 

The binominal PDF is usually used for describing generation a group of 

generators in a power system. The mathematical structure of equations used for 

calculating the high order raw moments of the binominal PDF is complex. The 

problem can be potentially alleviated by considering each generator separately. 

Assuming that there are only  two  possible  operational conditions of generator (on 

and off), it is possible to describe the  available  capacity  of  a  generator  𝑥𝑖 ∈

(0; 𝑃𝑏𝑙𝒾) by  the  Bernoulli distribution 𝑥𝒾~ℬ𝑟(1, 𝑞 𝒾), where 𝑃𝑏𝑙 is the generator 

nominal power. The probability of the state 𝑥𝑖 = 𝑃𝑏𝑙𝒾 is 𝑤𝑖 = 1 − 𝑞 𝒾 (the availability 
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factor). The 𝓊-th order raw moment  𝑚𝒾,𝓊 of the variable 𝑥𝒾, 𝒾 = 1,… , 𝑛𝑔 can be 

computed as follows: 

𝑚𝒾,𝓊 = 𝑤𝒾 𝑔𝒾
𝓊 . 

where 𝑛𝑔 is the number of generators in the group. The r-th order cumulant 𝒦𝒾,𝓇 ,

𝓇 > 1 of the variable 𝑥𝒾 is calculated according to the recurrent expression [92] 

𝒦𝒾,𝓇 = 𝑚𝒾,𝓇 − ∑ 𝐶𝓇−1
𝒿

𝑚𝒾,𝒿 𝒦𝒾,𝓇−𝒿

𝓇−1

𝒿=1

. 

The cumulant of the capacity of generator group 𝑥Σ = ∑𝑥𝒾 can be computed as 

𝒦𝛴,𝓇 =∑𝒦𝒾,𝓇

𝑛𝑔

𝒾=1

. 

Based on the obtained cumulant values, it is possible to determine the initial moments 

of the resulting variable 𝑥Σ according to the recurrence relation [92]: 

𝑚𝛴,𝓇 = 𝒦𝛴,𝓇 +∑𝐶𝓇−1
𝒿

𝑚𝛴,𝒿 𝒦𝛴,𝓇−𝒿

𝓇−1

𝒿=1

. 

2.2 Computational results for concentrated power system 

A numerical study is performed to compare the proposed procedures. A 

concentrated EPS with groups of generators (number, rated power (MW) and the 

failure probability of a generating unit) was considered: {5;  200;  0,08};  

{4;  100;  0,05};  {6;  50;  0,05}]  and a load described by normal distribution with 

mathematical expectation 𝜇𝐿 = 1000 МW and standard deviation 𝜎𝐿 = 100 МW. 

The results of the study are summarized in Table. 2.1 and Table. 2.2, which shows a 

comparison of mathematical techniques for determining the probabilistic indices of a 

power deficit in a concentrated EPS. Table 2, to assess the specificity of one group of 

similar generators, the group {8;  200;  0,08}.  The columns of the tables {LOLP, 

EPNS, SPNS} correspond to the probability, mathematical expectation and standard 

deviation of the power deficit, and the columns { LOLP err, EPNS err, SPNS err} 

correspond to the relative error of the considered mathematical method. As a basis for 

comparison, the method of convolution of probability series is adopted, which is 

considered as absolutely accurate (the first row of the table). The second and third 
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rows of the table correspond to the statistical test method (MCS) with 106 and 104 

number of samples. Normally, with increasing the number of samples, the error 

decreases, but even with 106, the error of the mathematical expectation is nearly 2.6%. 

With a smaller number (104) of samples, the error of the method exceeds 25% as 

shown in Table 2.2. The negative properties of the MCS are known - to obtain 

acceptable accuracy, an unacceptably long computation time is required. 

The cumulant combined with the Gram-Charlier series provides the results 

(fourth row of the table, {11.6%, -5.6%, -17.6%} (Table 1) {23.3%, 2.6%, - 14.2%} 

(Table 2). Here, the binomial distribution is taken as the basic one in determining the 

raw moments and semi-invariants. The use of the Poisson distribution as the basic one 

results in a considerable rise in the total error. The last method stands out significantly 

in terms of modeling accuracy - von Mises. The von Mises method (error {0.1%, -

0.3%, 0%} (Table 1) and {0%, 0%, 0%} (Table 2) is based on the representation of a 

generating system as a set of individual generators with the Bernoulli distribution. The 

calculated values correspond to 11 impulses. A reduction in the number of impulses 

to five results in a rise in the errors on average up to (2-3) %. If it is necessary to obtain 

accurate calculations, the method of convolution of probability series is out of 

competition. 

Table2.2- Computational results in case of different generator groups.  

Method LOLP LOLP err  EPNS EPNS err   SPNS SPNS err  

Convolution 0.0020 0.0% 0.143 0.0% 4.388 0.0% 

МCS-106 0.0020 -1.5% 0.140 -2.1% 4.315 -1.7% 

МCS-104 0.0032 60.5% 0.226 58.6% 5.702 30.0% 

Cumulant+Gram-Charlier 0.0022 11.6% 0.135 -5.6% 3.616 -17.6% 

Cumulant+Von mises 0.0020 0.1% 0.142 -0.3% 4.388 0.0% 

Table 2.2- Computational results in case of single generator group.  

Method LOLP LOLP err  EPNS EPNS err   SPNS SPNS err  

Convolution 0,0043 0,0% 0,338 0,0% 7,102 0,0% 

МCS-106 0,0041 -3,6% 0,329 -2,6% 7,053 -0,7% 

МCS-104 0,0034 -20,0% 0,236 -30,2% 5,244 -26,2% 

Cumulant+Gram-Charlier 0,0052 23,3% 0,346 2,6% 6,097 -14,2% 

Cumulant+Von mises 0,0043 0,0% 0,338 0,0% 7,102 0,0% 
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2.3 Mathematical formulation of the reliability evaluation problem in 

composite power system 

 A composite power system model is normally represented by a group of areas 

or nodes (a set of concentrated EPS) connected by transmission lines of limited 

capacity. The uncertainties of total available generation capacity and total required 

load are depicted for each concentrated EPS or node. The total load of a concentrated 

EPS is represented by a normal PDF, with a known mathematical expectation and 

variance. The normal distribution is also used for describing the aggregated load 

connected to each node. The available capacity of a group of similar generators is 

usually depicted by a binomial distribution and could be approximated by a Gaussian 

PDF as described in 1.3. 

Due to the probabilistic nature of the load and available generation, it may turn 

out that the total available capacity of  generation system 𝐺𝛴
𝑎𝑣 = ∑ 𝐺𝑑

𝑎𝑣𝐷
𝑑=1 will be less 

than the total demand 𝐿𝛴 = ∑ 𝐿𝑑
𝐷
𝑑=1 , 𝐺𝛴

𝑎𝑣 < 𝐿𝛴  , where 𝐷 is the number of system 

nodes. If we accept the assumption of unlimited capacity of transmission lines, the 

power deficit in the system can be formulated as, 𝑃𝑁𝑆𝛴 = 𝐺𝛴
𝑎𝑣 − 𝐿𝛴,   the positive 

part of which determines the reserve, and the negative part - the deficit of generating 

capacity. At the same time, due to, as a rule, the accepted assumption about the 

independence of 𝐺𝛴
𝑎𝑣 , 𝐿𝛴, the mathematical expectation and variance of the power 

deficit: 

𝔼(𝑃𝑁𝑆𝛴) = 𝔼(𝐺𝛴
𝑎𝑣) − 𝔼(𝐿𝛴);  

𝕧(𝑃𝑁𝑆𝛴) = 𝕧(𝐺𝛴
𝑎𝑣) + 𝕧(𝐿𝛴). 

(2.8) 

If we accept the assumption of a normal probabilistic distribution of power deficit, 

with mean and variance determined by expressions (2.8), then the probability of a 

power deficit in the system can be calculated through the normal distribution function: 

ℙ(𝑃𝑁𝑆𝛴) = 𝐹𝑃𝑁𝑆𝛴(0; 𝔼(𝑃𝑁𝑆𝛴), 𝕧(𝑃𝑁𝑆𝛴)), 

However, in practice, there is a presence of power deficits is the result of limited 

capacity of transmission lines and the impossibility of delivering power from surplus 

node to deficient ones. As a result, the problem arises of the distribution of power 

deficits between the nodes through the OPF algorithm are needed as described in 1.4. 
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2.3.1 Point Estimate Method    

The method of combined PEM and the approximation of a distribution by Gram 

Charlier expansion series has been considered for estimating the probabilistic indices 

of power deficit in composite power system. PEM concentrate the PDF of each system 

input into points or impulses with corresponding weights based on the knowledge of 

the first few moments of the variables [99], and then perform deterministic OPF 

calculations at each of these impulse to obtain the moments of system output. The 

PDF of a system output can be approximated through its raw moments by the Gram 

Charlier expansion series.  

The essence of the PEM is to approximate the distribution function 𝑓(𝑥) of a 

continuous random variable by a probability series {𝑥𝒿; 𝑤𝒿,   𝒿 = 1,… , 𝑛𝑝}  for which 

the value 𝑥 𝒿 and probability 𝑤 𝒿 are determined for the points 𝑛𝑝 (often called 

concentrations). In relation to the property of uncertainty, the probability 𝑤 𝒿 can be 

interpreted as a "weighting factor" of a point satisfying ∑ 𝑤𝒿
𝑛𝑝

𝒿=1 = 1. Pairs {𝑥𝒿; 𝑤𝒿} 

(often called probabilistic moments) are defined in such a way that some probabilistic 

criteria are satisfied as follows: 

∑ 𝑥 𝒿𝑤 𝒿
𝑛𝑝

 𝒿=1
= 𝑚𝑥,1;  ∑ (𝑥 𝒿 −𝑚𝑥,1)

𝓊
𝑤 𝒿

𝑛𝑝

 𝒿=1
= 𝑀𝑥,𝓊 , 𝓊 = 1,2, . . , 𝑛𝑀 . (2.9) 

where 𝑚𝑥,𝓊and  𝑀𝑥,𝓊 are the 𝓊-th raw and central moment of the random variable 𝑥, 

respectively and 𝑛𝑀 – is the number of moments. Here 𝑥𝒿 is the value of the variable 

over which the function ℎ(𝑥) is evaluated. The weight 𝑤𝒿 is a factor that determines 

the relative importance of this estimate in the analyzed function ℎ(𝑥). When 

determining the moments of the output random variable 𝑧 = ℎ(𝑥) as shown in (2.10), 

the PDF or CDF of the output random variables, the Gram - Charlier series is used 

when normalizing the variables and its moments or cumulants.  

𝑚𝑧,𝓊 = ∫ (ℎ(𝑥))
𝓊
𝑑𝐹(𝑥)

∞

−∞

=∑ (ℎ(𝑥 𝒿))
𝓊𝑛𝑝

 𝒿=1
𝑤 𝒿. (2.10) 

This approach can be extended to a set of input variables {𝑥𝒾, 𝒾 = 1,… , 𝑛}, forming a 

multivariate probability distribution. In this case, the analyzed function depends on all 
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variables, 𝑧 = ℎ(𝑥1, … 𝑥𝑛). With discreteness{𝑥𝒾}, 𝑧 = ℎ(𝑥 𝒾𝑗 , 𝒾 = 1,… , 𝑛;  𝒿 =

1,… , 𝑛𝑝,𝒾). Correspondence of weights to probabilities requires knowledge of the 

probabilities of joint events ℙ(𝑥1 𝒿1 , … , 𝑥𝒾 𝒿𝒾 , … 𝑥𝑛 𝒿𝑛), or multivariate probability 

distribution, which is practically impossible to implement in real technical 

calculations. Here, as a rule, the assumption is made about the independence of the 

input variables. 

There are various PEM schemes based on the number of estimation points and 

how the input vectors are represented [99-106]. Several PEM schemes such as 

Rosenblueth's PEM (𝑛𝑝)
𝑛 [100-101] and Hong's PEM implementations [102-103]: 

(𝑛𝑝  ×  𝑛) and (𝑛𝑝 ×  𝑛 ) +  1, where 𝑛 is the dimension of the variable being 

analyzed; 𝑛𝑝 is the number of concentration points for an individual variable. 

The 2 ×  𝑛 Hong PEM needs a foreknowledge of the first three moments for all the 

input random variables. It has large errors with increasing the number of variables. 

For better performance, the 2𝑛 + 1 and 4𝑛 + 1 schemes are suggested for including 

more points. The 2𝑛 + 1 needs knowledge of all the inputs’ first four moments. While 

the 4𝑛 + 1 requires further knowledge of the input variable up to the 8-th moment. 

2.3.1.1 Rosenblueth's PEM 

To demonstrate the basic idea of Rosenblueth's PEM [100-101], consider a 

function ℎ(𝑥) of one variable 𝑥, the first three central moments 𝑀𝑥,1, 𝑀𝑥,2, 𝑀𝑥,3 

(mean, standard deviation and skewness) are known. First of all, it should be noted 

that on the basis of four equations (equality of three moments and equality of the sum 

of weights to one), two probabilistic impulses can be determined, since each impulse 

is characterized by two parameters (location and weight {𝑥𝒿, 𝑤𝒿, 𝒿 = 1,2} ). The 

locations and weights of the input variable 𝑥 are obtained by solving a system of 

nonlinear equations 

∑𝑤𝒿 = 1

2

𝒿=1

;∑𝑤𝒿(𝑥𝒿 − 𝜇𝑥)
𝓊
= 𝑀𝑥,𝓊

2

𝒿=1

, 𝓊 = 1, 2, 3 (2.11) 
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where 𝜇𝑥 is the mean of the variable 𝑥. For the convenience of the mathematical 

representation of the central moments, the change of variables in (2.11) is performed. 

The coordinate of the variable point (𝑥𝒿) is determined by the relative deviation 𝜉𝒿 of 

the point from the variable mean 𝜇𝑥 as follows: 𝑥𝒿 = 𝜇𝑥 + 𝜉𝒿 𝜎𝑥, where 𝜎𝑥is the 

standard deviation of the variable 𝑥. To normalize the variables and dividing on 𝜎𝑥
𝓊 

and substituting by  𝜉𝒿 = (𝑥𝒿 − 𝜇𝑥)/𝜎𝑥 and 𝜆𝑥,𝓊 = 𝑀𝑥,𝓊/𝜎𝑥
 𝓊 , the equation  (2.11) 

becomes 

∑𝑤𝒿 = 1

2

𝒿=1

;∑𝑤𝒿(𝜉𝒿)
𝓊
= 𝜆𝑥,𝓊

2

𝒿=1

, 𝓊 = 1, 2, 3 (2.12) 

where 𝜆𝑥,𝓊is the standard  𝓊-th central moment. The expression (2.12) in expanded 

form can be written as follows: 

{
 

 
𝑤1 + 𝑤2 = 1;

𝑤1𝜉1 + 𝑤2𝜉1 = 0;

𝑤1𝜉1
2 + 𝑤2𝜉2

2 = 1;

𝑤1𝜉1
3 + 𝑤2𝜉2

3 = 𝜐𝑥,

 

where 𝜐𝑥 = 𝜆𝑥,3 = 𝐸[(𝑥 − 𝜇
𝑥
)3]/𝜎𝑥

3 – is the coefficient of asymmetry (skewness) of 

the variable 𝑥. The solution of this system of equations presented in [100] has this 

form  

𝜉𝑥1 , 𝜉𝑥2 =
𝜐𝑥

2
±√1 + (

𝜐𝑥

2
)
2

; 𝑤1 =
1

2
[1 −

𝜐𝑥

2

1

√1+(
𝜐𝑥
2
)
2
] ; 𝑤2 = 1 − 𝑤1. 

In the case of a standard normally (or symmetrically) distributed variable 𝜐𝑥= 0. Hence, 

the location 𝜉𝑥1 , 𝜉𝑥2 = ∓1. Wherein: the points are  𝜇𝑥  +  𝜎𝑥  and  𝜇𝑥 −  𝜎𝑥 . The weights 

of these points are the same 𝑤1  = 𝑤2 = 1/2. 

If ℎ(𝑥) is a function of two variables {𝑥1, 𝑥2}, then the Rosenblueth procedure 

is to create four vectors, which are a combination of points, one from each variable, 

that is, it builds four input vectors so that the value of each variable is one standard 

deviation above or below the average value: (𝜇𝑥1 + 𝜎𝑥1, 𝜇𝑥2 + 𝜎𝑥2),   (𝜇𝑥1 +

𝜎𝑥1, 𝜇𝑥2 − 𝜎𝑥2), (𝜇𝑥1 − 𝜎𝑥1, 𝜇𝑥2 + 𝜎𝑥2) and (𝜇𝑥1 − 𝜎𝑥1, 𝜇𝑥2 − 𝜎𝑥2). Since ℎ(𝑥) 
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represents a combination of the values of the two input variables, the weight of each 

vector is equal to 0,52 = 0,25. 

In the general case, when ℎ(𝑥) is a function of 𝑛 variables (𝑥𝒾, 𝒾 = 1,… , 𝑛),  

the Rosenbluth procedure chooses 𝑁 = (𝑛𝑝)
𝑛 input vectors so that the value of each 

variable is one standard deviation below or above the mean, {𝜇𝑥𝒾 ∓ 𝜎𝑥𝒾 , 𝒾 = 1,… , 𝑛}. 

