
Федеральное государственное автономное образовательное учреждение высшего образования

«Уральский Федеральный Университет
имени первого Президента России Б.Н.Ельцина»

Институт естественных наук и математики
Кафедра алгебры и фундаментальной информатики

На правах рукописи

Шабана Ханан Магди Дарвиш

СИНХРОНИЗАЦИЯ ЧАСТИЧНЫХ
И НЕДЕТЕРМИНИРОВАННЫХ АВТОМАТОВ:

ПОДХОД НА ОСНОВЕ SAT-РЕШАТЕЛЕЙ

Специальность 05.13.17 — Теоретические основы информатики

Диссертация на соискание учёной степени
кандидата физико-математических наук

Научный руководитель
доктор физико-математических наук

профессор Волков Михаил Владимирович

Екатеринбург, 2020

Federal State Autonomous Educational Institution of Higher Education

«Ural Federal University

named after the first President of Russia B.N.Yeltsin»

Institute of Natural Science and Mathematics

Chair of Algebra and Theoretical Computer Science

Retaining manuscript rights

Hanan Magdy Darwish Shabana

SYNCHRONIZATION OF PARTIAL

AND NON-DETERMINISTIC AUTOMATA:

A SAT-BASED APPROACH

05.13.17 — Theoretical Foundations of Computer Science

A Thesis Submitted for the Degree

of Candidate of Physical and Mathematical Sciences

Supervisor:

Doctor of Physical and Mathematical Sciences

Professor Volkov Mikhail Vladimirovich

Ekaterinburg, 2020

Contents

Introduction 6

Relevance of the topic . 6

Degree of development of the topic 15

Goals and objectives of the thesis. SAT-solver method 16

Overview of the thesis . 19

The main achievements of the thesis 21

Publications . 22

Approbation at seminars and conferences 23

Scientific novelty . 24

Degree of correctness of the results 24

Theoretical and practical importance 25

Research methods . 25

Length and structure of thesis 25

Acknowledgments . 26

1 Preliminaries 27

1.1 Complexity classes . 27

1.2 Satisfiability . 30

1.3 Finite automata . 32

2

CONTENTS

1.4 Synchronizing DFA . 35

1.5 NFA Synchronization . 41

1.6 Complexity of synchronization

in finite automata . 45

1.7 Shortest synchronizing word 46

1.7.1 Shortest synchronizing word for DFAs 46

1.7.2 Shortest synchronizing word for NFA 48

1.8 Careful synchronization 49

1.9 Exact synchronization . 54

1.10 Checking careful synchronization 55

1.11 Testing exact synchronization 57

2 Synchronization of PFAs 62

2.1 Carefully synchronizing words 62

2.2 Exactly synchronizing words 69

2.3 Ladder encoding . 76

3 Experimental study in PFAs synchronization 78

3.1 General settings of our experiments 78

3.2 Experiments and implementation 83

3.3 Generating random PFAs 83

3.4 Experimental results for randomly

generated PFAs and their analysis 85

3.4.1 Series 1: Probability of synchronization 85

3.4.2 Series 2: Average length of the shortest

synchronizing word 92

3.4.3 Series 3: Influence of the input alphabet size . . . 96

3.4.4 Series 4: Influence of density 97

3

CONTENTS

3.5 Slowly synchronizing automata

and benchmarks . 100

3.6 A comparison with the partial power automaton method . 106

4 Synchronization problems of NFAs 109

4.1 Modeling NFA computation as SAT:

Variables . 109

4.2 Modeling NFA computation as SAT: Clauses 111

4.3 Propositional logic formulas for rules 114

4.4 CNF formulas . 116

4.5 NFA-synchronization problems 118

4.5.1 D3-synchronization 118

4.5.2 D2 synchronization 122

4.5.3 D1-synchronization 126

4.6 Example of the CNF table

for DiW problems . 128

5 Experiments in NFA synchronization 132

5.1 NFA Generation . 134

5.2 Uniform Model results . 137

5.3 Poisson Model results . 138

5.3.1 D3 results . 140

5.3.2 D2 results . 141

5.4 Enhancement of the algorithm 142

Conclusion 146

Bibliography 148

4

Introduction

Relevance of the topic

Finite automata are mathematical models for a lot of discrete dynami-

cal systems arising in robotics, communication protocols, biology, com-

puter hardware design, artificial intelligence, linguistics, and other areas.

These systems are known as finite-state transition systems. Such a sys-

tem consists of a finite number of states and transitions rules. The state

of the system at any moment of time is changed, responding to exter-

nal input. The transitions rules determine the transition between those

states, according to the input.

In the design of the control systems modeled by finite automata, the

essential behavior of the finite automaton is the mapping of external

sequences into internal states. When for some reasons the automaton

fails to take the correct transition (there is a failure in the system),

the person responsible of the system decides to direct the system to a

known state from which he or she can restore control over the system.

He or she can do that if and only if the system is synchronizing. Hence,

synchronization is a significant concept for a lot of systems as it makes

the systems more robust.

5

Introduction

Synchronization frequently appears in the following situation. Sup-

pose that a system is composed of sub-systems that work as identical

mechanisms but may be in different states. For some reason, we want all

of these sub-systems to be at the same state at the same time. This task

can be easily accomplished if the given system is synchronizing. In this

situation we can say that the synchronization of a system means that all

parts of the system are in agreement regarding the present state of the

system.

Now we switch from an informal discussion of synchronization to

precise definitions. An automaton is defined as a triple 〈Q,Σ, δ〉 where

Q is the state set, Σ is the input alphabet and δ is the transition function

that defines the action of elements of Σ on the elements of Q. The result

of the action of an input letter a ∈ Σ at a state q ∈ Q is denoted as

δ(q, a) (or q.a for simplicity). This action is naturally extended to define

the action of a word in Σ∗ at any state in Q. (Here Σ∗ stands for the set

of all words over the alphabet Σ, including the empty word.) We do not

need to specify initial nor final states of the automaton as the study of

synchronization considers, in a sense, all states being initial and final.

An automaton is synchronizing if it has an input word that brings it

to a unique state regardless of the state of the automaton before reading

this word. Figure 1 shows an example of a synchronizing automaton with

four states 0, 1, 2, 3 and two input letters a and b. It is easy to verify

that the word baaa transfers the automaton from any state to state 0.

Such a word is called a synchronizing word or a reset word.

6

Introduction

0 1

23

a

b

a

b

a

b
a, b

Figure 1: A synchronizing automaton

The concept of synchronizing words for finite automata has received

lots of attention during the last years as they appear in a wide range of

applications. Here we briefly describe a few examples of such applica-

tions.

Industrial robotics. Synchronizing words reset the automaton to a

unique state regardless of its present state. These words are useful in

industrial robotics see [30,61,62]. In such industrial issues, synchronizing

automata are widely used to model and design feeders, sorters, and ori-

enters that work with flows of certain objects carried by a conveyer. We

borrow an illustrative example from [2]. Consider an automatic line for

manufacturing of a device. Suppose a certain part of the device has the

shape shown in Figure 2. Such parts arrive to the conveyer in random

orientations. These different orientations of the part are illustrated in

Figure 3. For assembly these parts need to be oriented in the same way.

Assume that each part needs to be in the second (from the left) position

from Figure 3.

7

Introduction

Thus, one has to design an orienter that senses the position of the

incoming part and then rotates it to the prescribed position. Generally

speaking, such an orienter is complicated as its mechanism is dependent

on the shape of the part. Practical considerations favor methods which

require little or no sensing, employ simple tools, and are as robust as

possible. The desired orienter is one whose processing is independent

of the initial orientation of the part. Now we quote from [2]. “For our

particular case, these goals can be achieved as follows. We put parts to be

oriented on a conveyer belt which takes them to the assembly point and

let the stream of the parts encounter a series of passive obstacles placed

along the belt. We need two type of obstacles: tall (T) and short (S).

A tall obstacle should be tall enough in order that any part on the belt

encounters this obstacle by its rightmost low angle (we assume that the

belt is moving from left to right). Being carried by the belt, the part then

is forced to turn 90◦ clockwise as shown in Figure 4. A short obstacle

has the same effect whenever the part is in the ‘bump-down’ orientation

(the first from the left in Figure 3); otherwise it does not touch the part

which therefore passes by without changing the orientation”. Thus, we

can construct the orienter as an automaton A whose state set consists

of the different orientations, whose input alphabet is {T,S}, and whose

transition function is defined by the action of each obstacle on different

orientations of the part. The automaton A is described in Figure 5. It

is easy to verify that this automaton is synchronizing and the sequence

S–T–T–T–S–T–T–T–S of obstacles is a synchronizing word that yields

the desired sensorless orienter.

8

Introduction

Figure 2: A polygonal part

Figure 3: Four possible orientations; the “correct” orientation is the sec-
ond one from the left.

❅
❅ ❅

❅
❅
❅

Figure 4: The action of a tall obstacle

T,S

T

T

T

S

SS

Figure 5: Sensorless orienter A

9

Introduction

Coding theory. A word u over an alphabet Σ is said to be a prefix of

a word w over Σ if w can be written as w = uv for some v ∈ Σ∗. A prefix

code X over Σ is a set of non-empty words from Σ∗ such that no word of

X is a prefix of another word of X. It is maximal if it is not contained in

another prefix code over the same alphabet. A maximal prefix code X

over Σ is called synchronized if there is a word z such that for any word

y ∈ Σ∗, the word yz can be decomposed as a product of words from

X. Such a word z is called a synchronizing word for X. When coding

a stream of data with a synchronized code, we have a guarantee that we

can recover after a loss of synchronization between the decoder and the

coder caused by channel errors [9]. In the case of such a loss, it suffices to

transmit a synchronizing word and the following symbols will be decoded

correctly. Moreover, this may happen automatically when a sufficiently

long word has been read. For synchronizing codes, the probability that

a word w ∈ Σ∗ contains a synchronizing word as a factor tends to 1 as

the length of w increases [13].

For an illustration, we consider the following example from [42]. Let

Σ = {0, 1} and X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}.
Then X is a maximal prefix code over Σ and it is easy to check that

each of the words 010, 011110, 011111110, . . . is a synchronizing word

for X. For instance, if the code word 000 has been sent but, due to a

channel error, the word 100 has been received, the decoder interprets

10 as a code word, and thus, loses synchronization. However, with a

high probability this synchronization loss only propagates for a short

while; in particular, the decoder definitely re-synchronizes as soon as it

encounters one of the segments 010, 011110, 011111110, . . . in the re-

ceived stream of symbols. A few samples of such streams are shown in

10

Introduction

Figure 6, where vertical lines show the partition of each stream into code

words and the boldfaced code words indicate the position at which the

decoder re-synchronizes.