With the same strategy for choosing the location of points for all variables, the 

probabilities of input vectors (𝑟𝑖 = 𝜇𝑥1 ∓ 𝜎𝑥1 , … , 𝜇𝑥𝒾 ∓ 𝜎𝑥𝒾 , … , 𝜇𝑥𝑛 ∓ 𝜎𝑥𝑛 , 𝑖 =

1,… , 𝑁) are the same, hence the mean ℎ(𝒙) is the average value of the functions on 

the set of impulses 

ℎ(𝒙) =
1

𝑁
∑ℎ(𝑟𝑖). 

When solving the problem of estimating reliability indices, as a rule, the load 

and the available generation of the EPS are random variables. Moreover, the number 

of variables, even for relatively small systems, is in the hundreds. Taking into account 

the relations 𝑁 = (𝑛𝑝)
𝑛, it can be argued that this method is applicable only when the 

number of variables is no more than 12-14. With a larger number of variables, the 

MCS method again becomes more efficient in terms of speed and accuracy of 

calculations. 

2.3.1.2 Hong’s PEM 

Hong's method has two schemes  (𝑛𝑝  ×  𝑛)  and (𝑛𝑝 ×  𝑛 +  1).  

The first scheme (𝑛𝑝  ×  𝑛) is characterized by the fact that each input vectors 

𝑟𝑖 , 𝑖 = 1,… , 𝑛 × 𝑛𝑝 is characterized by a deviation of only one variable 𝑥𝒾 , 𝒾 =

1,…𝑛. All other variables in the impulse are taken equal to their mean as follows: 

𝑟𝑖 = 𝜇𝑥1 , … , 𝜇𝑥𝑖 + 𝜉𝑥𝒾,𝒿𝜎𝑥𝒾 , … , 𝜇𝑥𝑛 ,   𝒿 = 1,… , 𝑛𝑝.  Hence, the total number of 

evaluations is equal to 𝑁 = 𝑛 × 𝑛𝑝. The coordinates of the location 𝜉𝑥𝒾,𝒿  and the 

weight 𝑤𝑥𝒾,𝒿for each random variable 𝑥𝒾 are determined by solving a system of 

nonlinear equations similar to (2.12) [102]: 
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∑∑𝑤𝑥𝒾,𝒿 = 1

𝑛𝑝

 𝒿=1

𝑛

𝒾=1

;  ∑𝑤𝑥𝒾,𝒿𝜉𝑥𝒾,𝒿
 𝓊 = 𝜆𝑥𝒾,𝓊,

𝑛𝑝

 𝒿=1

 ∀ 𝓊 ∈ 𝑛𝑀 , 𝒾 ∈ 𝑛 (2.13) 

For one random variable (𝒾 = 1) and 𝑛𝑝 = 2, four equations with four unknowns 

(coordinates and weights of the two points) are required. Solution of the system of 

equations (2.13) are obtained as follows: 

𝜉𝑥𝒾,1 , 𝜉𝑥𝒾,2 = ∓1; 𝑤𝑥𝒾,1 = 𝑤𝑥𝒾,2 = 0,5; 𝒾 = 1 

In a multivariate space of variables (𝑥𝒾, 𝒾 = 1,… , 𝑛), the system of equations (2.13) 

takes this form 

∑𝑤𝑥𝒾,𝒿 = 1/𝑛

𝑛𝑝 

 𝒿=1

; ∑𝑤𝑥𝒾,𝒿𝜉𝑥𝒾,𝒿
 𝓊 = 𝜆𝑥𝒾,𝓊

𝑛𝑝

 𝒿=1

,∀ 𝓊 ∈ 𝑛𝑀, 𝒾 ∈ 𝑛 (2.14) 

The solution of equations for each variable 𝑥𝒾 is obtained as follows: 

𝜉𝑥𝒾,1 , 𝜉𝑥𝒾,2 =
𝜐𝑥𝒾
2
± √𝑛 + (

𝜐𝑥𝒾
2
)
2

; 

𝑤𝑥𝒾,1 =
1

𝑛

𝜉𝑥𝒾,2

(𝜉𝑥𝒾,2
−𝜉𝑥𝒾,1

)
;             𝑤𝑥𝒾,2 = −

1

𝑛

𝜉𝑥𝒾,1

(𝜉𝑥𝒾,2
−𝜉𝑥𝒾,1

)
. 

It should be noted that the coordinates or locations of the concentration points in the 

considered scheme depend on the number of variables 𝑛. 

The second scheme. The Hong's second model (2 × 𝑛 +  1) is to consider one 

more (third) specific point - the mean of a random variable, which is equal to zero for 

the normalized quantities involved in calculating the central moments. From here, its 

location has already been determined for the third point. As a result, to determine the 

parameters of the points, a system of five (rather than six) equations is required - one 

equation for the sum of the weights and 4 to ensure the equality of the first four central 

moments. The advantage of the scheme is to take into account not only the third, but 

also the fourth (kurtosis, 𝑘𝑥𝒾 = 𝜆𝑥𝒾,4) central moments in equations (2.14). The 

solutions of the considered system of equations are [103]: 

𝜉𝑥𝒾,1 , 𝜉𝑥𝒾,2 =
𝜐𝑥𝒾
2
± √𝑘𝑥𝒾 −

3

4
𝜐𝑥𝒾

2; 
(2.15) 
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𝑤𝑥𝒾,1 =
1

𝜉𝑥𝒾,1
2 − 𝜉𝑥𝒾,1𝜉𝑥𝒾,2

;  𝑤𝑥𝒾,2 =
1

𝜉𝑥𝒾,2
2 − 𝜉𝑥𝒾,1𝜉𝑥𝒾,2

;  

 

𝑤𝑥𝒾,3 =
1

𝑛
− 𝑤𝑥𝒾,1 − 𝑤𝑥𝒾,2 . 

 

The third concentration point is the same for all variables. Hence, there is no need to 

repeat many times the same calculations corresponding to the mean of the input 

variables. Here the weight of the point corresponding to the mean is 

𝑤0 =∑𝑤𝑥𝒾,3

𝑛

𝒾=1

= 1 −∑(𝑤𝑥𝒾,1 + 𝑤𝑥𝒾,2)

𝑛

𝒾=1

= 1 − 𝑛 (𝑤𝑥𝒾,1 + 𝑤𝑥𝒾,2) = 1 −
1

𝜆𝑥𝒾,4 − 𝜆𝑥𝒾,3
2 . 

Realizations of input vectors, as in the first Hong model, contain one of two points 

(𝑥𝒾,𝒿, 𝒾 = 1,… , 𝑛; 𝒿 = 1,2) of each input random variable (𝑥𝒾 , 𝒾 = 1,… , 𝑛), while 

others variables are represented by their expected values. In addition, the last vector 

contains the mean of the input variables.  

Scheme 2 (2 × 𝑛) +1 is considered as the linear superposition of Hong's 

schemes PEM (2 × 𝑛) and (2 × 𝑛) +1 [105]. The moments of the output random 

variable (𝑧 = ℎ(𝑥)) are defined as the average of their output moments: 

𝑚𝑧,𝓊 =
1

2
{ 𝑤0 (ℎ(𝜇𝑥1 , … , 𝜇𝑥𝑛))

𝓊

+∑∑𝑤𝑥𝒾,𝒿 (ℎ(𝜇𝑥1 , … , 𝑥𝒾,𝒿, . , 𝜇𝑥𝑛))
𝓊

2

𝒿=1

𝑛

𝒾=1

+∑∑𝑤𝑥𝒾,𝒿′ (ℎ(𝜇𝑥1 , … , 𝑥𝒾,𝒿
′ , . , 𝜇𝑥𝑛))

𝓊

}

2

𝒿=1

𝑛

𝒾=1

 

 

(2.16) 

where 𝑥𝒾,𝒿
′  and 𝑥𝒾,𝒿 - the realization points of Hong's schemes (2 × 𝑛) and 

((2 × 𝑛) +  1) respectively. 

Many researchers confirm that in the range of variables close to the mean, the 

accuracy of the 2𝑛 Rosenblueth and (2 × 𝑛) Hong schemes are approximately the 

same [104]. In the area farther from the mean, which is more relevant in analyzing the 

reliability of systems, since rare events are of greatest interest here, one should give 

preference to the second Hong scheme (2 × 𝑛 +  1),  with 𝜉𝑥1 , 𝜉𝑥2 = ∓√3). 

However, even this Hong's method with probabilistic impulses at the points 
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(−√3𝜎; 0; √3𝜎) is insufficient for analyzing the EPS reliability, since in engineering 

practice the load fluctuation in the ∓2𝜎  range is considered normally acceptable, 

meeting the reliability criterion. Additionally, it should be noted that the power of the 

most powerful generators in the EPS is comparable to the STD of generation. Hence, 

Hong's scheme (2 × 𝑛)   implements the N-1 reliability criterion actually operating 

in the EPS, according to which the shutdown of any EPS element should not lead to 

a limitation of power consumption. As a result, when analyzing reliability, the area 

outside ∓2𝜎 or meeting the N-2 criterion and higher is of interest. This condition is 

partially met by the second Hong scheme for 𝑛𝑝  =  4. Here, the coordinates of 

probabilistic impulses [103] in the (4 × 𝑛)scheme: 

𝜉𝑥1 , 𝜉𝑥4 = ∓
√3 + √6 ≈ ∓2,33 ;  𝜉𝑥2 , 𝜉𝑥3 = ∓

√3 − √6 ≈ ∓0,74; . 

𝑤𝑥1 = 𝑤𝑥4 =
(3 − √6)

12
≈ 0,046 ;   𝑤𝑥2 = 𝑤𝑥3 =

(3 + √6)

12
≈ 0.45 ;   

In the scheme (4 × 𝑛 + 1)    

𝜉𝑥1 , 𝜉𝑥5 = ∓
√5 + √10 ≈ ∓2,86; 𝜉𝑥2 , 𝜉𝑥4 = ∓

√5 − √10 ≈ ∓1,36; 𝜉𝑥3 = 0. 

𝑤𝑥1 = 𝑤𝑥5 = (7 − 2√10)/60 ≈ 0.011;  𝑤𝑥2 = 𝑤𝑥4 = (7 + 2√10)/60 ≈ 0.22;  𝑤𝑥3 = 8/15. 

For the problem of assessing the reliability of EPS, the areas from 2𝜎 to 3𝜎 are more 

significant. Hence, we can expect that the best option would be the superposition of 

the PEM (4×n) and (4×n+1) Hong schemes.  

In the general case, 8 equations (coordinates and weights) are required to 

determine four impulses of an arbitrary probability distribution. As noted above, these 

equations are formed from the condition of equality of the first standard central 

moments (0,1, 𝜆3, … , 𝜆7). The coordinates of these impulses are the roots of the fourth 

degree polynomial 𝜉4 + 𝒸3𝜉
3 + 𝒸2𝜉

2 + 𝒸1𝜉 + 𝒸0=0 [106]. The coefficients of the 

polynomial 𝒸0, 𝒸1, 𝒸2, 𝒸3 are the solution to a system of linear equations (Gram's 

scheme): 

(

0 1     𝜆3 𝜆4
1 𝜆3     𝜆4 𝜆5
𝜆3 𝜆4     𝜆5 𝜆6
𝜆4 𝜆5     𝜆6 𝜆7

)(

𝒸0
𝒸1
𝒸2
𝒸3

) = −

(

 

𝜆4
𝜆5
𝜆6
𝜆7)

  (2.17) 
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After calculating the coordinates 𝜉1, 𝜉2, 𝜉3, 𝜉4  the weights are determined from the 

system of equations (2.14). 

2.3.1.3 Modified Hong's PEM 

 In the problem of estimating EPS reliability, the nodal available power 

generations 𝐺1
𝑎𝑣, … , 𝐺𝐷

𝑎𝑣  and loads 𝐿1, … , 𝐿𝐷 are considered as independent input 

random variables, and their states union formulate a set of input vectors {𝑟𝑖, 𝑖 = 1,… ,𝑁}, 

𝑟𝑖 = {𝑥𝒾, 𝒾 = 1, . . , 𝑛}, in which 𝑁 is the number of input vectors, 𝑛 is the number of input 

random variables (𝐺𝑑
𝑎𝑣, 𝐿𝑑  ∀ 𝑑 ∈ 𝐷)  and 𝐷 is the set of nodes. In Hong's scheme 

(2×n+1), only one nodal parameter changes - either the load or generation (criterion 

𝑁 − 1), but the power deficit is observed when two negative events are superimposed 

i.e. more than one nodal load and generation differ from their expected forecast value. 

In order to take relatively this factor into account in Hong's 2 × 𝑛+1 scheme, it is 

proposed to introduce an additional block of analyzed vectors {𝜇𝐺𝑑
𝑎𝑣 − 𝜉𝐺𝑑,1

𝑎𝑣𝜎𝐺𝑑
𝑎𝑣 ,

𝜇𝐿𝑑 + 𝜉𝐿𝑑,2𝜎𝐿𝑑;  ∀ 𝑑 ∈ 𝐷}. The weight of the vector component of this block is 

determined by analogy with the Rosenblueth scheme, as the probability of joint 

realization of two independent events 𝑤𝑑 = 𝑤𝐺𝑑,1
𝑎𝑣𝑤𝐿𝑑,2 .  

2.4 Computational results for composite power system 

In this section, based on test calculations, the applicability and efficiency of the 

considered PEM methods are compared in relation to the problem of assessing the 

reliability indices. Figure 2.1 shows a five-nodes test system. The data for the nodes 

and transmission lines are presented in Table 2.3. All the nodes are connected by 

transmission lines of the same transmission capacity but different resistance and 

reactance. The nodal loads and the available generating powers are independent 

random variables and described by normal probability distributions with a given mean 

and variance in Table 2.3. In terms of mean values of the generation capacity and load, 

the test scheme includes two in surplus, one in balance, and two deficient nodes. The 
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probabilistic nature of the generation and demand could potentially result in different 

combinations of operational states of the power system nodes.  

The considered methods are compared based on the probability, expected value, 

and standard deviation of PNS in nodes (Nodal LOLP- EPNS- SPNS), as well as the 

average value and overload probability of the transmission lines. The calculations are 

presented in Table 2.4. The MCS with the number of statistical tests 104 is taken as a 

reference for comparing the PEM methods. With this volume of tests, the scatter of 

MCS results does not exceed 1.5%. The nodal loads and the available generations are 

considered as input variables. Hence, the number of variables (n) is 10. When 

comparing the methods, the relative deviation of the indicator under consideration 

from the corresponding indicator obtained by the MCS method is computed. To 

evaluate the effectiveness of the PEM schemes, the error index 𝜖𝒾is used as shown in 

(2.18), which are defined as the average errors for the set of nodes and transmission 

lines. 

𝜖𝒾 =
1

𝜂
∑ |

𝛽𝒾,ℊ
𝑀𝐶𝑆−𝛽𝒾,ℊ

∗

𝛽𝒾,ℊ
𝑀𝐶𝑆 | × 100[

𝜂
ℊ=1 %],                                         (2.18) 

where 𝜂, depending on the indicator 𝒾 , is either the number of nodes or the number 

of transmission lines; 𝛽𝒾,ℊ
𝑀𝐶𝑆 𝛽𝒾,ℊ

∗  – the values of the analyzed indicator 𝒾 at node or 

transmission line ℊ, calculated by the MCS and by the considered PEM method, 

respectively.  

The resulting indicators can be divided into two groups: (LOLP, EPNS, and 

SPNS for the nodes, overload probability of the transmission lines) and (nodal power 

export and loading of the transmission lines). Compared to the MCS method, all the 

methods of PEM under consideration have a shorter calculation time. The 

Rosenblueth method does not outperforms all the other compared methods in terms 

of the speed of calculations, but it has some advantages only when calculating the 

indicators of nodal power deficit. This is because this method takes into account the 

overlap of low generation and high load events. Hong's methods 2 × 𝑛 and 

2 × 𝑛+1are practically not inferior in accuracy to the methods of Hong's 4 × 𝑛+1and 

2(2 × 𝑛)+1- both are quite accurate when assessing the indicators of the second group 
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and equally inaccurate when assessing the indicators of the first group. Slightly more 

accurate is Hong's 4 × 𝑛+1 method. The modified Hong's method methods М(2 ×

𝑛)+1, having the same performance as the other Hong's methods, makes it possible to 

obtain more accurate solutions for the indicators of the first group. Hence, for practical 

application in solving reliability evaluation problems, we can recommend Hong's 

methods М(2 × 𝑛)+1 and 4 × 𝑛+1. But when analyzing the reliability, the N-1 or N-

2 criterion should be considered as the basic one, but additional disturbances in the 

EPS are superimposed. 

 

Node 1 Node 2

Node 3 Node 4Node 5

L1G1 L2G2

L4G4L3G3 L5G5
 

Figure 2.1- Test scheme. 

Table 2.3- Test scheme data. 

Transmission Lines Data Nodes Data 

From To 
Resistance 

(Ohm) 

Reactance 

(Ohm) 

Capacity 

(MW) Node 

Available 

Generation 

(MW) 

Load (MW) 
Node Node 

1 5 10 100 500 Mean STD Mean STD 

1 1 1 1 1 1 1700 170 1700 170 

2 2 2 2 2 2 50 5 50 5 

2 3 3 3 3 3 1440 144 1440 144 

3 4 4 4 4 4 1200 120 1200 120 

4 5 5 5 5 5 1500 150 1500 150 
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 Table 2.4- The PEM methods comparison with the MCS method. 