Sent 0 0 0 | 0 0 1 0 | 0111 | . . .
Received 1 0 | 0 0 0 | 1 0 | 0111 | . . .
Sent 0 0 0 | 0 1 1 1 | 1 1 0 | 0 0 1 1 | 0 0 0 | 1 0 | 110 | . . .
Received 1 0 | 0 0 1 1 | 1 1 1 | 0 0 0 | 1 1 0 | 0 0 1 0 | 110 | . . .
Sent 0 0 0 | 0 0 0 | 1 1 1 | 10 | . . .
Received 1 0 | 0 0 0 | 0 1 1 1 | 10 | . . .

Figure 6: Automatic synchronization

There is a strong connection between codes and finite automata, see

the monograph [9] for an extensive treatment. Here we limit ourselves

to just one example of such a connection. If X is a finite maximal prefix

code over an alphabet Σ, then its decoding can be implemented by a finite

automaton AX whose set of states Q is the set of all proper prefixes of

the words in X (including the empty word ε) and whose transitions are

defined as follows: for q ∈ Q and a ∈ Σ,

q.a =

{

qa if qa is a proper prefix of a word of X,

ε if qa ∈ X,

X is a synchronized code if and only if the automaton AX has a syn-

chronizing word that resets it to the state ε.

11

Introduction

Model based testing. Other problems for which synchronizing au-

tomata and synchronizing words are important can be found in model

conformance testing [8, 16, 51, 52]. These problems consist of some test-

ings to ensure that a system verifies its prerequisites. When the abstract

behavior of an interactive system is implemented by finite automata,

there are various methods to derive some test sequences with high fault

coverage. These methods construct a test sequence to be applied when

the implementation under test (IUT) is in a certain state. Therefore it is

required to bring the IUT to this particular state regardless of its initial

state which can be accomplished by using a synchronizing sequence for

the IUT. Figure 7 shows the general technique of model based testing

process.

Initial IUT
Test gener-

ating tools
Test Suit Response

Reset IUT

Output:

Pass or fail

synchronizing word

Figure 7: Model based testing process

A popular automata model in the area of model based testing is

the finite state machine (FSM) model, see, e.g., [45–50, 89, 90]. A FSM

is basically a nondeterministic automaton with output, and a common

12

Introduction

restriction to FSMs used in model based testing is observability : a FSM

F with input alphabet I and output alphabet O is said to be observable

if for each state q of F and for each input/output pair (i, o) ∈ I × O,

at most one action of the input i at q produces the output o. It is easy

to see that from the synchronization viewpoint, such an observable FSM

is equivalent to a partial automaton with the same state set and the

alphabet Σ = I × O.

We think that this brief survey suffices to support the claim that

synchronizing automata serve as simple yet adequate models of error-

resistant systems in many applied areas. At the same time, synchroniz-

ing automata surprisingly arise in some parts of pure mathematics and

theoretical computer science (symbolic dynamics, theory of substitution

systems, formal language theory). From both applied and theoretical

viewpoints, the key question is to find the optimal, i.e., shortest syn-

chronizing word for a given synchronizing automaton. Under standard

assumptions of complexity theory, this optimization question is known

to be computationally hard. As it is quite common for hard problems of

applied importance, there have been many attempts to develop practical

approaches to the question. These approaches have been based on cer-

tain heuristics [1, 39–41] and/or popular techniques, including (but not

limiting to) binary decision diagrams [68], genetic and evolutionary al-

gorithms [44,73], satisfiability solvers [77], answer set programming [32],

hierarchical classifiers [69], and machine learning [70].

13

Introduction

Degree of development of the topic

So far, most of the published research on synchronization has focused on

systems that are modeled as complete deterministic automata (DFAs).

We refer to the survey [88] and the chapter [42] of the forthcoming ‘Hand-

book of Automata Theory’ for a discussion of synchronizing complete

deterministic automata as well as their diverse connections and appli-

cations. In such systems a full specification of the system is provided;

response of the system to any input is uniquely determined by the cur-

rent state and the incoming input. Recently a great deal of attention

has also been given to synchronization of partially specified systems, in

which only a subset of the system’s events are available for external ob-

servation. These systems are also known as nondeterministic systems.

In such systems, the knowledge of the current state and the incoming

input is insufficient to uniquely determine the next state. Such non-

determinism arises due to un-modeled system dynamics and/or partial

observation. For example, a machine in a manufacturing system may in-

cur a partial undetectable failure while performing a certain task. This

can be modeled by having a nondeterministic transition on the task com-

pletion event, leading to two successor states depending on whether or

not the failure occurred while completing the task. Other kind of non-

deterministic systems is partial deterministic system in which there are

some events that are not allowed for some states. Complete deterministic

automata cannot be used in modeling partially specified systems. For

these systems, other classes of automata are used: nondeterministic au-

tomata (NFAs) and partial deterministic automata (PFAs). Nowadays,

synchronization of these automata has become an interesting research

topic.

14

Introduction

Goals and objectives of the thesis.