  

Parameters 

  

MCS 

  

Ros-’s 

PEM Hong’s PEM 

2n 2n 2n+1 4n+1 
2(2n) 

+1 

М2n+

1 

Computational time, s 40 9 3.2 3.3 3.9 3.5 3.5 

Deviation of Nodal EPNS, % 
 

86.8 108.6 68.3 66.2 86.29 34.8 

Deviation of Nodal SPNS, %  69.5 79.7 62.2 61 70.7 43.8 

Deviation of Nodal LOLP, %  21 47.5 22.5 22.5 25.9 28.2 

Average line power flow, MW 
261.

4 
0.28% 0.13% 2.7% 

2.76

% 
1.35% 1.18% 

Deviation of line overload 

probability, % 
 41.9 74.1 50 36 45.4 13 

Average Nodal export power, 

MW 
-2.98 1% 1% 3% 3%% 7% 4% 

 

Conclusion 

In concentrated EPS, the main findings can be outlined as follows: 

• The most accurate method for assessing the probabilistic parameters of 

the power deficit is the convolution method through separating 

accounting of generation and load.  

• The statistical modeling method (MCS) needs a large number of tests 

(about 106) to provide an accurate solution. 

• Defining the power deficit distribution function by the Gram-Charlier 

series gives quite large calculation errors, especially in the case of low 

probabilities of power deficit. 

• With a large number of different types of generator groups for practical 

use, the von Mises method is recommended as sufficiently accurate on 

average and mathematically simpler. 

In composite power system, the results discussion can be concluded in the 

following points: 

• The point estimates methods are effective only when a relatively large 

number of events of loss of load is in the range from the minimum to 

maximum of the concentration points of input random variables. If the 
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system is extremely reliable (the loss of load events might be so rare), 

the loss of load events need more probabilistic impulses of the input 

random variables and more number of combinations among them to be 

investigated. Thus, the point estimates methods do not provide accurate 

estimates of the reliability indices.  

• Rosenbluth's method is applicable only when the number of variables is 

no more than 12-14. With a larger number of variables, the MCS method 

becomes more efficient in terms of speed and accuracy of calculations. 

• One principal advantage of the Hong's scheme (𝑛𝑝 ×  𝑛 +  1)  is the 

independence of their concentration points on the number of variables. 

• The Hong's scheme (2n) is the most computationally effective but is 

suffers from very large errors. Hong's schemes (4 × n + 1) and (2 × n + 

1) give better accuracy than the 2n scheme. Hong's scheme (4 × n + 1) 

gives  similar  or  slightly  better performance as the (2 × n + 1) scheme, 

but for higher modeling accuracy, preference should be given to the (4n 

+ 1) scheme since it gives a deeper knowledge of the input variables up 

to the 8th moment.   

• In general, modified Hong's method M(2 × n) +1, having better 

performance than the rest of Hong's methods, by taking into account a 

group of combined events, provides more accurate solutions for 

reliability indicators describing the nodal power deficit and the overload 

of the transmission lines.   
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Chapter 3 A Framework for Reliability Evaluation through Extraction of 

Rare Loss of Load Events in Composite Power Systems 

VRTs are presented as effective methods for accelerating the MCS computation 

in power system reliability assessment. VRTs are used to manage the manner each 

sample of the MCS method is specified to decrease the variance of the estimators of 

the reliability indices. By decreasing the variance, the convergence is sped-up. VRTs 

extract the set of states, which make a significant contribution to the evaluation of 

reliability indices through generating samples exploring the loss of load events and so 

shortening the computation time of obtaining an accurate estimate of the reliability 

indices. When the more reliable the power system is i.e. the smaller system failure 

probability (LOLP) is, the more reduction of computation time is compared with the 

MCS. 

The name of variance reduction techniques gathers various techniques, such as 

subset sampling [38], importance sampling [39-41], control variates [42], antithetic 

variates [43], stratified sampling [44], line sampling [45-46], and directional sampling 

[47]. Subset simulation (SS) and importance sampling (IS) are the most substantial 

variance reduction approaches applied in reliability studies. SS is based on splitting 

the failure domain into a series of partial failure domains. This facilitates describing 

the probability of failure event as a product of conditional probabilities of the partial 

failure events. The main advantages of SS are its capability to handle complex limit-

state functions (e.g., nonlinear, with possibly multiple failure regions). On the other 

hand, SS have some drawbacks. Firstly, the variance estimator is not directly 

calculated by an analytical formula as MCS and IS techniques but must be evaluated 

by repetition. Secondly, even if SS provides a variance reduction compared to MCS, 

the number of samples needed to achieve convergence is larger than that needed with 

other IS techniques. The objective of the IS method is to obtain the importance 

sampling density (ISD) in which compared with the original distribution the important 

region has higher occurrence likelihoods. In other words, the ISD is the density of the 

input variables conditional on the failure domain. The optimal selection of the ISD 
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can result in zero variance of the estimate of failure probability. However, in practice, 

sampling from the theoretically optimal ISD is not handy, because it needs knowing 

the failure probability and failure domain in advance. To overcome this problem, the 

cross-entropy technique [48-50] was applied to approximate the optimal ISD in a 

sequential manner. The advantage of the CE-IS approach is related to the fact that 

analytical updating formulas can be derived for density parameters when dealing with 

probability densities belonging to the natural exponential family. Another advantage 

concerns the fact that, similarly to the standard MCS, the estimation error is directly 

controlled using the estimator of the variance [48]. However, the major difficulty is 

to construct efficient intermediate densities used in the adaptive sampling process to 

approach the target optimal ISD.  

This chapter primarily revise the traditional CE-IS to develop an improved 

version of the CE-IS named (ECE-IS) by incorporating two enhancements. The first 

one is developing a new updating scheme for the parameter of the intermediate 

density. In the proposed method, the indicator function of the intermediate failure 

events is defined by a smooth approximation function instead of using step function 

as the traditional CE-IS method. This allows exploiting all the samples from 

intermediate sampling levels in the density parameter updating, contrary to the 

traditional CE-IS method, which uses a small portion of the samples. In addition, a 

smooth shifting for the optimal ISD of intermediate failure events towards the target 

optimal ISD is achieved. This effective use of the intermediate samples leads to better 

estimate of the density parameter and hence to a smaller sampling error in the 

corresponding probability estimate. Secondly, exploiting as stopping criterion the 

coefficient of variation of the weights according to the smooth approximation of the 

optimal ISD of intermediate failure events regarding the target optimal ISD improves 

the robustness of the method convergence. These modifications contribute to 

obtaining the accurate optimal ISD of nodal generations and loads, and so, the nodal 

and system reliability indices are computed accurately. We primarily revise the 

traditional CE-IS to develop the ECE-IS and then compare the performance of the 
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proposed method to the traditional CE-IS and recently proposed techniques in 

literature such as subset simulation.  

3.1. Problem formulation 

The load curtailment event is defined as the inability to satisfy the loads at all 

nodes without violating the system operating constraints such as the limited capacity 

of transmission lines. Thus, the load curtailment event may result from low available 

generation or high required load or the limited capacity of transmission lines or union 

of some (or all) above. To carry out the first stage aim, the occurrence of load 

curtailment is verified at each sampled state of the uncertain inputs {𝑥𝑖 , 𝑖 = 1,… ,𝑁}, 

where 𝑥𝑖 = {𝐺1
𝑎𝑣, … , 𝐺𝐷

𝑎𝑣, 𝐿1, … , 𝐿𝐷}, 𝑁 is the number of samples, and 𝐷 is the set of 

nodes. Suppose the set 𝔽 is the failure domain in the input parameter space, i.e. the 

domain of system failure to meet the demand. The failure domain  𝔽 is expressed by 

a limit-state function 𝐻(𝑥𝑖) as follows: 𝔽 = {𝑥𝑖: 𝐻(𝑥𝑖) < 0, 𝑖 = 1,… , 𝑁}. The 

function 𝐻(𝑥𝑖) defines the degree of power balance of system state 𝑥𝑖 as shown in 

(3.1).   

𝐻(𝑥𝑖) = ∑(𝐺𝑑(𝑥𝑖) − 𝐿𝑑(𝑥𝑖)

𝑑∈𝐷

) − 𝐿𝑆𝛴(𝑥𝑖) (3.1) 

where 𝐿𝑆𝛴 is the summation of power losses in the system. For estimating the target failure 

probability (loss of load probability), the 2D-variate normal distribution of uncertain 

inputs is expressed by 𝒩(𝑥; 𝑢), which is depicted by mean 𝜇 and covariance Σ 

vectors, and so 𝑢 = [𝜇; Σ]. To simplify the writing of equations, the vector 

{𝑥𝑖 , 𝑖 = 1,… , 𝑁} is symbolized by 𝑥. Hence, the probability of failure can be 

computed by the following expression: 

ℙ𝐹 = ∫ 𝐼𝐹(𝑥)𝒩(𝑥; 𝑢)𝑑𝑥 = 𝔼𝒩[𝐼𝐹(𝑥)], (3.2) 

in which 𝔼𝑔 indicates that the expectation operator is taken with respect to the density 

𝒩 and 𝐼𝐹(𝑥) denotes the failure indicator function and is expressed as follows: 

𝐼𝐹(𝑥𝑖) ≔ {
1 for 𝐻(𝑥𝑖) < 0

0 for 𝐻(𝑥𝑖) ≥ 0
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3.2. Implementation of CE-IS method 

IS introduces an alternate sampling density 𝑓(𝑥), termed the ISD. A proper 

selection of 𝑓(𝑥) is required to represent accurately the failure domain of inputs. The 

probability of failure shown in (3.2) is computed regarding 𝑓(𝑥) and rewritten in the 

following manner: 

ℙ𝐹 = ∫𝐼𝐹(𝑥)𝑊(𝑥)𝑓(𝑥)𝑑𝑥 = 𝔼𝑓[𝐼𝐹(𝑥)𝑊(𝑥)], (3.3) 

where 𝑊(𝑥) =
𝒩(𝑥;𝑢)

𝑓(𝑥)
 is the likelihood ratio or importance weight function, which is 

expressed as a ratio of original and proposed densities. The IS estimate of ℙ𝐹 is given 

by: 

ℙ
∧

𝐹 =
1

𝑁
∑𝐼𝐹(

𝑁

𝑖=1

𝑥𝑖)𝑊(𝑥𝑖), (3.4) 

in which {𝑥𝑖 , 𝑖 = 1,… . , 𝑁} are identically distributed samples based on 𝑞(𝑥). To 

obtain the optimal selection of the ISD 𝑓∗(𝑥), the variance of ℙ𝐹 estimators have to 

be minimized as follows: 

min
𝑓
 𝕍𝑓[𝐼𝐹(𝑥)𝑊(𝑥)]  

The theoretically optimal ISD leading to zero variance is given by the following 

Equation: 

𝑓∗(𝑥) =
𝐼𝐹(𝑥)𝒩(𝑥; 𝑢)

∫ 𝐼𝐹(𝑥)𝒩(𝑥; 𝑢)𝑑𝑥
=
𝐼𝐹(𝑥)𝒩(𝑥; 𝑢)

ℙ𝐹
. (3.5) 

Since the optimal ISD is dependent on unknown quantities, ℙ𝐹 and 𝐼𝐹(𝑥), as shown 

in (3.5), the computation of the optimal ISD is not possible directly. The CE is used 

to find a near-optimal ISD for the unknown optimal ISD (the theoretically optimal 

ISD leading to zero variance (𝑓∗(𝑥)) through fitting a parametric density model. 

Typically, the density model is chosen as the same family as the original density of 

the input random variables (a multivariate normal probability distribution) 𝒩(𝑥; 𝑢), 

which is depicted by mean vector 𝜇 and diagonal covariance Σ matrix, and so 𝑢 =

[𝜇; Σ]. Hence, the density model used in the CE method is 𝒩(𝑥; 𝑢𝐼𝑆) having 𝑢𝐼𝑆 =

[𝜇𝐼𝑆; Σ𝐼𝑆] as shown in (3.6).  
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𝒩(𝑥; 𝑢𝐼𝑆)  =
1

√|Σ𝐼𝑆|(2𝜋)𝑛
 𝑒
(−
(𝑥−𝜇𝐼𝑆)(Σ𝐼𝑆)

−1
(𝑥−𝜇𝐼𝑆)𝑇

2
)
, (3.6) 

where 𝑛 is the number of variables. The parameter vector (𝑢𝐼𝑆) is defined through 

minimizing the cross entropy or KL-divergence between the unknown optimal ISD 

given in (3.5) and the selected probability density 𝒩(𝑥; 𝑢𝐼𝑆). The cross entropy 

between the 𝑓∗(𝑥) and 𝒩(𝑥; 𝑢𝐼𝑆) can be described as follows: 

𝔻(𝑓∗(𝑥),𝒩(𝑥; 𝑢𝐼𝑆)) = 𝔼𝑓∗ [ln (
𝑓∗(𝑥)

𝒩(𝑥; 𝑢𝐼𝑆)
)]

= 𝔼𝑓∗[ln(𝑓
∗(𝑥))] − 𝔼𝑓∗[ln(𝒩(𝑥; 𝑢𝐼𝑆))]. 

(3.7) 

Then, the optimization problem can be expressed in the following manner: 

argmin
𝑢𝐼𝑆

 𝔻(𝑓∗(𝑥),𝒩(𝑥; 𝑢𝐼𝑆)) = argmax 
𝑢𝐼𝑆

𝔼𝑓∗[ln(𝒩(𝑥; 𝑢𝐼𝑆))]. (3.8) 

By substituting 𝑓∗(𝑥) in (3.8) with the equation (3.5), the optimization problem 

becomes 

argmin
𝑢𝐼𝑆

 𝔻(𝑓∗(𝑥),𝒩(𝑥; 𝑢𝐼𝑆))

= argmax
𝑢𝐼𝑆

∫𝐼𝐹(𝑥)𝑊(𝑥; 𝑢
𝐼𝑆)𝒩(𝑥; 𝑢𝐼𝑆) ln(𝒩(𝑥; 𝑢𝐼𝑆)) 𝑑𝑥 

= argmax
𝑢𝐼𝑆

[
1

𝑁
∑𝐼𝐹(𝑥𝑖)𝑊(𝑥𝑖; 𝑢

𝐼𝑆) ln(𝒩(𝑥𝑖; 𝑢
𝐼𝑆))

𝑁

𝑖=1

],               

(3.9) 

in which 𝑊(𝑥; 𝑢𝐼𝑆) ≔
𝒩(𝑥;𝑢)

𝒩(𝑥;𝑢𝐼𝑆)
.  

The CE method solves this optimization problem iteratively through defining a 

series of intermediate densities {𝒩(𝑥; 𝑢𝑘
𝐼𝑆), 𝑘 = 1,… . , 𝐾} in several probability 

spaces that gradually reach the target ISD representing well the failure region as 

shown in Figure 3.1. It exploits the samples from intermediate sampling levels for 

fitting the selected parametric density. The intermediate failure domain 𝔽𝑘 and failure 

indicator function are defined using a threshold 𝜁𝑘 as stated in (3.10). 𝜁𝑘 is calculated 

as the 𝜃-quantile of the sorted limit-state function values 𝐻(𝑥𝑖) from smallest to 

largest of the samples from the fitted parametric density obtained at the previous step 

𝒩(𝑥; 𝑢𝑘−1
𝐼𝑆 ).  
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𝔽𝑘 = {𝑥:𝐻(𝑥) < 𝜁𝑘}, 𝜁𝑘 ≥ 0; 

𝐼𝐹𝑘(𝑥) = {
1       for   𝐻(𝑥) < 𝜁𝑘
0        for   H(𝑥) ≥ 𝜁𝑘

. 
(3.10) 

 

Figure 3.1. A gradual approach of the sequence of intermediate distributions to the target failure 

region. 