SAT-solver method

In this thesis we focus on the case of partial and nondetermin-

istic automata. We investigate synchronization of these automata.

In contrast to synchronization of complete deterministic automata, syn-

chronization problems for nondeterministic or even partial deterministic

automata are much harder. For these automata, there is more than one

version of synchronization. An automaton may be synchronizing with re-

spect to one version but not synchronizing from the view point of another

version.

Some of problems that are frequently asked in this area are:

1. For a version of synchronization B, is a given automaton A syn-

chronizing with respect to B?

2. Can we solve Problem 1 in polynomial time as for complete deter-

ministic automata?

3. How does the degree of nondeterminism in A affect being synchro-

nizing?

4. If the automaton A already belongs to B, does it have a synchro-

nizing word of a specified length?

5. What is the length of the shortest synchronizing word for A ?

6. For synchronizing nondeterministic or partial deterministic au-

tomata with a given number of states, what is the average length

of their shortest synchronizing words?

15

Introduction

In the literature, there are two methods to solve the above prob-

lems. The basic one is the power automaton method. It is based on the

classical construction of power automata due to Rabin and Scott [71].

This method has delivered many important theoretical results but it is

not efficient in practice as the power automaton has an exponential size

compared to the size of the input automaton. The second method uses

the deterministic automata as tools to solve these problems. Since the

synchronization of deterministic automata is extensively studied and up-

per bounds or the exact length of the shortest synchronizing word for

various kinds of such automata are given, there were attempts to solve

Problems 3-6 by certain reductions to complete deterministic automata;

see [35] and [37] for details. Although these attempts have proved their

efficiency in complete nondeterministic automata for a certain version of

synchronization, they can not be applied to other versions of synchro-

nization.

In accordance to the hardness of these problems, our motivation was

to find tools that have proved to be powerful in dealing with compu-

tationally hard issues. Such tools are provided in particular, by SAT

solvers; these are computer programs designed to solve the Boolean sat-

isfiability problem (SAT).

SAT is a decision problem in propositional logic on a set of variables

V and clauses C. The question is: is there a Boolean assignment for

V that satisfies all clauses in C? Modern SAT-solvers can solve such

decision problems with millions of variables and clauses in a few minutes.

Due to this advantage, the following approach to computationally hard

problems has become quite popular nowadays: one encodes instances of

such problems into instances of SAT that are then fed to a SAT solver.

16

Introduction

We refer to this approach as the SAT-solver method. SAT-solver method

has proved to be very efficient for an extremely wide range of problems

of both theoretical and practical importance. Its applications are far too

numerous to be listed here; we refer the reader to the survey [29] or to the

handbook [6] for some examples of successful applications of SAT-solver

method in various areas.

Here we mention only three recent papers that deal with two difficult

problems related to finite automata. Geldenhuys, van der Merwe, and

van Zijl [26] have used the SAT-solver method to attack the minimization

problem for NFAs. In the minimization problem, which is known to

be PSPACE-complete [38], an NFA A with designated initial and final

states is given, and one looks for an NFA of minimum size that accepts

the same set of words as A . Skvortsov and Tipikin [77] have applied

the method to find a synchronizing word of minimum length for a given

complete deterministic automaton (DFA) with two input symbols, and

Güniçen, Erdem, and Yenigün [32] have extended their approach to DFAs

with arbitrary input alphabets. The problem of finding a synchronizing

word of minimum length is known to be hard for the complexity class

FPNP[log], the functional analogue of the class of problems solvable by a

deterministic polynomial-time Turing machine that has an access to an

oracle for an NP-complete problem, with the number of queries being

logarithmic in the size of the input [65].

It should be stressed that neither the encoding of NFAs used in [26]

nor the encoding of synchronization used in [32,77] work for our purposes.

Therefore, we have had to invent essentially different encodings specific

for the problems addressed in the thesis.

17

Introduction

Overview of the thesis

In Chapter 1 we give an overview of relevant aspects related to syn-

chronization of automata. In order to place our research in a proper per-

spective, we start by synchronization of fully specified automata (com-

plete deterministic automata). Then we switch to the nondeterminis-

tic automata where we give a survey on the synchronization issues and

overview results of recent papers published in this area. From this dis-

cussion we conclude that Problem 1 above is PSPACE-complete and

hence the answer to Problem 2 is NO in general. Consequently all the

remaining problems are computationally hard.

Chapter 2 investigates synchronization of partial deterministic au-

tomata (PFAs). For these automata there are two versions of synchro-

nizations called Careful and Exact synchronization. We introduce en-

codings that model these versions of synchronization as SAT problems.

The main results of the chapter are Theorem 2.1 and Theorem 2.2

that prove the adequacy of these encodings.

Chapter 3 presents an experimental study of synchronization of

PFAs. We performed a series of experiments to find an approximation of

the shortest synchronizing word for a given automaton in each version.

It also shows the probability of being synchronizing for each version.

The results of another series of experiments is presented. These results

show the influence of increasing partiality in the automaton on the syn-

chronization and the length of the shortest synchronizing word for each

version. At the end of chapter we give some of benchmarks used to prove

the efficiency of our algorithm comparing to the other known algorithms.

The experiments have also allowed us to find two new infinite series of

slowly synchronizing partial deterministic automata. The results of our

18

Introduction

algorithm match the result of brute-force algorithm in [86]; the latter

algorithm is used only for one version of synchronization. Along with

experimental results and their discussion, the chapter also contains two

theoretical results: Proposition 3.3 and Proposition 3.4 that find the

exact length of the shortest synchronizing word for two series of slowly

synchronizing partial deterministic automata.

Chapter 4 studies the synchronization problems in nondetermin-

istic automata. Synchronization of nondeterministic automata is more

complicated than that of partial deterministic automata since the lat-

ter automata still have the property that at any moment of time, the

automaton can be in one state at most. In nondeterministic automata

this is not true in general. There are three different ways of formaliz-

ing synchronization for these automata. We present a technique able to

simulate these formalizations and to give answers to the above problems.

The main results of the chapter are Theorem 4.2, Theorem 4.3 and

Theorem 4.4 that prove the accuracy of this technique.

In complete deterministic automata the known upper bound of the

shortest synchronizing word is cubic in the number of states [23,67,81,82]

but on average any random DFA has a synchronizing word which length

is much less than this bound (see [43] for experimental results and [64]

for their partial theoretical explanation). This fact makes Catalano and

Jungers in [14] pose the following open problem:

In nondeterministic automata the upper bound for the length of the short-

est synchronizing word is known to be an exponential function in the

number of automaton’s states but what about the average length of the

shortest synchronizing word in different issues of synchronization?

This problem motivates our experimental research presented in

19

Introduction

Chapter 5. While the random generation of complete deterministic

automata is well understood, the random generation of nondeterministic

automata is not that obvious. We used two models for the random gener-

ation of NFAs. In each model we show how the average length is affected

by the parameters of the model. In each model, a series of experiments

has been done. Depending on the result of these experiments and using

some standard tools of probability theory we give an approximation to

the average length of the shortest synchronizing word in different issues

of NFAs synchronization.

The main achievements of the thesis

1. A systematic approach to the synchronization problems of partial

deterministic and nondeterministic automata based SAT-solver.

2. Proving the validity of presented models from the theoretical point

of view and using some benchmarks.

3. Two new series of slowly synchronizing partial deterministic au-

tomata.

4. Proving complexity of some problem related to synchronizing non-

deterministic automata.

5. Extensive experimental studies of synchronization problems for

partial deterministic and nondeterministic automata.

20

Introduction

Publications

The main results of the dissertation are published in the following papers:

1. Shabana, H., Volkov, M. V.: Using Sat solvers for synchroniza-

tion issues in partial deterministic automata. In: Mathematical

Optimization Theory and Operations Research, 18th Int. Conf.

MOTOR 2019. Communications in Computer and Information

Science (CCIS), volume 1090, 103–118. Springer, 2019.

2. Shabana, H.: Exact synchronization in partial deterministic au-

tomata. J. Phys.: Conf. Ser., Paper №012047. 1352:1–8, 2019.

3. Shabana, H., Volkov, M. V.: Using Sat solvers for synchronization

issues in nondeterministic automata. Siberian Electronic Math.

Reports, 15:1426–1442, 2018.

4. Shabana, H.: D2-synchronization in nondeterministic automata.

Ural Math. J., 4(2):99–110, 2018.

The first three of these papers are indexed by Scopus, and the third

is indexed also by Web of Science.

In the two papers coauthored with the supervisor, the supervisor

suggested the general approach while the author developed, justi-

fied and implemented all algorithms, designed and performed all

experiments, and analyzed experimental results.

In addition, the following computer programs were officially regis-

tered at the Russian Federal Service for Intellectual Property:

21

Introduction

5. Шабана Ханан Магди Дарвиш. NFAsync: Программный ком-

плекс для вычисления порога синхронизации недетерминиро-

ванных конечных автоматов. Свидетельство о государственной

регистрации программ для ЭВМ №2018663225 от 24 октября

2018. Дата приоритета 26 июня 2018. Правообладатель УрФУ.

6. Шабана Ханан Магди Дарвиш. Программа OSW для вычис-

ления оптимального синхронизирующего слова для частичного

детерминированного автомата. Свидетельство о государствен-

ной регистрации программ для ЭВМ №2019663027 от 08 октяб-

ря 2019. Дата приоритета 25 сентября 2019. Правообладатель

УрФУ.

Approbation at seminars and conferences

The main results of the dissertation were reported at the following con-

ferences and seminars:

1. Seminars of the Department of Algebra and Theoretical Computer

Science. Institute of Natural Sciences and Mathematics. Ural Fed-

eral University. Yekaterinburg, Russia.

2. International (52-nd) Youth School-Conference of Modern prob-

lems in mathematics and its applications, Yekaterinburg, Russia,

2020.

3. International conference of Mathematical Optimization Theory and

Operations Research (MOTOR). Obukhovskoe, Russia, 2019

22

Introduction

4. International Scientific and Practical Conference on Mathemati-

cal Modeling, Programming and Applied Mathematics (MMPAM),

Veliky Novgorod, Russia 2019.

5. International (51-st) Youth School-Conference of Modern problems

in mathematics and its applications, Yekaterinburg, Russia, 2019.

6. International conference (50-th) Youth School-Conference of Mod-

ern problems in mathematics and its applications, Yekaterinburg,

Russia, 2018.

7. International Conference and PhD-Master Summer School “Groups

and Graphs, Metrics and Manifolds”, Yekaterinburg, Russia, 2017.