Starting from an initial sampling density 𝒩(𝑥; 𝑢0
𝐼𝑆 = 𝑢), the density parameter 𝑢𝑘

𝐼𝑆 

updating is executed until the threshold 𝜁𝑘 becomes beyond zero. In this case, the 

target optimal ISD is approximated well enough by the current parametric density. In 

order to obtain 𝑢𝑘
𝐼𝑆, the optimization problem written in (3.11) is solved by taking the 

gradient of the function with respect to the 𝑢𝑘
𝐼𝑆 and setting it to zero.  

argmin 
𝑢𝑘
𝐼𝑆

𝔻(𝑓𝑘
∗(𝑥),𝒩(𝑥; 𝑢𝑘

𝐼𝑆)) = argmax
𝑢𝑘
𝐼𝑆

[
1

𝑁
∑𝐼𝐹𝑘(𝑥𝑖)𝑊(𝑥𝑖; 𝑢𝑘−1

𝐼𝑆 ) ln(𝒩(𝑥𝑖; 𝑢𝑘
𝐼𝑆)))

𝑁

𝑖=1

], (3.11) 

in which 𝑓𝑘
∗(𝑥) ≔

𝐼𝐹𝑘
(𝑥)𝒩(𝑥;𝑢)

ℙ𝐹𝑘
 and 𝑊(𝑥𝑖; 𝑢𝑘−1

𝐼𝑆 ) ≔
𝒩(𝑥𝑖;𝑢)

𝒩(𝑥𝑖;𝑢𝑘−1
𝐼𝑆 )

. The derivative at step  𝑘 

with respect to the parameters of 𝑢𝑘
𝐼𝑆 = [𝜇𝑘

𝐼𝑆, Σ𝑘
𝐼𝑆], which are 𝜇𝑘

𝐼𝑆 and Σ𝑘
𝐼𝑆, are: 

1

𝑁
∑𝐼𝐹𝑘(𝑥𝑖)𝑊(𝑥𝑖; 𝑢𝑘−1

𝐼𝑆 )(

𝑁

𝑖=1

𝑥𝑖 − 𝜇𝑘
𝐼𝑆) = 0 

1

𝑁
∑𝐼𝐹𝑘(𝑥𝑖)𝑊(𝑥𝑖; 𝑢𝑘−1

𝐼𝑆 )
1

2
((Σ𝑘

𝐼𝑆)−2(

𝑁

𝑖=1

𝑥𝑖 − 𝜇𝑘
𝐼𝑆)(𝑥𝑖 − 𝜇𝑘

𝐼𝑆)𝑇 − (Σ𝑘
𝐼𝑆)−1) = 0 

 

 

(3.12) 

The optimal parameters at step 𝑘 are derived as 

P
ro

b
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𝒙 

𝒩(𝑥; 𝑢) 

𝒩(𝑥; 𝑢𝑘−1
𝐼𝑆 ) 

Failure 

domain 

𝒩(𝑥; 𝑢𝑘
𝐼𝑆) 

𝒩(𝑥; 𝑢𝑘+1
𝐼𝑆 ) 



56 

 

 
 

𝜇𝑘
𝐼𝑆 =

∑ 𝐼𝐹𝑘(𝑥𝑖)𝑊(𝑥𝑖; 𝑢𝑘−1
𝐼𝑆 )𝑥𝑖

𝑁
𝑖=1

∑ 𝐼𝐹𝑘(𝑥𝑖)𝑊(𝑥𝑖; 𝑢𝑘−1
𝐼𝑆 )𝑁

𝑖=1

 

Σ𝑘
𝐼𝑆 =

∑ 𝐼𝐹𝑘(𝑥𝑖)𝑊(𝑥𝑖; 𝑢𝑘−1
𝐼𝑆 )(𝑥𝑖 − 𝜇𝑘

𝐼𝑆)(𝑥𝑖 − 𝜇𝑘
𝐼𝑆)𝑇𝑁

𝑖=1

∑ 𝐼𝐹𝑘(𝑥𝑖)𝑊(𝑥𝑖; 𝑢𝑘−1
𝐼𝑆 )𝑁

𝑖=1

 

 

 

(3.13) 

The procedure is repeated until 𝜁𝑘 becomes a negative value, i.e., at least (𝜃𝑁) 

samples fall in the failure domain, where 𝜃 ∈ [0.01,0.1]. Thus, 𝐾 is set to the current 

event 𝑘, and the optimal ISD is approximated quite by the density 𝒩(𝑥; 𝑢𝐾−1
𝐼𝑆 ), and 

the probability of failure is estimated as follows: 

ℙ
∧

𝐹 =
1

𝑁
∑𝐼𝐹(𝑥𝑖)𝑊(𝑥𝑖; 𝑢𝐾−1

𝐼𝑆 )

𝑁

𝑖=1

. (3.14) 

3.3. Implementation of ECE-IS method 

In the traditional CE-IM, the intermediate failure domain is identified by the 

intermediate failure threshold 𝜁𝑘. Because of the step indicator function 𝐼𝐹𝑘(𝑥), 𝜁𝑘 

represents only a fraction (𝜃 ∈ [0.01, 0.1]) of the samples of the preceding ISD 

𝒩(𝑥; 𝑢𝑘−1
𝐼𝑆 ), and the other samples are neglected. In the ECE-IS, the indicator failure 

function of the intermediate failure events 𝐼𝐹𝑘(𝑥) is defined by a smooth 

approximation function. This allows a smooth transition for the approximately 

optimal ISD 𝑞𝑘
∗(𝑥) towards the optimal ISD of the destination failure event 𝑞∗(𝑥) 

through exploiting all samples from the intermediate density 𝒩(𝑥; 𝑢𝑘−1
𝐼𝑆 ) in parameter 

𝑢𝑘
𝐼𝑆 updating. 

 The indicator failure function can be defined as follows: 𝐼𝐹𝑘(𝑥; 𝛿𝑘) =

lim
δk →0

𝛷 (−
𝐻(𝑥)

𝛿𝑘
), where 𝛿𝑘 is the control parameter of function bandwidth, and 𝛷 is 

the standard normal CDF. When 𝛿𝑘 approaches zero, the smooth function approaches 

to the target step indicator function. Hence, 𝛿0 > 𝛿1 > ⋯ .> 𝛿𝐾 > 0 defines a 

decreasing series of bandwidths, as shown in Figure 3.2.  

 Using the smooth function of 𝐼𝐹𝑘 , the optimization problem (3.11) becomes as 

follows: 

𝑢𝑘
𝐼𝑆 = argmax

𝑢𝑘
𝐼𝑆

[
1

𝑁
∑𝑊(𝑥𝑖; 𝑢𝑘−1

𝐼𝑆 , 𝛿𝑘) ln(𝒩(𝑥𝑖; 𝑢𝑘
𝐼𝑆)))

𝑁

𝑖=1

], (3.15) 
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in which 𝑊(𝑥𝑖; 𝑢𝑘−1
𝐼𝑆 , 𝛿𝑘) ≔

𝛷(−
𝐻(𝑥𝑖)

𝛿𝑘
) 𝒩(𝑥𝑖;𝑢)

𝒩(𝑥𝑖;𝑢𝑘−1
𝐼𝑆 )

. 𝛿𝑘 is determined such that the optimal ISD 

𝑞𝑘
∗(𝑥) is approximated well enough by samples drawn from 𝒩(𝑥; 𝑢𝑘−1

𝐼𝑆 ), i.e., the 

variance of the importance weights 𝑊(𝑥; 𝑢𝑘−1
𝐼𝑆 , 𝛿𝑘) is small. This is done by 

minimizing the difference between the ℂ𝕍 of the weights {𝑊(𝑥; 𝑢𝑘−1
𝐼𝑆 , 𝛿𝑘), 𝑖 =

1,… , 𝑁} and the specified ℂ𝕍𝑡 𝑎𝑟𝑔 𝑒𝑡 at each intermediate event 𝑘, as written in (3.16). 

𝛿𝑘 = argmin
𝛿𝑘∈(0,𝛿𝑘−1)

|ℂ𝕍𝑤 − ℂ𝕍𝑡 𝑎𝑟𝑔 𝑒𝑡|. (3.16) 

 

Figure 3.2. Indicator function approximation. 

As shown in Algorithm 3.1, starting with 𝛿0 = ∞ and 𝑢0
𝐼𝑆  as a nominal 

parameter vector, this procedure is reiterated and stopped when the ℂ𝕍 of the weight 

calculated in (3.17) of the present smooth approximation of the optimal ISD of 

intermediate failure events with regard to the target optimal ISD is lower than the 

ℂ𝕍𝑡 𝑎𝑟𝑔 𝑒𝑡. Hence, 𝐾 is set to the current event 𝑘, and the optimal ISD is approximated 

well enough by the density 𝒩(𝑥; 𝑢𝐾−1
𝐼𝑆 ). Utilizing the ℂ𝕍 of the weights as stopping 

criterion instead of the parametric density 𝒩(𝑥; 𝑢𝑘−1
𝐼𝑆 ) improves the robustness of the 

method convergence, as will be shown in the section of results. 

{𝑊(𝑥𝑖; 𝛿𝑘) =
𝑞∗(𝑥𝑖)

𝑞𝑘∗(𝑥𝑖)
=

𝐼𝐹(𝐻(𝑥𝑖))

𝛷 (−
𝐻(𝑥𝑖)
𝛿𝑘

)
, 𝑖 = 1,… ,𝑁}. (3.17) 
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The samples from the density 𝒩(𝑥; 𝑢𝐾−1
𝐼𝑆 ) will be used in the second stage as 

shown in Algorithm 3.1 for computing the system adequacy indices (LOLP-EPNS) 

for each node and system. The system LOLP and EPNS can be expressed as follows: 

𝐿𝑂𝐿𝑃 =
1

𝑁
∑𝐼𝐹(𝑥𝑖)𝑊(𝑥𝑖; 𝑢𝐾−1

𝐼𝑆 )

𝑁

𝑖=1

, (3.18) 

𝐸𝑃𝑁𝑆 =
1

𝑁
∑(∑𝑃𝑁𝑆𝑑

𝐷

𝑑=1

(𝑥𝑖))𝑊(𝑥𝑖; 𝑢𝐾−1
𝐼𝑆 )

𝑁

𝑖=1

.  

For nodes, the LOLP and EPNS can be rewritten as follows: 

𝐿𝑂𝐿𝑃𝑑 =
1

𝑁
∑𝐼𝐹

𝑑(𝑥𝑖)𝑊(𝑥𝑖; 𝑢𝐾−1
𝐼𝑆 )

𝑁

𝑖=1

 ∀ 𝑑 ∈ 𝐷 (3.19) 

𝐸𝑃𝑁𝑆𝑑 =
1

𝑁
∑(𝑃𝑁𝑆𝑑(𝑥𝑖))𝑊(𝑥𝑖; 𝑢𝐾−1

𝐼𝑆 )

𝑁

𝑖=1

∀ 𝑑 ∈ 𝐷,  

in which 

 

 

 

 

𝐼𝐹
𝑑(𝑥𝑖) = {

1 for 𝑃𝑁𝑆𝑑(𝑥𝑖) > 0

0 for 𝑃𝑁𝑆𝑑(𝑥𝑖) = 0
 

 

Algorithm 3.1. Procedure of reliability indices evaluation using ECE-IS  

1. Set 𝒌 = 𝟎, 𝜹𝒌 = ∞ and 𝒖𝒌
𝑰𝑺 = 𝒖. 

2. Set 𝑘 = 𝑘 + 1 and draw 𝑁 samples from {𝒩(𝑥𝑖; 𝑢𝑘−1
𝐼𝑆 ), 𝑖 =

1, . . . . , 𝑁}. 
3. Calculate the limit-state function {𝐻(𝑥𝑖), 𝑖 = 1, . . . . , 𝑁} and evaluate 

the weights {𝑊(𝑥𝑖; 𝛿𝑘−1), 𝑖 = 1, . . . . , 𝑁}, as shown in (3.17). 

4. If the ℂ𝕍 of the weights is lower than ℂ𝕍𝑡 𝑎𝑟𝑔 𝑒𝑡, go to step 8. 

5. Solve the optimization problem in (3.16) to detect 𝛿𝑘. 

6. Estimate 𝑢𝑘
𝐼𝑆 from solving the optimization problem in (3.15). 

7. Return to step 2. 

8. Set 𝐾 = 𝑘. 

9. Take the samples from {𝒩(𝑥𝑖; 𝑢𝐾−1
𝐼𝑆 ), 𝑖 = 1, . . . . , 𝑁}. 

10. Select a sample and run DC-OPF algorithm to estimate the nodal 

and system load curtailment values. 

11. Evaluate the nodal and system indicator functions 𝐼𝐹
𝑑(𝑥𝑖)& 𝐼𝐹(𝑥𝑖) 

and the likelihood ratio 𝑊(𝑥𝑖; 𝑢𝐾−1
𝐼𝑆 ). 

12. Calculate the LOLP and EPNS indices and their coefficient of 

variation (convergence) for each node and system, as shown in the 

equations (3.18) and (3.19). 

13. If the convergence of indices is acceptable or the number of samples 

is reached, stop the simulation, otherwise go to step 10. 
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3.4. Subset Method 

The main idea of this methods is the formation of a sequence of subsets 𝐹1 ⊃

𝐹2 ⊃ ⋯ ⊃ 𝐹𝑚 = 𝐹 of the state space of the system, where each subsequent subspace 

increases the probability of identifying a rare event and is determined on the basis of 

the previous one, forming a Markov chain sequence. Each subsequent subset is chosen 

so that the probability of the conditional event  Pr(𝐹𝑗|𝐹𝑗−1) would be high enough. As 

a result, the low probability appears to be the product of relatively high probabilities 

[38]. 

ℙ𝐹 = Pr(𝐹 =⋂𝐹𝑘

𝐾

𝑘=1

) =∏Pr(𝐹𝑘|𝐹𝑘−1)

𝐾

𝑘=1

. (3.20) 

One of the ways to form (𝐹𝑘|𝐹𝑘−1) is to select a given fraction 𝑝0 of the most 

significant events 𝑋𝑏
𝑘−1 = (𝒙1

𝑘−1, 𝒙2
𝑘−1, … , 𝒙𝑗

𝑘−1), 𝑗 = 𝑝
0
𝑁; 𝑁–is the sample size. The 

significance of events is determined by the corresponding value of the criterion 

function 𝐻(𝒙)– the smaller the value of H (x), the greater the significance. Hence the 

mechanism of selection of the set 𝑋𝑏
𝑘−1 follows. The sample 𝐹𝑗−1 is ordered in 

ascending order of the criterion function. The 𝑝0 ∙ 100 percentile of the function 𝐻(𝒙) 

is determined, which determines the set 𝑋𝑏
𝑘−1 with the volume 𝑁𝑐

𝑘−1 = 𝑝0𝑁, and the 

criterion value 𝑏𝑘−1 = 𝑚𝑎𝑥(𝐻(𝒙), 𝒙 ∈ 𝑋𝑏
𝑘−1), which is the basis for the formation of the 

set 𝐹𝑘 = { 𝒙: 𝐻(𝒙) < 𝑏𝑘−1}. In this case, the ratio 𝑁𝑐
𝑘−1/𝑁 = 𝑝0 can be considered as the 

probability of the conditional event Pr(𝐹𝑘|𝐹𝑘−1) = 𝑝0. 

The presented step-by-step process is characterized by a positive value 𝑏𝑘 > 0 

at all intermediate stages. This means that the set 𝑋𝑏
𝑘 contains both failure events, 

𝐻(𝒙) < 0, and non-failures 𝐻(𝒙) > 0, that is, the nested event methodology is reduced 

to the analysis of the “failure” zone 𝒙: 𝐻(𝒙) < (𝑏𝑘 > 0), and the criterion of "failure" 

becomes tougher as the transition to the next stage, 𝑏𝑘 < 𝑏𝑘−1 . Initially, 𝑏1 = ∞, which 

means that all states of the system belong to the analysis zone. Hence, each stage 

contains some non-empty set of analyzed states that satisfy the current criterion of 

failure. In this case, the volume of the analyzed zone is reduced from stage to stage in 

accordance with the selected fraction 𝑝0 of the selection of the most significant events, 
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and the conditional probability of identifying "pseudo-deficient" states of the system 

is acceptable for the application of statistical analysis methods. 

At the last stage, 𝑏𝑘 < 0. This means that all events in the set with a fraction of 

𝑝0 selected according to the truncation principle are failures. But failures can also be 

events that did not fall into the region defined by the percentile,  𝑏𝑘 < 𝐻(𝒙) < 0. Hence, 

the last analyzed area should be expanded, and its probability is determined according 

to the relation: Pr(𝐹𝐾|𝐹𝐾−1) = 𝑁(𝐻(𝒙) < 0)/𝑁, where 𝑁(𝐻(𝒙) < 0) is the number of 

elements of the sample of size 𝑁 that satisfy the requirement 𝐻(𝒙) < 0. 

3.5. Results 

The proposed method is tested and evaluated for the five-node test scheme, 

presented in Figure 2.1. The MCS method is used as a benchmarking method. The 

maximum number of simulation samples for MCS is 5 × 104. A coefficient of variation 

(convergence) of 5% for both system adequacy indices (LOLP-EPNS) is used as the 

stopping criterion. The rare events simulation techniques (CE-IS, SS, ECE-IS) use the 

following parameter values: 𝜃 = 0.1, ℂ𝕍𝑡 𝑎𝑟𝑔 𝑒𝑡 = 1.5, maximum number of 

iterations = 50, and number of samples per iteration = 2000. 

In Figure 3.3, the PDFs of the system limit-state function H(x) are shown for 

different methods (CE-IS, SS, ECE-IS) and MCS. It illustrates that the proposed ECE-

IS method has the largest probability of H(x) < 0, which is 80% in comparison with 

23, 55, and 32% for MCS, CE-IS, and SS, respectively. This means that the samples 

extracted by the ECE-IS method are more likely to cause the load curtailment events. 

It represents 80% of the total sampled system states. Once the samples from the 

optimal distributions of nodal generations and loads are obtained, the adequacy 

indices (EPNS, LOLP) can be evaluated. For test purposes the EPNS, LOLP are 

calculated for all the nodes. The histogram in Figure 3.4 shows the computation time 

and the EPNS values obtained by the different methods. The computation time 

includes the time spent in the first stage for extracting the rare load curtailment events. 
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Figure 3.3. Probability density of limit-state function for different techniques. 

 

Figure 3.4. Nodal expected power not supplied. 