Scientific novelty

All results in Chapters 2–5 of the dissertation are new. Chapter 1 collects

known results that are used in the thesis. For a few results in Chapter 1,

we were not able to locate their proofs in the literature; in such cases,

we have provided our proofs for the sake of completeness.

Degree of correctness of the results

All theoretical results presented in the thesis are supplied with rigorous

mathematical proofs. The adequacy of experimental results is confirmed

by the fact that our results match the ones obtained by other researchers

who used alternative approaches.

23

Introduction

Theoretical and practical importance

The dissertation is mainly of theoretical importance. The results ob-

tained in it can be used in the theory of finite automata and related areas

of theoretical computer science. Computer programs that we developed

can serve as prototypes of software products in those information tech-

nologies where different types of synchronizing automata are employed.

Research methods

The thesis utilizes methods from various branches of mathematics and

theoretical computer science: automata theory, propositional logic, prob-

ability theory, graph theory, and complexity theory.

Length and structure of thesis

The thesis consists of an introduction, five chapters, a conclusion, and

a bibliography of 91 titles; the total number of pages is 160. The text

excludes program codes and datasets, which are available under

https://github.com/hananshabana/SynchronizationChecker.

24

Introduction

Acknowledgments

I would like to thank my supervisor Prof. Dr. Mikhail Volkov for his

encouragement, professional guidance, and valuable support during my

studies. I wish to thank him for his careful editing that contributed

enormously to the production of this thesis.

I would also like to extend my thanks to my colleagues in the De-

partment of Algebra and Theoretical Computer Science for their help.

Last, but not least, I would like to thank my husband for his un-

derstanding and love during the years of my studies. His support and

encouragement were in the end what made this dissertation possible.

My parents and brothers receive my deepest gratitude and love for their

dedication and kind support.

This work has been supported by a grant from the Egyptian Govern-

ment and the Competitiveness Enhancement Program of Ural Federal

University, Ekaterinburg, Russia.

25

Chapter 1

Preliminaries

In this chapter we provide a formal introduction to the area of synchro-

nizing finite automata. As automata theory is relevant to computational

complexity theory, we start by giving a brief overview on the algorithms

and problem complexity. Then we present the definitions of finite au-

tomata and the concept of synchronizing words. We recall some classical

problems and results related to synchronization. We also provide proofs

for a few results whose proofs we did not manage to find in the literature.

1.1 Complexity classes

The complexity theory is concerned with the amount of computational

resources required to solve computational problems, and to classify prob-

lems according to their difficulty. Computational resources is standing

for computational time, and computational memory (space) used in solv-

ing the problem.

Definition 1.1. The time complexity fT
A (n) of an algorithm A for a

26

Preliminaries

problem H denotes the maximal time that A needs to solve an instance

of H with an input of size n.

The space complexity fS
A(n) denotes the maximal space that A needs

to solve an instance of H with input of size n.

It is difficult to determine the exact value of fT
A (n) or fS

A(n). There-

fore in analysis the complexity of an algorithm the asymptotic value of

fT
A (n) and fS

A(n) are used. Thus, Computational complexity of a prob-

lem H is the asymptotic of fT
A (n) and fS

A(n) where A is known to be the

best algorithm solve it.

The standard notation used to express the asymptotic complexity of

an algorithm is Big-O notation. If fT
A (n) = O(g(n)) this means that

there are positive constants c and k, such that

0 ≤ fT
A (n) ≤ cg(n) ∀n ≥ k,

where c, k are positive constants and do not depend on n

Definition 1.2. A decision problem is a problem that has a Yes/No an-

swer.

In the following we emphasize on some complexity classes of decisions

problems, more information about complexity theory and complexity

classes may be found in [66]

In classifying the problems according to the computational time we

have the classes such as P, NP, NP-hard, coNP, NP-complete,...etc

Definition 1.3. Complexity class P

A decision problem H is in the complexity class P (P-problem) if there is

an algorithm A can solve an instance of it with an input of size n within

fT
A (n) = O(nk); k is a positive integer i.e; p-problem can be solved in

27

Preliminaries

polynomial time.

Definition 1.4. The complexity class NP

A decision problem is in NP if its Yes answers can be checked in time

that is polynomial in the size of the input. In an NP problem the answer

may not be found in polynomial time but the claimed solution can be

verified quickly.

Definition 1.5. Polynomial Reduction

A problem H is reducible to a problem H ′ if there exists a polynomial-

time function f such that x ∈ H if and only if f(x) ∈ H ′. That reduction

is formally defined as (H ≤p H
′)

The definition of reduction implies the following lemma

Lemma 1.1. 1. If H ≤p H
′ and H ′ ∈ P then H ∈ P

2. If H ≤p H
′ and H ∈ NP then H ′ ∈ NP

Using reductions we can compare among problems.

Definition 1.6. NP-Hard

A decision problem H is NP-hard if, for every NP problem H ′, H ′ ≤p H.

One can say that a problem is NP-hard if it is as hard as the hardest

NP problem.

Definition 1.7. NP-Complete

A decision problem H is NP-Complete if, H is NP and NP-Hard.

The problem is NP-complete if it is NP and can be reduced from any

known NP-complete problem.

The previous classes of complexity were focused on the time needed to

solve the problem. But there is another resource that is needed for solving

28

Preliminaries

the problems; that is the space required to solve the given problem. In

order to classify the problems according to the space needed to solve

them, the following classes are arising:

Definition 1.8. PSPACE

A problem H is a PSPACE if it can solved by an algorithm A such

that fS
A(n) = O(n); memory complexity of A is expressed as polynomial

function of the input size of H.

Definition 1.9. A problem H is a PSPACE-hard if there is another prob-

lem H
′

that is known to be a PSPACE-complete such that H
′

can be

reduced to H

As with NP-hard problem, PSPACE-hard may not be in PSPACE.

The problem is a PSPACE-complete if it is PSPACE and PSPACE-hard.

1.2 Satisfiability

In this section, we will provide the definitions necessary to understand

the satisfiability problem (SAT):

SAT is a decision problem described as a Boolean formula. Any Boolean

formula consists of:

1. a set V of Boolean variables;

2. a set O of Boolean operators(or connectives) such as ¬ (NOT), ∧
(AND), ∨ (OR), →(Implication), ⇐⇒ (If and only if), etc;

Example 1.1. ϕ = (x1 ∧ x2) ∨ (¬x3 ⇔ x4). The Boolean formula ϕ has

V = {x1, x2, x3, x4} and O = {∧,∨,¬,⇔}.

29

Preliminaries

Given a Boolean formula ϕ(V,O), let τ : V → {0, 1} be a truth

assignment function that assigns a truth value to each variable in V . A

truth assignment for the formula ϕ is a set of values for the variables

of ϕ. A satisfying assignment for ϕ is the truth assignment that makes

it true (evaluated 1) and the Boolean formula is called satisfiable if it

has a satisfying assignment. Namely, the function τ extends to a map

ϕ 7→ {0, 1} (still denoted by τ) via the usual rules of propositional

calculus:

τ(¬x) = 1− τ(x), τ(x ∨ y) = max{τ(x), τ(y)},
τ(x ∧ y) = min{τ(x), τ(y)}, etc.

An instance of SAT is a pair (V, C), where V is a set of Boolean

variables and C is a collection of clauses over V . (A clause over V is a

disjunction of literals and a literal is either a variable in V or the negation

of a variable in V .) Thus, the a pair (V, C) is in a conjunction normal

form (CNF). As the clauses, variables, and literals are also formulas so

the clause is satisfiable if at least one of its literals is satisfied. A clause is

unsatisfiable if all its literals are not satisfiable. The question is to decide

whether or not there is an assignment on V that makes each clause in

C satisfiable? If the answer is yes, (V, C) is satisfiable (SAT), if no,

the instance is unsatisfiable (UNSAT). Formally SAT is described as the

following problem:

30

Preliminaries

SAT:

Input: A finite set V of Boolean variables and a finite set C of

clauses over V .

Output: SAT, if there is a truth assignment to all elements of V

satisfies every clause in C. UNSAT, otherwise.

By Cook’s classic theorem (see, e.g., [66, Theorem 8.2]), SAT is NP-

complete, and by the very definition of NP-completeness, every problem

in NP reduces to SAT.

1.3 Finite automata

A finite automaton is a 3-tuple A = (Q,Σ, δ), where

1. Q is a finite non-empty set called the state set which elements are

referred to as states,

2. Σ is a finite non-empty set called the input alphabet which elements

are referred to as input symbols or input letters,

3. δ is a map, called the transition function; not necessarily total,

that describes the action of elements of Σ at each state in Q.

The conventional concept of a finite automaton includes distinguishing

two non-empty subsets of Q consisting of initial and final states. As

these play no role in our considerations, the above simplified definition

well suffices for the purpose of the thesis.

Finite automata are usually classified into the following three cate-

gories according to the nature of their transition function.

31

Preliminaries

Definition 1.10. An automaton A = (Q,Σ, δ) is called a Complete De-

terministic Finite Automaton (DFA) if the transition function δ is a total

map Q×Σ→ Q, that is, δ(q, a) is defined for every pair (q, a) ∈ Q×Σ.

In symbols, ∀q ∈ Q, a ∈ Σ; |δ(q, a)| = 1. We interpret δ(q, a) as the next

state where the DFA would move to if it was at the state q and read the

symbol a.

Definition 1.11. An automaton A = (Q,Σ, δ) is called a Partial De-

terministic Finite Automaton (PFA) if the transition function δ is a

partial map Q × Σ → Q, that is, δ(q, a) is defined for some pairs

(q, a) ∈ Q × Σ but may be undefined for some other pairs. In sym-

bols, ∀q ∈ Q, a ∈ Σ; |δ(q, a)| 6 1. We again interpret δ(q, a), provided

it is defined, as the next state where the PFA would move to if it was at

the state q and read the symbol a, and we write δ(q, a) = ∅ to indicate

that δ(q, a) is undefined.

Definition 1.12. An automaton A = (Q,Σ, δ) is called a Nondeter-

ministic Finite Automaton (NFA) if the transition function δ is a map

Q × Σ → P(Q), where P(Q) is the power set of Q, that is, for every

state q ∈ Q and for every symbol a ∈ Σ, the expression δ(q, a) is not a

single state, but rather a subset of states. If this subset is non-empty, we

interpret it as the set of all possible states where the NFA could move

to if it was at the state q and read the symbol a. If δ(q, a) = ∅, we say

that the action of a is undefined at q.