The load curtailment sharing philosophy results in relatively small EPNS values 

of potentially deficient nodes 4 and 5. At the same time, the limited transmission lines 

capacity does not allow unlimited power supply from surplus nodes and so the greatest 

EPNS is at node 5. From the simulation results, it became clear that all the discussed 

methods significantly reduce a computation burden and the most computationally 

effective is the CE-IS method. It also could be seen that the method used in extracting 

load curtailment events could significantly affect results. Figure 3.5 shows the LOLP 

values for all the nodes of the test scheme. In terms of mean values, the power surplus 

of the node 1 is 10% higher than the transmission capacity of the connected lines. 

Possible power supply from node 1 is locked, and as a result, in some deficient test 

scheme state samples, the demand at the node is not curtailed. It can be seen from the 

histogram that the LOLP of node 1 is relatively small in comparison to other node 

values. Figures 3.6 and 3.7 show the errors of methods in comparison to the standard 
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MCS method. For almost all the nodes, EPNS values computed using the proposed 

method are accurate within range of 8%. Even though the ECE-IS method is less 

computationally effective than other methods, it could provide significantly more 

accurate results. In comparison to the traditionally used MCS approach, the proposed 

method is nearly eleven times faster. The smallest LOLP error values are generally 

also represented by the ECE-IS approach. Notice, that in the case of LOLP, even small 

deviations would introduce a great error, as it can be seen. 

Figure 3.5. Nodal loss of load probability (LOLP). 

Figure 3.6. EPNS error compared to the MCS approach. 

 

Figure 3.7. LOLP error compared to the MCS approach. 
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3.6. Discussion 

A trade-off between the computational accuracy and computational efficiency 

leads to a wide number of approaches for a power system adequacy evaluation. 

Therefore, the comparison among methods must include the number of samples or 

computation time required to reach the accurate adequacy indices with acceptable 

convergence. In terms of the number of samples, the system LOLP and EPNS indices 

and their convergence using the standard MCS method and the different rare events 

simulation approaches are shown in Figures 3.8–3.11. For MCS, the number of 

samples to reach a convergence of 5% for both system LOLP and EPNS indices is 

38,945 samples. The CE-IS and SS methods have the fastest convergence rate, while 

they do not develop accurate LOLP values. The ECE-IS has performed better, 

reaching a 0.0099 LOLP value with 4.7% convergence and 8.95 MW EPNS with 

2.4% convergence. On the other hand, the standard MCS has achieved 0.0102 with 

5% and 8.8 MW with 2.5% for LOLP and EPNS, respectively. Therefore, the ECE-

IS can achieve the same accuracy of the standard MCS method for both nodal indices, 

as shown in Figures 3.4 and 3.5, and system indices, as shown in Figures 3.8 and 3.10. 

In the attitude of computational efficiency, the ECE-IS needs seven iterations for 

extracting 2000 samples representing the load curtailment events, and so, the total 

number of samples is 14,000 samples. Hence, the ECE-IS can achieve accurate results 

with a smaller number of samples and computation time. As shown in Figure 3.4, an 

11-times speedup is achieved. 

 
(a) 

 

(b) 

 

Figure 3.8 (a) System LOLP using the MCS method; (b) system LOLP using CE-IS, SS, and ECE-

IS approaches. 
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(a) 

 

(b) 

 

Figure 3.9 (a) System EPNS using standard MCS method; (b) system EPNS using CE-IS, SS, and 

ECE-IS approaches. 

(a) 

 

(b) 

 

Figure 3.10 (a) System LOLP convergence using the MCS method; (b) system LOLP convergence 

using the CE-IS, SS, and ECE-IS approaches. 

(a) 

 

(b) 

 

Figure 3.11 (a) System EPNS convergence using the MCS method; (b) system EPNS convergence 

using the CE-IS, SS, and ECE-IS approaches. 

For comparing the robustness of the ECE-IS method with other rare events 

simulation techniques, the system LOLP, LOLP relative bias, and LOLP convergence 

values are illustrated in Table 3.1 for different numbers of samples per iteration. The 

sample analyzing times differ from each other; hence, the computation time is 

included in Table 3.1. Taken the LOLP value (0.0102) obtained by the standard MCS 

method as a reference value, the relative bias of LOLP values is computed as follows: 

𝐿𝑂𝐿𝑃−𝐿𝑂𝐿𝑃(𝑀𝐶𝑆)

𝐿𝑂𝐿𝑃(𝑀𝐶𝑆)
. From the results in Table 3.1, the convergence acceleration for all 

methods is achieved by increasing the number of samples. However, there is a 

significant accuracy loss with a small number of samples for CE-IS and SS methods. 

However, the ECE-IS is still effective for a small number of samples. It achieves a 

small LOLP bias (17%) with 21% convergence at 250 number of samples. 
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Table 3.1- Methods comparison for different numbers of samples. 

Number of 

Samples 

per 

Iteration 

Methods 
Numberof 

Iterations 

System 

LOLP 

Relative Bias 

of System 

LOLP 

System LOLP 

Convergence 

Time 

[sec] 

250 

CE-IS 3 0.0329 2.2 0.35 19 

SS 3 0.0613 5 0.52 21 

ECE-IS 8 0.012 0.17 0.21 43 

1000 

CE-IS 3 0.0219 1.14 0.055 96 

SS 3 0.041 3 0.064 85 

ECE-IS 8 0.0114 0.12 0.085 140 

2000 

CE-IS 3 0.0191 0.87 0.049 154 

SS 3 0.0272 1.67 0.048 167 

ECE-IS 7 0.0099 0.03 0.058 304 

In order to verify the computation accuracy and efficiency of the proposed 

method with the dimension of the power network and the number of random variables 

being considered, the results of adequacy indices are presented for the IEEE-RTS 79 

system shown in Figure 3.12. The system includes 24 buses and 32 generators divided 

among 14 generating stations totalizing 3405 MW of installed capacity. The annual 

system peak load is 2850 MW. The mean and standard deviation values for the loads 

were taken at the peak value and the ±10% of the peak value, respectively. A 

coefficient of variation (convergence) of 5% for both system adequacy indices 

(LOLP-EPNS) is used as the stopping criterion. For the ECE-IS and MCS methods, 

Table 3.2 shows the results of the system LOLP and EPNS indices, number of 

samples, and computation time. The computation time includes the time spent in the 

first stage for extracting the rare load curtailment events. The results of the ECE-IS 

method are 0.00121 and 0.16 MW for LOLP and EPNS, respectively. On the other 

hand, the standard MCS has achieved 0.00119 and 0.154 MW for LOLP and EPNS, 

respectively. Therefore, the ECE-IS can achieve the same accuracy of the standard 

MCS method for both system indices. Moreover, the ECE-IS method is considerably 

more efficient than the standard MCS method. The proposed method needs only a 
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small fraction (23%) of the samples needed by the MCS. However, in contrast to 

MCS, the ECE-IS method, as other techniques of rare events simulation, come along 

with its own set of tuning parameters, which are the target the coefficient of variation 

of importance weight function and the number of samples per iteration. The proper 

tuning of these parameters has consequences on the efficiency of the technique. 

 

Figure 3.12- IEEE-RTS 79 system 

Table 3.2- System adequacy indices for IEEE-RTS 79. 

Methods Number of Samples System LOLP System EPNS [MW] Time [sec] 

MCS 382000 0.00119 0.154 6220 

ECE-IS 87000 0.00121 0.16 810 

Conclusions 

A framework of reliabilty indices evaluation has been proposed in composite 

generation and transmission power systems. The main purpose of the framework is to 

obtain accurate adequacy indices and enhance the computational efficiency of the 

standard MCS method. This is achieved by integrating rare events simulation methods 
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in the framework’s first stage for identifying the approximately optimal distortion of 

the nodal generations and load distributions, making rare load curtailment events more 

likely to be drawn. As a result of the integration of the rare event simulation methods, 

a new approach named ECE-IS is proposed that is more efficient and robust than other 

methods, such as traditional CE-IS and SS in extracting the optimal distortion. From 

the reported results of the framework’s second stage, the proposed method contributes 

to accurately evaluating the adequacy indices (LOLP-EPNS) and further enhancing 

the convergence of the indices in comparison with other methods. Moreover, a great 

speed-up was shown in terms of computation time with respect to the standard MCS 

method. The implementation of the proposed method in adequacy evaluation could 

allow us to use more detailed power system models, which would more accurately 

reflect real power system operation. The impact of different network topologies (i.e., 

transmission network contingencies) and chronological characteristics of power 

systems, such as time and spatially correlated load models, the time-dependency of 

renewable energy resources could be included into the power system model which 

will be discussed in the next chapter.  
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Chapter 4 Reliability Evaluation considering the Integration of 

Renewable Generation 

Different approaches are needed to model the renewable power supplies and to 

evaluate their reliability contribution in power systems since the nature of these units 

is diverse from conventional units. The uncertainty of loads at the user part together 

with the uncertainty and stochasticity of renewable powers at the generation part have 

caused a growing challenge to the evaluation of power system reliability. Normally, 

demand is low during the night and increases during the day. For this reason, the solar 

sources display positive correlation with demand due to the natural behavior of solar 

radiation which is mostly strong during the day. In contrast with solar energy, wind 

sources offer negative correlation with demand since the wind is strong at night and 

declines during the daytime.  Therefore, it should be noted that the dependence 

between renewable resources and loads conflicts the independence assumption 

between demand side and generation side in traditional reliability evaluation [107-

108]. From a reliability perspective, there are other issues introduced into the 

reliability assessment including the PDFs of prime mover (wind speed, solar 

irradiance, and temperature),  the state model of energy conversion system which is 

responsible for converting the wind or solar energy into electrical energy, and the 

correlation model among solar irradiances, wind speeds, temperature, and demand in 

EPSs. Moreover, with the high reliable property of power systems, assessing 

reliability of the EPS is more difficulty with renewable energy sources. Thus, this 

chapter aims to address two main issues arising from renewable energy integration, 

namely, how to accurately model the renewable power and electricity demand, and 

how to efficiently assess EPS reliability with a large-scale PV power stations and wind 

farms using the ECE-IS technique proposed in Chapter 3. The ECE-IS can assist IS 

in sampling the region of interest for the system reliability indicators (i.e., the region 

in which the wind farms and PV power stations have lower power generation). 

Several probabilistic means have been formulated to model the renewable 

power in reliability assessment. They concentrate on how to represent the correlation 
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among the random variables. These methods can be categorized into the joint PDF 

estimation method and correlation matrix method. In the correlation matrix method, 

the correlation between random variables is defined based on the correlation matrix 

which is computed through the historical datasets of variables. Using Cholesky 

decomposition, the correlated samples are defined. This approach has been frequently 

utilized in literature [109–112] due to its simplicity. However, this approach assumes 

that the RVs are to follow a normal distribution. Unfortunately, this assumption may 

not be always satisfied, because wind speed and solar irradiance are not inherently 

represented by a normal distribution. It is essential to involve the numerous 

correlations among the RVs represented by any PDFs in the problem of reliability 

assessment.  

To overcome this limitation, the Nataf transformation approach integrated with 

the correlation matrix method is presented in [113–114] to address the correlated 

variables following any PDFs. However, this approach is only efficient for linear 

correlation among RVs not in nonlinear correlation cases. It is identified in many 

works of literatures that there is a nonlinear correlation among weather and load RVs.  

Recently, nonparametric, semi-parametric, and copula PDF estimations have 

been presented [115-121]. Copula can model the multivariate PDF by the univariate 

distributions and a copula function defining the dependence structure [115-117]. 

Selecting the most well-suited bivariate copula functions between each two random 

variables is the prime difficulty, especially when the dependence structure is very 

complicated. To handle this problem, semi-parametric or nonparametric estimation 

are used. The nonparametric KDE is employed to estimate according to the data the 

univariate PDF of wind speed [118–119] and the joint PDF of bus loads [120–121]. 

A semi-parametric GMM is proposed to define the multivariate distribution for wind 

speeds and loads [122-124]. Despite the estimation using semi-parametric or 

nonparametric model are effective, they need enough sample data to achieve an 

acceptable estimation. In addition, the approximation complexity also raises greatly 

with the increase of dimension [125]. 
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Some studies [126-131] use CE-IS to conduct IS on load and renewable power 

RVs. In [126], a modified CE-IS method is proposed to model wind energy in the 

reliability evaluation procedure. The wind power generation of one wind farm was 

represented as multi-state model [127-129].  However, the correlation is not 

considered. The references [130-131] uses copula function to define the dependence 

between two wind power generations and utilize Weibull PDF to represent the 

distribution of each wind power generation. Then the CE-IS is employed to obtain the 

optimal ISD for each Weibull PDF without change the copula function to preserve the 

dependence structure. However, the dependence between wind power and loads are 

not considered. 

All the methods in [126-131] have similar is that they employ unimodal PDFs 

e.g., Beta, Weibull, and Gaussian, which are not appropriate to model the 

sophisticated probabilistic features of load and renewable powers. Moreover, a single 

distribution assumption for a weather random variable may not be realistic. For 

example, the distribution of wind speeds at different locations may follow various 

types of PDFs according to their wind speed data. Second, the correlation between 

loads and weather random variables and the state model of energy conversion systems 

are ignored. It has been extensively expressed in many works of literature that the 

random variation of renewable powers and bus loads may show complicated 

dependence rather than independence or linear dependence. Therefore, the 

multimodal PDFs of continuous variables (wind speed, solar irradiance, temperature, 

and electricity demand) with complicated correlation among them based on the real 

data should be considered using mixture of distributions such as GMM. The actual 

weather and electricity demand data observed in a city located in Egypt is adopted for 

the uncertainty modeling of renewable and load powers. In order to estimate the 

annual reliability indicators efficiently and accurately of composite power system 

with renewable energy integrated, the ECE-IS method proposed in Chapter 3 can 

carry out IS on the obtained MGMM and find the IS-PDF parameters for it. Moreover, 

the availability state model of wind farms, PV power stations, and transmission lines 

are considered. The computational efficiency and adaptability of the proposed method 
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are validated by the results of case studies. ECE-IS preserves the dependence structure 

of and renewable and load powers in the reliability evaluation procedure, thus the 

efficiency degradation is avoided. This assures that the reliability indices are estimated 

with a reasonable computation burden. 

4.1. Modelling of renewable power generation units 

The power output of a renewable power generating units depends on two factors 

[107]: 

• The uncertainty and variability of prime mover (wind speed- solar radiation- 

temperature) employed in generating the electrical power. 

• The state of the wind or solar energy converter into electrical energy. 

4.1.1. Wind Energy Conversion System 

The role of wind energy conversion system (WECS) is to transform the wind 

energy into electrical energy. The model of a WECS involves three factors that affect 

the generation output: 

• The random variation of the wind speed. It is characterized by a probabilistic 

model at the site being considered. 

• The relation between the wind speed and WTG power output. It can be defined 

using the design specification of the tower and the operational factors of the 

WTG under the study. 

• The repair and failure characteristics of the WTG. A two-state model for WTGs 

consists of operation and failure states is considered here.  

The operation characteristics of a WTG are not the same as those of 

conventional generators. The generating power of a WTG is dependent on the wind 

speed regime which is based on the design specification of the wind turbine [132-

133]. There are three wind speed values that determine the WTG power output. The 

WTG begin generating a power at the cut-in speed and reaching its rated power at the 

rated speed.  The maximum speed at which the WTG will disconnect because of safety 

issues of wind tower and turbine is called the cut-out speed. The WTG power output 

𝑃𝑊(𝑣𝑤) can be calculated as follows: 
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𝑃𝑊(𝑣𝑤) =

{
 

 
𝑃𝑤,𝑟𝑎𝑡𝑒𝑑,                                                      𝑣𝑤,𝑟𝑎𝑡𝑒𝑑 ≤ 𝑣𝑤 < 𝑣𝑐𝑜
𝑃𝑤,𝑟𝑎𝑡𝑒𝑑(𝑣𝑤 − 𝑣𝑐𝑖)

(𝑣𝑤,𝑟𝑎𝑡𝑒𝑑 − 𝑣𝑐𝑖)
,                                    𝑣𝑐𝑖 ≤ 𝑣𝑤 < 𝑣𝑤,𝑟𝑎𝑡𝑒𝑑

0,                                                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (4.1) 

where 𝑃𝑤,𝑟𝑎𝑡𝑒𝑑 is the rated power of wind generator and  𝑣𝑐𝑖, 𝑣𝑤,𝑟𝑎𝑡𝑒𝑑, and 𝑣𝑐𝑜 are 

the cut-in, the rated, and the cut-out speeds, respectively. 

Given the input wind speed and WTG parameters, the WTG power output can 

be calculated. While the actual power output of the WTG can be defined by the WTG 

state. The power output is equal to zero when the WTG is in a failure state. While in 

operation state, the power output is set to the 𝑃𝑊(𝑣𝑤). 

4.1.2. Solar Energy Conversion System  

The role of solar energy conversion system is to transform solar energy into 

electricity. Three factors that impact the electrical power output are as follows: 

• The statistical characteristic of the solar irradiance reached to the Photovoltaic 

(PV) cell or panel and ambient air temperature 

• The number of panels connected in PV array and the electric characteristic of 

PV panel i.e. the relation between the power output of the PV panel and the 

solar irradiance and temperature. 

• The failure and repair characteristic of the PV array. A two-state transition 

model consists of operation and failure states is considered here.  

For a PV arrays comprising a large number of PV panels, the power output is 

the summation of the individual output of all the PV panels. The power of the PV 

array at maximum power point (MPP) at 𝑠𝑃𝑉 solar irradiance and 𝑇𝑃𝑉 ambient air 

temperature is expressed by (4.2) [134-135]. 

𝑃𝑃𝑉(𝑠𝑃𝑉, 𝑇𝑃𝑉) = 𝑃𝑝(𝑠𝑆𝑇𝐶 , 𝑇𝑆𝑇𝐶)
𝑠𝑃𝑉
𝑠𝑆𝑇𝐶

(1 − 𝜏(𝑇𝑐 − 𝑇𝑆𝑇𝐶)) 𝑁𝑝𝑁𝑠 (4.2) 

where 𝑃𝑝(𝑠𝑆𝑇𝐶 , 𝑇𝑆𝑇𝐶) is the power output of PV panel at standard test condition (STC) 

(𝑠𝑆𝑇𝐶 = 1000 W/𝑚
2, 𝑇𝑆𝑇𝐶 = 25℃), 𝜏 is the temperature coefficient of the cell and 

equal to 0.04%/℃, and 𝑁𝑝, 𝑁𝑠 are the number of panels connected in parallel and 

series in a PV array. 𝑇𝑐 is the cell temperature and calculated as follows: 𝑇𝑐 = 𝑇𝑃𝑉 +
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𝑠𝑃𝑉

𝑠𝑁𝑂𝐶𝑇
(𝑇𝑐.𝑁𝑂𝐶𝑇 − 𝑇𝑎𝑚𝑏.𝑁𝑂𝐶𝑇). The nominal operating cell temperature (NOCT) 

measurements are (𝑠𝑁𝑂𝐶𝑇 = 800 W/𝑚
2, 𝑇𝑎𝑚𝑏.𝑁𝑜𝑐𝑡 = 20℃, 𝑇𝑐.𝑁𝑂𝐶𝑇 = 45.5℃). 

4.2. Stochastic Multivariate Dependence Modelling 

To incorporate renewable energy resources in composite system reliability 

evaluation using simulation techniques, the first step is to construct a probabilistic 

model that can precisely reflect all the stochastic features, which can be followingly 

utilized for generating the samples. The generated samples from the probability 

models of the solar irradiance, wind speeds, temperature, and node/aggregated loads 

should be compatible with the original observations. To investigate the modeling 

framework, a numerical study is essential. This section presents the real data of El 

Gouna city located in Egypt, with latitude of 27.4025° N, and longitude of 33.6511° 

E. Weather data (wind speed, solar irradiance, temperature) and aggregated city 

demand hourly data over 2019 year is employed in this study. The datasets are based 

on the “Renewables. ninja” tool [136]. This tool is developed to present the weather 

data at any place across the globe for use in both industrial and academic settings. The 

techniques behind the tool are discussed in [137-138]. Figure 4.1 show the annual 

hourly historical data for the normalized demand and wind speed as examples. The 

demand power is normalized with respect to the peak value. To illustrate the bivariate 

data characteristics, the bivariate scatter diagrams of stochastic variables are shown in 

Figure 4.2.  which demonstrate that the stochastic variables have highly complex and 

non-linear dependencies. 

Three means are employed to execute the probabilistic modelling: 1) 

Parametric modelling (Distribution fitting approach); 2) non-parametric modelling; 3) 

semi-parametric modelling. The parametric modelling is based on selecting a standard 

PDF and then changing its parameters to accord the datasets. While, nonparametric 

modelling techniques such as kernel density estimation (KDE) do not depend on any 

standard PDFs. The model is formulated directly from the data. Finally, semi-

parametric modelling includes assembling a model that has both non-parametric and 

parametric components. A semi-parametric probabilistic model entitled Gaussian 
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(a) 

 

(b) 

Figure 4.1. Annual hourly historical data for (a) demand; (b) wind speed. 

mixture model (GMM) can represent arbitrarily complex PDFs with great 

flexibility. GMM is a mixture-based Gaussian clustering. It estimates the PDF by a 

number of Gaussian distributions having different weights. The number of 

components is detected by Akaike information criterion (AIC). The mean and 

variance parameters of each component are estimated using the Expectation-

Maximum (EM) optimization or maximum likelihood estimation approach. The 

PDF of univariate random variable 𝑥 = {𝑥𝑖 , 𝑖 = 1,… ,𝑁}, where 𝑁 is the number of 

observations can be represented by GMM as follows: 
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ℳ(𝑥) =∑𝜋𝑐 𝒩(𝑥𝑐;

𝑐∈𝐶

𝜇𝑐, 𝜎𝑐
2) 

(4.1) 

where 𝜋𝑐 is the weight of component 𝑐 providing that ∑ 𝜋𝑐 = 1 𝑐∈𝐶 and 𝐶 is the set of 

components. 𝒩(𝑥𝑐;𝜇𝑐,𝜎𝑐
2) is a Normal distribution of component 𝑐 in which the 

samples 𝑥𝑐 = {𝑥𝑖
𝑐 , 𝑖 = 1,… ,𝑁} belong. It can be written as follows: 

𝒩(𝑥𝑐, 𝜇𝑐, 𝜎𝑐
2) =

1

√𝜎𝑐22𝜋
 𝑒
(−
(𝑥𝑐−𝜇𝑐)2

2𝜎𝑐
2 )

 

 

  

(a) (b) 

  

(c) (d) 

Figure 4.2. Bivariate scatter plots of historical datasets for (a) load and wind speed; (b) load and 

solar irradiance (c) load and temperature; (d) solar irradiance and temperature. 

Fitting the historical data by different approaches: parametric, semi parametric, 

nonparametric is presented in Figure 4.3. We show frequency histogram (based on the 

original datasets) and fitted PDFs (corresponding to standard distributions, KDE, and 



76 

 

 
 

GMM having 5 components) of the wind speed and load. The normal and Weibull 

distributions are amongst the most common distribution to represent the distribution 

of load and wind speed in literature, respectively. Figure 4.3 shows that the normal 

and Weibull PDFs do not accurately represent the load and wind speed data.  As it 

proved, the data is fitted better by the KDE and GMM distributions and doesn’t follow 

any standard distributions.  

 

(a) 

 

(b) 

Figure 4.3. Fitting the histogram of historical data by different approaches for (a) load and (b) 

wind speed. 
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The next step is to illustrate how to model the joint PDF which involves 

together data on the individual PDF of stochastic inputs and on the mutual interaction 

between the stochastic inputs. Achieving the proper joint PDF given the univariate 

distributions is a complex, because there exist many joint PDFs with the same 

univariate distributions, following several number of correlation structures between 

the RVs. To obtain the multivariate joint PDF of  𝑥 = {𝑥𝑖,𝑗 , 𝑖 = 1, . . , 𝑁;  𝑗 =

1,… , 𝑛; }, where 𝑛 is the number of correlated variables, the MGMM can be used 

which is expressed as follows: 

ℳ(𝑥) =∑𝜋𝑐 𝒩(𝑥𝑐;

𝑐∈𝐶

𝜇𝑐, Σ𝑐) (4.2) 

where 𝒩(𝑥𝑐;𝜇𝑐 , Σ𝑐) is a multivariate dependent Normal distribution of component 𝑐 

including/involving the observations 𝑥𝑐 = {𝑥𝑖,𝑗
𝑐 }.  

𝒩(𝑥𝑐, 𝜇𝑐, Σ𝑐) =
1

√|Σ𝑐|(2𝜋)𝑛
 𝑒(−

(𝑥𝑐−𝜇𝑐)Σ𝑐
−1(𝑥𝑐−𝜇𝑐)𝑇

2
)
 

 The other approach for dependence modelling of stochastic variables is the 

method of combined univariate PDFs and the correlation matrix.  It is based on two 

tasks: the univariate distributions modeling and the definition of correlation matrix 

between the random variables. To identify the dependence between pair of probability 

distributions, a transformation between non-normal and normal domains is required. 

This is carried out using the Nataf transformation technique [113-114] needing the 

CDF for each variable and the correlation factors between variables which is 

expressed by the product moment correlation. The product moment correlation is 

calculated from the time-series data. The variable CDF is conducted by univariate 

GMM and is then utilized with correlation matrix to generate correlated samples for 

variables.  After formulating the correlation matrix in the standard normal domain, 

the correlated samples are generated in the standard normal domain and then are 

transferred to the original domain by the inverse of Nataf transformation. The Nataf 

transformation method and its inverse  is employed to transform between the non-

normal PDF variables 𝑋 = {𝑋𝑗 , 𝑗 = 1,… , 𝑛}, where 𝑛 is the number of correlated 
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variables and the standard normal distribution variables 𝑌 = {𝑌𝑗 , 𝑗 = 1,… , 𝑛} as 

follows: 

𝑌 = {Φ−1[𝐹𝑋1(𝑋1)],…… . , Φ
−1[𝐹𝑋𝑛(𝑋𝑛)]} 

𝑋 = {𝐹𝑋1
−1[Φ(𝑌1)],…… , 𝐹𝑋𝑛

−1[Φ(𝑌𝑛)]} 
(4.3) 

where Φ−1 is the inverse standard normal CDF and  𝐹𝑋𝑗 is the CDF of the variable 

𝑋𝑗. The correlated samples in the standard normal distribution is generated and 

returned to the original domain as shown in Figure 4.4. 

To formulate the correlation matrix in the standard normal domain, there is a 

need to transform the correlation factor from the original field 𝜌𝑋(𝑋𝒾, 𝑋𝒿)to standard 

normal 𝜌𝑌(𝑌𝒾, 𝑌𝒿). The 𝜌𝑋(𝑋𝒾, 𝑋𝒿) can be expressed as follows: 

𝜌𝑋(𝑋𝒾, 𝑋𝒿) = (𝔼[𝑋𝒾𝑋𝒿] − 𝜇𝑋𝒾𝜇𝑋𝒿)/𝜎𝑋𝒾𝜎𝑋𝒿 , 

𝔼[𝑋𝒾𝑋𝒿] = 𝔼[𝐹𝑋𝒾
−1[Φ(𝑌𝒾)] 𝐹𝑋𝒿

−1[Φ(𝑌𝒿)]] = ∫ ∫ 𝐹𝑋𝒾
−1[Φ(𝑌𝒾)] 𝐹𝑋𝒿

−1[Φ(𝑌𝒿)] 𝜑(𝑌𝒾, 𝑌𝒿)𝑑𝑌𝒾𝑑𝑌𝒿

∞

−∞

∞

−∞

 

The bivariate standard normal distribution of  𝑌 = {𝑌𝒾, 𝑌𝒿} can be expressed as: 

𝜑(𝑌𝒾, 𝑌𝒿) =
1

2𝜋√(1 − 𝜌𝑌2)
 𝑒
−
𝑌𝒾
2−2𝜌𝑌𝑌𝒾𝑌𝒿+𝑌𝒿

2

2(1−𝜌𝑌2)  

Thus, 

𝜌𝑋(𝑋𝒾, 𝑋𝒿) = ( ∫ ∫
𝐹𝑋𝒾
−1[Φ(𝑌𝒾)] 𝐹𝑋𝒿

−1[Φ(𝑌𝒿)] 𝑒
−
𝑌𝒾
2−2𝜌𝑌𝑌𝒾𝑌𝒿+𝑌𝒿

2

2(1−𝜌𝑌2)

2𝜋√(1 − 𝜌𝑌2)
𝑑𝑌𝒾𝑑𝑌𝒿

∞

−∞

∞

−∞

− 𝜇𝑋𝒾𝜇𝑋𝒿)/𝜎𝑋𝒾𝜎𝑋𝒿  

(4.4) 

It can be observed from (4.4) that the correlation coefficient 𝜌𝑋 is a complex nonlinear 

function of the correlation coefficient 𝜌𝑌. In order to calculate 𝜌𝑌, a numerical search 

algorithm proposed in [113] is utilized to obtain the solution at any acceptable 

accuracy.  

To illustrate the effectiveness of correlated samples generation, a comparison 

is made among the original datasets, uncorrelated samples, and correlated samples 

generated by the two approaches. The first approach is MGMM and the other 

(GMM 𝜌)  is the method of combined univariate GMM and the correlation matrix in 

which the PDF of each variable is represented by GMM and is then employed with 
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the correlation matrix shown in Table 4.1 to generate the correlated samples. The 

correlation matrix includes all correlation factors between each pair of the solar 

irradiance, wind speed, temperature, and load. To generate the uncorrelated samples, 

the GMM is used to fit the PDF of each variable and is then used to generate samples 

from each PDF independently. Figure 4.5 shows the bivariate histogram of load and 

temperature as an example, for the original datasets, uncorrelated samples, and 

correlated samples by MGMM and GMM 𝜌. The joint probability distribution of the 

load and temperature obtained using the model of MGMM is compatible with those 

constructed from the original observations. The MGMM model is more effective than 

GMM 𝜌 model even when the linear correlation between random variables exists. 

Thus, the chosen model is MGMM because of its principle approach of representing 

the distribution feature of the original joint PDF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Transformation process of random values from standard normal distribution to the 

original arbitrary distribution. 

 

Table 4.1- Correlation matrix  

 Load Wind speed Solar 

irradiance 

Temperature 

Load 1 -0.0211 0.2126 0.4928 

Wind speed -0.0211 1 -0.2366 0.0328 

Solar irradiance 0.2126 -0.2366 1 0.2511 

Temperature 0.4928 0.0328 0.2511 1 

 

𝚽(𝒀𝒋) 𝑭𝑿𝒋
−𝟏[𝚽(𝒀𝒋)] 
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                      (a)                     (b) 
  

                      (c)                                 (d) 

Figure 4.5. Bivariate histogram (Joint PDFs) of load and temperature for (a) original datasets; (b) 

uncorrelated samples using univariate GMMs; (c) correlated samples generated using GMM 𝜌; 

(d) correlated samples generated using MGMM.   

4.3. Implementation of ECE-IS Method considering renewable generators 

In previous chapter, The ECE-IS Method is employed to perform IS on the 

independent continuous variables which are the nodal available generations and 

required loads. The ECE-IS Method here is extended to carry out IS on dependent 

continuous variables and discrete variables. The random variables depicting the 

transmission lines states follow Bernoulli distribution having 1 or 0 denoting 

operation state and failure state respectively. In addition, a multivariate joint 

distribution (MGMM) is to represent the load, wind speed, solar irradiance, and 

temperature variables. Moreover, the state model of WTGs and PV arrays are 

considered. 

A wind farm usually consists of many WTGs and therefore it is difficult to 

regard every WTG as an individual random variable which lead to a huge solution 

space of the optimal ISDs. Since the power output of a wind farm is the summation 
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of the output of all the available generators, we combine the 2-state models of WTGs 

to obtain the available state of wind farm (𝑆𝑤
𝑎𝑣). It is supposed that the specified wind 

velocity is the same for all the WTGs in the farm and WTGs are homogeneous units. 

For a large number of WTGs, according to the de Moivre–Laplace theorem, the 

available state of wind farm could be approximated by a truncated normal distribution 

(TND) as discussed in 1.3. Thus, based on the available state of wind farm 𝑆𝑤
𝑎𝑣, the 

available power of wind farm is calculated as follows: 𝐺𝑤
𝑎𝑣 = 𝑆𝑤

𝑎𝑣 ∗ (𝑃𝑊(𝑣𝑤)).  

For a PV power station comprising a large number of PV arrays, the power 

output of station is the summation of the output of all the available PV arrays. As wind 

farm, we combine the 2-state models of PV arrays to obtain the available state of PV 

power station (𝑆𝑃𝑉
𝑎𝑣). The specified solar irradiance and temperature is assumed to be 

the same for all the PV panels in the station and PV arrays are homogeneous units. 

Thus, the available state of PV station could be approximated by a TND. Based on 

the available state of PV station 𝑆𝑃𝑉
𝑎𝑣, the available power of PV station is computed 

as follows: 𝐺𝑃𝑉
𝑎𝑣 = 𝑆𝑃𝑉

𝑎𝑣 ∗ (𝑃𝑃𝑉(𝑠𝑃𝑉 , 𝑇𝑃𝑉)). 

To carry out the first stage aim (Estimation of the ISD optimal parameters), the 

occurrence of load curtailment is verified at each sampled state of the uncertain inputs 

{𝑥𝑖 , 𝑖 = 1,… , 𝑁}, where  

𝑥𝑖 = {𝐺𝑑
𝑎𝑣, 𝑆𝑙 , 𝐿, 𝑣𝑤, 𝑠𝑃𝑉 , 𝑇𝑃𝑉 , 𝑆𝑤.𝑑

𝑎𝑣 , 𝑆𝑃𝑉.𝑑
𝑎𝑣 } ∀𝑑 ∈ 𝐷, 𝑙 ∈ 𝑁𝑇  

 𝑁 is the number of samples, 

𝐿 is the system power demand, 

𝑆𝑙 is the state of transmission line 𝑙,  

          𝐷 is the set of nodes, 

𝑁𝑇 is the set of transmission lines, 

𝑣𝑤 is the wind speed, 

𝑠𝑃𝑉 is the solar irradiance, 

𝑇𝑃𝑉 is the temperature, 

 𝑆𝑤.𝑑
𝑎𝑣  is the available state of wind power station at node 𝑑, and 

𝑆𝑃𝑉.𝑑
𝑎𝑣  is the available state of PV power station at node 𝑑. 
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The constraint of nodal power balance illustrated in chapter 2 are modified as follows: 

𝑃𝑑 + 𝐺𝑑 + 𝐺𝑤.𝑑 + 𝐺𝑃𝑉.𝑑 + 𝑃𝑁𝑆𝑑 − 𝐿𝑑 = 0 ∀ 𝑑 ∈ 𝐷 (4.6) 

The wind and solar powers constraints are added as follow: 

0 ≤ 𝐺𝑤.𝑑 ≤ 𝐺𝑤.𝑑
𝑎𝑣 , 0 ≤ 𝐺𝑃𝑉.𝑑 ≤ 𝐺𝑃𝑉.𝑑

𝑎𝑣 , 

where 𝐺𝑤.𝑑
𝑎𝑣 = 𝑆𝑤.𝑑

𝑎𝑣 ∗ (𝑃𝑊(𝑣𝑤)) and  𝐺𝑃𝑉.𝑑
𝑎𝑣 = 𝑆𝑃𝑉.𝑑

𝑎𝑣 ∗ (𝑃𝑃𝑉(𝑠𝑃𝑉, 𝑇𝑃𝑉)) 

  The random variables 𝑥𝑖;𝑈 = {𝐺𝑑
𝑎𝑣, 𝑆𝑤.𝑑

𝑎𝑣 , 𝑆𝑃𝑉.𝑑
𝑎𝑣 , ∀ 𝑑 ∈ 𝐷} are expressed by 

individual continuous normal PDFs. To decrease the complexity of the optimal 

parameters computation, the independent normal distributions are expressed by a 

multivariate independent normal distribution 𝒩(𝑥𝑖;𝑈; 𝑢) as illustrated in 3.3, which 

is depicted by mean 𝜇 and diagonal covariance Σ vectors, and so the parameter 𝑢 =

[𝜇; Σ]. The random variables 𝑥𝑖,𝑙 = 𝑆𝑖,𝑙 , ∀ 𝑙 ∈ 𝑁𝑇 are expressed by individual 

discrete Bernoulli PDFs ℬ𝑟(𝑥𝑖,𝑙; 𝑞𝑙), where 𝑞𝑙 is the FOR of line 𝑙. While the 

dependent variables 𝑥𝑖;𝐸 = {𝐿, 𝑣𝑤, 𝑠𝑃𝑉 , 𝑇𝑃𝑉} are expressed as multivariate joint PDF 

(MGMM) ℳ(𝑥𝑖;𝐸; 𝑒), 𝑒 = [𝜋𝑐; 𝜇𝑐; Σ𝑐 , ∀𝑐 ∈ 𝐶] to consider the correlation among 

variables. Therefore, the sample weight can be written by the next formula:  

𝑊(𝑥𝑖; 𝑢
𝐼𝑆, 𝑞𝐼𝑆, 𝑒𝐼𝑆) ≔ 𝑊(𝑥𝑖;𝑈, 𝑢

𝐼𝑆) ∗∏𝑊(𝑥𝑖,𝑙, 𝑞𝑙
𝐼𝑆)

𝑁𝑇

𝑙=1

∗ 𝑊(𝑥𝑖;𝐸 , 𝑒
𝐼𝑆) 

𝑊(𝑥𝑖; 𝑢
𝐼𝑆, 𝑞𝐼𝑆, 𝑒𝐼𝑆) ≔

𝒩(𝑥𝑖;𝑈; 𝑢)

𝒩(𝑥𝑖;𝑈; 𝑢𝐼𝑆)
∗∏

ℬ𝑟(𝑥𝑖,𝑙; 𝑞𝑙)

ℬ𝑟(𝑥𝑖,𝑙; 𝑞𝑙
𝐼𝑆)

𝑁𝑇

𝑙=1

∗
ℳ(𝑥𝑖;𝐸; 𝑒)

ℳ(𝑥𝑖;𝐸; 𝑒𝐼𝑆)
 

 

 

(4.7) 

where 𝑥𝑖 = {𝑥𝑖;𝑈, 𝑥𝑖;𝐸, {𝑥𝑖,𝑙, ∀ 𝑙 ∈ 𝑁𝑇}} , ℬ𝑟(𝑥𝑖,𝑙; 𝑞𝑙) = (𝑞𝑙)
1−𝑥𝑖,𝑙(1 − 𝑞𝑙)

𝑥𝑖,𝑙  ∀ 𝑙 ∈ 𝑁𝑇, and 

𝑢𝐼𝑆, 𝑞𝐼𝑆 = [𝑞𝑙
𝐼𝑆, ∀ 𝑙 ∈ 𝑁𝑇], and 𝑒𝐼𝑆 are the optimal parameters of ISDs for the 

different distributions. 

 By substituting the distributions into the equation (3.11), the optimization 

problem becomes 

argmax
𝑢𝑘
𝐼𝑆,𝑒𝑘

𝐼𝑆,𝑜𝑘
𝐼𝑆
[
1

𝑁
∑𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖; 𝑢𝑘−1

𝐼𝑆 , 𝑞𝑘−1
𝐼𝑆 , 𝑒𝑘−1

𝐼𝑆 ) ln(𝒩(𝑥𝑖;𝑈; 𝑢𝑘
𝐼𝑆) ℳ(𝑥𝑖;𝐸; 𝑒𝑘

𝐼𝑆)∏ℬ𝑟(𝑥𝑖,𝑙; 𝑞𝑙𝑘
𝐼𝑆)

𝑁𝑇

𝑙=1

)

𝑁

𝑖=1

] 

(4.8) 

in which  𝐼𝐹𝑘(𝑥𝑖) ≔ 𝛷 (−
𝐻(𝑥𝑖)

𝛿𝑘
), 

𝑊𝑘(𝑥𝑖; 𝑢𝑘−1
𝐼𝑆 , 𝑞𝑘−1

𝐼𝑆 , 𝑒𝑘−1
𝐼𝑆 ) ≔ 𝑊𝑘(𝑥𝑖) ≔

𝒩(𝑥𝑖;𝑈;𝑢)

𝒩(𝑥𝑖;𝑈;𝑢𝑘−1
𝐼𝑆 )

ℳ(𝑥𝑖;𝐸;𝑒)

ℳ(𝑥𝑖;𝐸;𝑒𝑘−1
𝐼𝑆 )

∏
ℬ𝑟(𝑥𝑖,𝑙;𝑞𝑙)

ℬ𝑟(𝑥𝑖,𝑙;𝑞𝑙𝑘−1
𝐼𝑆 )

𝑁𝑇
𝑙=1 . 
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The parameters of optimal ISD for each distribution are estimated as follows. 

Multivariate independent normal distribution 𝒩(𝑥𝑖;𝑈; 𝑢
𝐼𝑆): In order to obtain 𝑢𝑘

𝐼𝑆, 

the optimization problem is solved by executing the gradient of the function relating 

to the 𝑢𝑘
𝐼𝑆 and equaling it to zero.  

1

𝑁
∑ 𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖)∇𝑢𝑘

𝐼𝑆 ln(𝒩(𝑥𝑖;𝑈; 𝑢𝑘
𝐼𝑆))

𝑁

𝑖=1

= 0 

The derivative at step  𝑘 with respect to the parameters of 𝑢𝑘
𝐼𝑆 = [𝜇𝑘

𝐼𝑆, 𝛴𝑘
𝐼𝑆], which are 

𝜇𝑘
𝐼𝑆 and 𝛴𝑘

𝐼𝑆, are: 

1

𝑁
∑𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖)(

𝑁

𝑖=1

𝑥𝑖;𝑈 − 𝜇𝑘
𝐼𝑆) = 0 

1

𝑁
∑𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖)

1

2
((Σ𝑘

𝐼𝑆)−2(

𝑁

𝑖=1

𝑥𝑖;𝑈 − 𝜇𝑘
𝐼𝑆)(𝑥𝑖;𝑈 − 𝜇𝑘

𝐼𝑆)
𝑇
− (Σ𝑘

𝐼𝑆)−1) = 0 

 

 

(4.8) 

The optimal parameters at step 𝑘 are derived as follows: 

𝜇𝑘
𝐼𝑆 =

∑ 𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖)𝑥𝑖;𝑈
𝑁
𝑖=1

∑ 𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖)
𝑁
𝑖=1

 

Σ𝑘
𝐼𝑆 =

∑ 𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖)(𝑥𝑖;𝑈 − 𝜇𝑘
𝐼𝑆)(𝑥𝑖;𝑈 − 𝜇𝑘

𝐼𝑆)
𝑇𝑁

𝑖=1

∑ 𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖)
𝑁
𝑖=1

 

 

 

(4.9) 

Bernoulli distributions 𝓑𝒓(𝒙𝒊,𝒍; 𝒒𝒍
𝑰𝑺): In order to obtain 𝑞𝑙𝑘

𝐼𝑆, the optimization 

function is solved by executing the gradient of the function relating to 𝑞𝑙𝑘
𝐼𝑆and equaling 

it to zero. The optimal failure probability of transmission line 𝑙 at step 𝑘 is derived as 

𝑞𝑙𝑘
𝐼𝑆 = 1 −

∑ 𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖) 𝑥𝑖,𝑙 
𝑁
𝑖=1

∑ 𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖)
𝑁
𝑖=1

     ∀ 𝑙 ∈ 𝑁𝑇 (4.10) 

Multivariate joint PDF 𝓜(𝒙𝒊;𝑬; 𝒆
𝑰𝑺): The multivariate joint ISD can be written as 

follows as an original MGMM: 

ℳ(𝑥𝑖;𝐸; 𝑒
𝐼𝑆) =∑𝜋𝑐

𝐼𝑆  𝒩(𝑥𝑖;𝐸 ,

𝐶

𝑐=1

𝜇𝑐
𝐼𝑆; Σ𝑐

𝐼𝑆) 

In order to obtain 𝑒𝑘
𝐼𝑆, the optimization problem is solved by executing the gradient of 

the optimization function relating to 𝑒𝑘
𝐼𝑆 and equaling it to zero: 

1

𝑁
∑𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖) ∇𝑒𝑘

𝐼𝑆 ln(ℳ(𝑥𝑖;𝐸; 𝑒𝑘
𝐼𝑆))

𝑁

𝑖=1

= 0 
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The problem in case of MGMM is considered as a number of multivariate dependent 

normal distribution. This number is the number of components. So, the problem is 

solved for multivariate dependent normal distribution but the probability (weight) of 

sample 𝑥𝑖;𝐸 belong to the component of 𝑐 must be considered. The derivative at step  

𝑘 with respect to a component 𝑐 having 𝑒𝑐,𝑘
𝐼𝑆 = [𝜋𝑐,𝑘

𝐼𝑆 ; 𝜇𝑐,𝑘
𝐼𝑆 ; Σ𝑐,𝑘

𝐼𝑆 ] are as follows: 

1

𝑁
∑𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖) 

𝜋𝑐,𝑘−1 𝒩(𝑥𝑖;𝐸 , 𝜇𝑐,𝑘−1
𝐼𝑆 ; Σ𝑐,𝑘−1

𝐼𝑆 )

∑ 𝜋𝑐,𝑘−1 𝒩(𝑥𝑖;𝐸 ,
𝐶
𝑐=1 𝜇𝑐,𝑘−1

𝐼𝑆 ; Σ𝑐,𝑘−1
𝐼𝑆 )

(Σ𝑐,𝑘
𝐼𝑆 )−1(

𝑁

𝑖=1

𝑥𝑖;𝐸 − 𝜇𝑐,𝑘
𝐼𝑆 ) = 0 

1

𝑁
∑𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖) 

𝜋𝑐,𝑘−1 𝒩(𝑥𝑖;𝐸 , 𝜇𝑐,𝑘−1
𝐼𝑆 ; Σ𝑐,𝑘−1

𝐼𝑆 )

∑ 𝜋𝑐,𝑘−1𝒩(𝑥𝑖;𝐸 ,
𝐶
𝑐=1 𝜇𝑐,𝑘−1

𝐼𝑆 ; Σ𝑐,𝑘−1
𝐼𝑆 )

1

2
((Σ𝑐,𝑘

𝐼𝑆 )−2(

𝑁

𝑖=1

𝑥𝑖;𝐸

− 𝜇𝑐,𝑘
𝐼𝑆 )(𝑥𝑖;𝐸 − 𝜇𝑐,𝑘

𝐼𝑆 )
𝑇
− (Σ𝑐,𝑘

𝐼𝑆 )−1) = 0 

 

 

(4.11) 

From (4.11), in addition to the sample weight 𝑊𝑘(𝑥𝑖), the weight of sample 𝑥𝑖;𝐸 

belonging to the distribution of component (𝑐) 𝒩(𝑥𝑖;𝐸; 𝜇𝑐,𝑘−1
𝐼𝑆 ; Σ𝑐,𝑘−1

𝐼𝑆 ) is expressed by 

a parameter  𝛾𝑐,𝑘(𝑥𝑖;𝐸; 𝑒𝑘−1
𝐼𝑆 ) as follows:  

𝛾𝑐,𝑘(𝑥𝑖;𝐸; 𝑒𝑘−1
𝐼𝑆 ) =

𝜋𝑐,𝑘−1 𝒩(𝑥𝑖;𝐸 , 𝜇𝑐,𝑘−1
𝐼𝑆 ; Σ𝑐,𝑘−1

𝐼𝑆 )

∑ 𝜋𝑐,𝑘−1 𝒩(𝑥𝑖;𝐸 ,
𝐶
𝑐=1 𝜇𝑐,𝑘−1

𝐼𝑆 ; Σ𝑐,𝑘−1
𝐼𝑆 )

 (4.12) 

Therefore, the parameters of ISD can be expressed by the next formulas (4.13) [139]. 

𝜇𝑐,𝑘
𝐼𝑆 =

∑ 𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖)  𝛾𝑐,𝑘(𝑥𝑖;𝐸; 𝑒𝑘−1
𝐼𝑆 )𝑥𝑖;𝐸

𝑁
𝑖=1

∑ 𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖)
𝑁
𝑖=1 𝛾𝑐,𝑘(𝑥𝑖;𝐸; 𝑒𝑘−1

𝐼𝑆 )
 

Σ𝑐,𝑘
𝐼𝑆 =

∑ 𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖) 𝛾𝑐,𝑘(𝑥𝑖;𝐸; 𝑒𝑘−1
𝐼𝑆 )(𝑥𝑖;𝐸 − 𝜇𝑐,𝑘

𝐼𝑆 )(𝑥𝑖;𝐸 − 𝜇𝑐,𝑘
𝐼𝑆 )

𝑇𝑁
𝑖=1

∑ 𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖)
𝑁
𝑖=1 𝛾𝑐,𝑘(𝑥𝑖;𝐸; 𝑒𝑘−1

𝐼𝑆 )
 

 

 

(4.13) 

Finally, derivatives with respect to 𝜋𝑐,𝑘
𝐼𝑆  using a Lagrange multiplier for the constraint 

∑ 𝜋𝑐,𝑘
𝐼𝑆 = 1𝐶

𝑐=1  result in 

𝜋𝑐,𝑘
𝐼𝑆 =

∑ 𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖)  𝛾𝑐,𝑘(𝑥𝑖;𝐸; 𝑒𝑘−1
𝐼𝑆 )𝑁

𝑖=1

∑ 𝐼𝐹𝑘(𝑥𝑖) 𝑊𝑘(𝑥𝑖)
𝑁
𝑖=1

 (4.14) 

As shown in Algorithm 3.1, starting with 𝛿0 = ∞ and 𝑢0
𝐼𝑆, 𝑒0

𝐼𝑆, 𝑞0
𝐼𝑆 as a nominal 

parameter vectors, this procedure is reiterated and 𝛿𝑘 is determined such that the 

variance of the importance weights 𝑊(𝑥𝑖; 𝑢𝑘−1
𝐼𝑆 , 𝑜𝑘−1

𝐼𝑆 , 𝑒𝑘−1
𝐼𝑆 , 𝛿𝑘) as calculated in (4.15) is 

small. This is done by minimizing the difference between the ℂ𝕍  of the weights and 

the specified ℂ𝕍𝑡 𝑎𝑟𝑔 𝑒𝑡 at each intermediate event 𝑘, as written in (3.16). 
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𝑊(𝑥𝑖; 𝑢𝑘−1
𝐼𝑆 , 𝑞𝑘−1

𝐼𝑆 , 𝑒𝑘−1
𝐼𝑆 , 𝛿𝑘)

= 𝛷 (−
𝐻(𝑥𝑖)

𝛿𝑘
)

𝒩(𝑥𝑖;𝑈; 𝑢)

𝒩(𝑥𝑖;𝑈; 𝑢𝑘−1
𝐼𝑆 )

ℳ(𝑥𝑖;𝐸; 𝑒)

ℳ(𝑥𝑖;𝐸; 𝑒𝑘−1
𝐼𝑆 )

∏
ℬ𝑟(𝑥𝑖,𝑙; 𝑞𝑙)

ℬ𝑟(𝑥𝑖,𝑙; 𝑞𝑙𝑘−1
𝐼𝑆 )

𝑁𝑇

𝑙=1

 
(4.15) 

The algorithm is stopped when the ℂ𝕍  of the weight calculated in (3.17) of the 

present smooth approximation of the indicator function of intermediate failure events 

with regard to the target indicator function is lower than the ℂ𝕍𝑡 𝑎𝑟𝑔 𝑒𝑡. Hence, 𝐾 is 

set to the current event 𝑘, and the optimal ISDs are approximated well enough by the 

density 𝒩(𝑥𝑖;𝐺;𝑢𝐾−1
𝐼𝑆 ),ℳ(𝑥𝑖;𝐸; 𝑒𝐾−1

𝐼𝑆 ), 𝑎𝑛𝑑 ℬ𝑟(𝑥𝑖,𝑙; 𝑞𝑙𝐾−1
𝐼𝑆 ) ∀ 𝑙 ∈ 𝑁𝑇. The samples from 

these densities will be used in the second stage as shown in Algorithm 3.1 for 

computing the system adequacy indices (LOLE-EENS) as follows: 

𝐿𝑂𝐿𝐸 = 𝑡
1

𝑁
∑𝐼𝐹𝑘(𝑥𝑖)𝑊𝐾(𝑥𝑖)

𝑁

𝑖=1

, (4.16) 

𝐸𝐸𝑁𝑆 = 𝑡
1

𝑁
∑(∑𝑃𝑁𝑆𝑑

𝐷

𝑑=1

(𝑥𝑖))𝑊𝐾(𝑥𝑖)

𝑁

𝑖=1

.  

where 𝑡 is the period of study in hours and here equal to 8760 h. 

4.4. Results 

The proposed method is tested and evaluated for the five-node test scheme, 

presented in Figure 2.1. The FOR of transmission lines is set to 0.001. The standard 

MCS simulation method is used as a benchmarking method. The maximum number 

of simulation samples for MCS is 105. A coefficient of variation (convergence) of 5% 

for both annual system reliability indices (LOLE-EENS) is used as the stopping 

criterion.  

The reliability assessment has been conducted with different renewable 

generation profiles. In Case I, a wind farm (16 x 3MW) has been added to the testing 

network at node 2 instead of the conventional generation. In Case II, we consider a 

solar PV power plant (48 x 1MW) at node 2 to compensate the conventional 

generation. In Case III, we consider both wind farm (8 x 3MW) and PV station (24 x 

1MW) at node 2. Each 1 MW PV array would be divided into 16 subarrays each rated 

at 63.25 kW [140]. The PV panel with model number STP280-VRM-1 developed by 
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SUNTECH of rated power 275 W is used. The total number of panels connected in 

the array is 3680 connected in best available method. The repair rate and failure rate 

of the PV array used are 0.00381 (1/hour) and 0.000383 (1/hour) respectively [135] 

which lead to FOR equal to 0.09. The parameters of 3 MW WTG are as follows: the 

cut-in, rated and cut-out wind speeds are 3m/s, 10m/s and 25m/s respectively. The 

FOR of each WTG is set to 0.10 [133]. To adapt the real-life datasets on the 5-node 

system, the real-life datasets is scaled to match the parameters of test scheme. The 

electricity demand is scaled by a factor that is the peak demand of the real-life datasets 

divided by the aggregated load of the system. In this manner, the correlation structure 

between the demand and weather variables can be conserved. 

To explain the significance of investigating correlation for evaluating the 

reliability indices, two scenarios of uncorrelated and correlated samples are 

considered for the three cases. To generate the uncorrelated samples, the GMM is used 

to fit the PDF of each variable and is then used to generate samples from each PDF 

independently.  While the MGMM generates correlated samples of load and weather 

variables. Table 4.2 shows the LOLE and EENS values, the number of samples, the 

computation time obtained by the MCS method in case of the correlated and 

uncorrelated samples. The difference in results between the two scenarios (correlated- 

uncorrelated) indicates the importance of regarding the correlation coefficients. 

Correlation has a large effect on the values of reliability indices and the computational 

time. The convergence in case of correlated samples is higher than this of uncorrelated 

samples as most of samples is viable system states expressing operating conditions. 

Thus, the computation burden is low using correlated samples. In case I, the results of 

reliability indices for correlated samples are larger than those of uncorrelated because 

of negative correlation between wind speeds and loads i.e. the wind generation lessens 

with increasing the load and vice versa which leads to poor system reliability. While 

in case II, the positive correlation results in the solar generation follows the load and 

so the reliability indices are lower in case of considering the correlation than those 

using the uncorrelated samples. The results of case III signify that the percentage of 
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penetration of Wind and solar generation together should be optimized for better 

benefits based on minimizing the values of reliability indices.  

Table 4.2 Annual reliability indices for different renewable generation profiles in case of correlated 

and uncorrelated scenarios. 

 Correlated Uncorrelated 

LOLE 

[h/yr] 

EENS 

[MWh/yr] 

Number 

of samples 

Time 

[s] 

LOLE 

[h/yr] 

EENS 

[MWh/yr] 

Number of 

samples 

Time 

[s] 

Case I 81 4300 252134 5899 19.3 1870 437135 14052 

Case II 76 4700 213139 4575 96 7300 618213 22458 

Case III 70 10000 106032 1323 30 4312 665500 27021 

The accuracy of the proposed ECS-IS method is validated through comparing its 

results of reliability indices with the MCS. The ECE-IS method uses the following 

parameter values: ℂ𝕍𝑡 𝑎𝑟𝑔 𝑒𝑡 = 1.5, maximum number of iterations = 50, and number 

of samples per iteration = 5000. The system EENS and LOLE are calculated by the 

two methods (MCS and ECE-IS) for the different cases. The reliability indices are in 

accordance for both methods as shown in Table 4.3. The proposed method enables 

effective simulation of EPSs with a large proportion of renewable power generation. 

Under several renewable generation profiles, the number of samples needed by the 

ECE-IS method to achieve the MCS accuracy is one-fifth to one-sixth compared to 

the MCS method. This indicates the advantage of the proposed method in considering 

a higher number of LOL states that allows the estimator converges quickly with a 

small fraction of the samples needed by the MCS without importance sampling. When 

comparing between the case III (less reliable) and the case I (high reliable), the 

efficiency gain of the proposed approach compared with the MCS method is less. The 

speed-up of the proposed method in case III is nearly three compared to the MCS 

method, while in case I, the gain is six times.  
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Table 4.3 Annual reliability indices obtained using the MCS and ECE-IS for different renewable 

generation profiles. 

 MCS ECE-IS 

LOLE 

[h/yr] 

EENS 

[MWh/yr] 

Number of 

samples 

Time 

[s] 

LOLE 

[h/yr] 

EENS 

[MWh/yr] 

Number of 

samples 

Time 

[s] 

Case I 81 4300 252134 5899 79 4221 49000 879 

Case II 76 4700 213139 4575 83 4900 38705 776 

Case III 70 10000 106032 1323 65 9200 20500 486 

 

Conclusion 

The multivariate GMM is employed to consider the multimodal PDFs of continuous 

variables (wind speed, solar irradiance, temperature, and electricity demand) and the 

complicated correlation among them based on the real historical data in form of joint 

probability distribution. The random variation and chronological characteristics of 

electricity demand and weather variables for El Gouna city located in Egypt are 

considered. The MGMM has been provided an accurate probabilistic model to include 

the load, solar, and wind powers uncertainties in the reliability estimation of power 

systems.  In order to estimate the annual reliability indicators (LOLE-EENS) 

efficiently and accurately of CPS with a large proportion of PV power stations and 

wind farms integrated, the ECE-IS method is used to carry out IS on the obtained 

MGMM and find the IS-PDF parameters for it. Moreover, the availability state model 

of wind farms, PV power stations, and transmission lines are considered. The 

computational efficiency and adaptability of the method of combined ECE-IS and 

MGMM has been confirmed by the results of case studies.  
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Conclusions and Recommendations 

• A comprehensive review of the probabilistic approaches applied on the 

reliability evaluation of the power grid has accomplished. 

• In a concentrated electric power system, the approximate analytical method (the 

method of combined cumulants and Von Mises function) has provided low 

computational time and good degree of accuracy compared with the Monte Carlo 

method. Moreover, it is mathematically simpler than the convolution method. 

• In composite power system, the modified Hong's method M (2 × n) +1 has 

improved the computational accuracy of Hong's methods by considering a group of 

superimposed uncertain events (criterion 𝑁 − 2), i.e. positive deviation of nodal load 

and negative deviation generation from their expected forecast value. However, in 

general, the point estimate methods are not recommended for the high reliability 

systems which is characterized by the rare occurrence of the loss of load events since 

the criterion 𝑁 − 2 becomes not enough to extract these events.  

• The enhanced cross entropy based on optimization algorithm has improved the 

sampling efficiency and convergence characteristics of the Monte Carlo method 

through making rare loss of load events more likely to be drawn. In addition, it is more 

efficient and robust than other rare events simulation methods. 

• The enhanced cross entropy method has been integrated within a two-stage 

framework for calculating the reliability indices. From the reported results of 

reliability indices, the proposed method contributes to accurately evaluating the 

reliability indices and further enhancing the convergence of the indices in comparison 

with other methods. Moreover, 11-times speed-up is achieved with respect to the 

standard Monte Carlo method. 

• The multivariate Gaussian mixture model has been employed to consider the 

multimodal PDFs of continuous variables (wind speed, solar irradiance, temperature, 

and electricity demand) and the complicated correlation among them based on the real 

historical data in form of joint probability distribution. The proposed model has been 

provided an accurate probabilistic model compared with other models to include the 
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load, wind, and solar power uncertainties in the reliability evaluation of electric power 

systems with a large-scale wind farms and PV power stations renewable integrated.  

• The enhanced cross entropy method has been adopted to improve the sampling 

efficiency of the correlated probabilistic model of renewable energy resources and 

demand, and the availability state model of wind farms, photovoltaic power stations, 

and transmission lines outages. The method can preserve the dependence structure of 

renewable powers and load in the procedure of reliability assessment; thus, the 

reliability indices are evaluated with an acceptable computation burden. 

• The computational efficiency and adaptability of the enhanced cross entropy 

method for assessing accurately and efficiently power system annual reliability 

indices in the renewable energy reliability study has been confirmed by the results of 

case studies. The values of the loss of load expectation and expected energy not 

supplied estimators agree with the Monte Carlo method. Besides, the efficiency gain 

of the proposed approach compared with the Monte Carlo method is nearly three to 

six times. 

Approaches of Future Research  

• Within the framework of the long-term reliability evaluation, the active power 

balance was considered. However, reactive power balance should be considered due 

to its effects on adequacy indices, especially with the high integration of renewable 

energy resources. 

• Implementation of the enhanced cross entropy method in the reliability 

assessment of a real power system;   

• In order to maximize the use of renewable power and reduce the CO2 emissions, 

a priority should be given to the renewable generators over thermal generators in 

optimal power flow algorithm in case of no power deficit states. 

• In the case of renewable energy reliability studies, analysis of the renewable 

power curtailment events because of  the failure and/or capacity limits of 

transmission lines, demand power deficit, or the simultaneous incidence of both 
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these events should be examined to enable power system planners maximizing the 

efficiency of renewable energy utilizations.  

• In smart grids with renewable penetrations, storing strategies for the renewable 

energy such as electric vehicle storage should be considered in the reliability 

assessment. However, this will increase largely the amount of computational burden. 

• Implementation of the enhanced cross entropy in the sequential Monte Carlo 

simulation method by sequentially sampling the duration of the states should be 

considered for studying the reliability of smart grids in which an optimal energy 

management scheme is designed for the renewable generations and energy storages 

to improve the  customers’  reliability. 

• Implementation of the enhanced cross entropy method in the problem of the 

system reserve assessment and allocation to determine the optimal location and 

penetration of renewable energy resources in the system. 
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List of Symbols 

A. Abbreviations 

CDF – Cumulative distribution function 

EPS – Electric power system 

CPS – Composite power system 

CE-IS – Cross entropy-based importance sampling 

ECE-IS – Enhanced cross entropy-based importance sampling 

IS – Importance sampling 

ISD – Importance sampling density 

KL – Kullback–Leibler 

PNS – Power not supplied 

LOLE – Loss of load expectation 

EPNS – Expected power not supplied 

EENS – Expected energy not supplied 

LOLP – Loss of load probability 

SPNS – Standard deviation of power not supplied 

MCS – Monte Carlo simulation 

MPP – maximum power point 

NOCT – nominal operating cell temperature 

OPF – Optimal power flow 

PDF – Probability distribution function 

PMF  – Probability mass function 

PV – Photovoltaic 

CDF – Cumulative distribution function 

ℛ – Reliability index 

RV – Random variable 

SS – Subset simulation 

STC – standard test condition 

GMM – Gaussian mixture model 
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MGMM – Multivariate Gaussian mixture model 

TND – truncated normal distribution 

WECS – Wind energy conversion system 

WTG – Wind turbine generator 

VRTs – Variance Reduction Techniques. 

B. Notations 

𝐶𝑛𝑔
𝑔

 – Binomial coefficient  

𝐼𝐹  – Failure indicator function 

ℙ𝐹  – Failure probability 

𝕍 – Variance operator 

𝔼 – Expectation operator 

ℂ𝕍 – Convergence or coefficient of variation 

ℛ
∧

 – Estimator of reliability index ℛ 

𝔻 – Divergence 

𝑃𝑁𝑆̃ – The normalized power not supplied 

𝜁𝑘 – A threshold intermediate level k 

𝜉𝑥𝑖,𝑗 – Location of concentrated point 𝑗 of variable 𝑥𝑖 

𝜑 – the standard normal PDF 

𝛷 – the standard normal CDF 

ℳ;𝒩; 

ℬ;ℬ𝑟 

 

– 

 

Gaussian mixture, Normal, Binomial, and Bernoulli distributions 

𝑓; 𝐹 – PDF and CDF functions 

𝛿 – Control parameter of bandwidth of failure indicator function  

𝜌 – Correlation factor 

𝛼 – Outage rate 

𝜏 – Outage duration 

𝛻 – Gradient  

C. Indices and Sets 

𝒦 – Cumulant 
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𝑚 – Raw moment 

𝑀 – Central moment 

𝜆 – Standard central moment 

𝑖; 𝑁 – Index and set of samples 

𝑗; 𝑛 – Index and set of random variables 

𝑐; 𝐶 – Index and set of components of the GMM 

𝑑; 𝐷 – Index and set of nodes 

k; K – Index and set of intermediate levels 

l; NT – Index and set of transmission lines 

𝑁𝑛 – Number of nodes in the power system 

𝑁𝑚 – Number of moments  

𝑁𝑙 – Number of lines in the power system 

𝑁𝑔 – Number of groups of generators in the power system 

𝑛𝑔 – Number of generators in one group 

𝑁𝑝 – Number of parallel panels in the photovoltaic array 

𝑁𝑠 – Number of series panels in the photovoltaic array 

D.  Parameters 

𝑞 – Forced outage rate of generating unit 𝑔 

𝑞𝑙 – Forced outage rate of transmission line 𝑙 

𝜋𝑑 – Weight factor for the load of the node 𝑑 

𝜋𝑐  – Weight for the component 𝑐 of the GMM 

𝑤𝑔 – 
Failure probability of number of generators 𝑔 in a group of 𝑛𝑔 

elements 

𝐴𝑡 – Power system incidence matrix reduced by one row 

𝐵 – Bus susceptance matrix 

𝐵𝑏𝑟 – Diagonal matrix made of transmission lines susceptance 

𝑅𝑙 – Transmission line resistance [Ohm] 

𝑉 – Nominal voltage of a power system [V] 
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𝐿𝐹𝑙
𝑚𝑎𝑥 – Maximum power flow or transmission line 𝑙 capacity 

𝑃𝑏𝑙 – Nominal power of generator 

𝜐𝑥𝒾, 𝑘𝑥𝒾  – Skewness and kurtosis of variable 𝑥𝒾 

𝑡 – Time 

E. Variables 

𝑃𝑁𝑆𝑑 – Power not supplied or Curtailed load at the node 𝑑 

𝐿𝑑 – Load at the node 𝑑 

𝑃𝑑 – Power injection at the node 𝑑 

𝐿𝐹𝑙 – Power flow of transmission line 𝑙  

𝐺𝑑 – Used generation at the node 𝑑 

𝑃𝛴 – Sum of power injections at all the nodes of the power system 

𝐿𝑆𝛴 – Sum of transmission lines power losses 

𝐿𝐹 – Power flows vector 

𝑃 – Vector of power injections 

𝑃𝑃𝑉 – Power output of PV panel 

𝑃𝑤 – Power output of wind turbine generator 

𝐺𝑑
𝑎𝑣 – Available generation at the node 𝑑 

𝑣𝑤 – Wind speed 

𝑆𝑙 – State of transmission line 𝑙 

𝑠𝑃𝑉 – Solar irradiance 

𝑆𝑝𝑣
𝑎𝑣 – Available state of the PV power station 

𝑆𝑤
𝑎𝑣 – Available state of the wind farm 

𝑇 – Temperature 

𝑤𝑥𝒾,𝒿  – Weight factor for the 𝒿 concentration point of variable 𝑥𝒾 

𝑊(𝑥𝒾) 
– Likelihood ratio or importance weight function of a 

distribution of variable 𝑥𝒾 
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