A finite automaton A = (Q,Σ, δ) is conveniently represented as a

directed graphGA = (Q,E). Thus, the vertices ofGA are just the states

of A . The directed edges of E are labelled by the elements of Σ defining

the transitions between states. The graph GA is called the underlying

graph of the automaton A . The graph GA has an edge labelled by a

32

Preliminaries

from the vertex q to the vertex q′ if and only if q′ ∈ δ(q, a)} in A , so we

have

E = {q a−→ q′ | q, q′ ∈ Q, a ∈ Σ, q′ ∈ δ(q, a)}.

Figure 1.1 illustrates the above three categories of finite automata.

0

1 2

a

b
a

b

b

a

(a) DFA

0

12

ab

b

a

b

a

(b) NFA

0 12
a

b
a, ba

(c) PFA

Figure 1.1: Different categories of finite automata

Let Σ be an alphabet, a word over Σ is a finite sequence of symbols

from Σ. We do not exclude the empty sequence from this definition;

that is, we allow the empty word ε. The set of all words over Σ including

ε is denoted by Σ∗ and is referred to as the free monoid over Σ. If

w = a1 · · · aℓ with a1, . . . , aℓ ∈ Σ is a non-empty word over Σ, the

number ℓ is said to be the length of w and is denoted by |w|. The length

33

Preliminaries

of the empty word is defined to be 0. The set of all words of a given

length ℓ over Σ is denoted by Σℓ.

Given an automaton A = (Q,Σ, δ), the transition function extends

to a function P(Q)×Σ∗→ P(Q), still denoted δ, in the following induc-

tive way: for every subset R ⊆ Q and every word w ∈ Σ∗, we set

δ(R,w) :=

{

R if w = ε,
⋃

q∈δ(R,v) δ(q, a) if w = va with v ∈ Σ∗ and a ∈ Σ.

(1.1)

(Here the set δ(R, v) is defined by the induction assumption since v is

shorter than w.) In the following, we often write q.w for δ(q, w) and R.w

for δ(R,w) whenever we deal with a fixed automaton A = (Q,Σ, δ).

If the automaton possesses an input word that takes it from any

state to a specific state, this special word is called a synchronizing word

or a reset word. The automaton which has such a word is called syn-

chronizing automaton. The formal definitions of a synchronizing word

and a synchronizing automaton depend on the class of the investigated

automaton. Let us start with DFAs.

1.4 Synchronizing DFA

Definition 1.13. (Synchronizing DFA) A DFA A = (Q,Σ, δ) is synchro-

nizing if and only if it has a word w ∈ Σ∗ such that

∀q ∈ Q, q.w = Q.w (1.2)

Each word w that satisfies the condition (1.2) is called a synchronizing

or reset word for the automaton A .

34

Preliminaries

According to Definition 1.13, after the synchronizing word has been

applied to the automaton, the current state of the automaton is known.

At this point we can say that the automaton is completely under control

as it is possible to force it into the desirable mode of operation.

Not all DFAs are synchronizing so the following SYN-DFA decision

problem is the first problem that arises in this area.

SYN-DFA

Input: Given a DFA A = (Q,Σ, δ), is A synchronizing?

Output: Yes, if there is a synchronizing word for it. No, otherwise.

The SYN-DFA can be decided with the help of an auxiliary automa-

ton called the power automaton. Given an automaton A = (Q,Σ, δ), the

power automaton P(A) = (S,Σ, δ) where S is the set of all nonempty

subsets of Q; |S| = 2|Q|−1, and δ is extended to S×Σ as in (1.1). SYN-

DFA Problem is reduced to the reachability problem in the underlying

graph of the automaton P(A). The automaton A is synchronizing if

and only if the graph GP(A) has a path starting at the vertex that repre-

sents the set Q and ending at a singleton vertex. This reduction is shown

in Figures 1.2, and 1.3 where Figure 1.3 is the power automaton of the

automaton in Figure 1.2. Although this process is conceptually simple, it

is inefficient as the size of the power automaton P(A) is exponentially

larger than that of A .

Another technique used to solve SYN-DFA Problem and makes it

easier was introduced independently by Černý [15] and Liu [53]. This

technique depends on the pair-wise synchronization as in the following

proposition.

Proposition 1.1. {pair-wise synchronization} A DFA A = (Q,Σ, δ)

35

Preliminaries

is synchronizing if and only if any pair of states p, q ∈ Q can be syn-

chronized, that is,

∀{p, q | p 6= q} ⊂ Q, ∃w ∈ Σ∗, q.w = p.w

The pair-wise synchronization condition based on the property that

the given automaton is complete. This condition can be easily checked

by the construction of another auxiliary automaton called the pair au-

tomaton or the square automaton.

Given an automaton A = (Q,Σ, δ), its pair automaton is the au-

tomaton A [2] = (Q[2],Σ, δ[2]). The set of states Q[2] is the set of all 2-

element and 1-element subsets of Q; that is, Q[2] := {{p, q} | p, q ∈ Q},
and the transition function δ[2] is defined as follows:

δ[2]({p, q}, a) := {δ(p, a), δ(q, a)}.

The automaton A has a synchronizing word if and only if all the follow-

ing
(|Q|

2

)

reachability problems have a Yes answer.

Let X be the set of all 2-element subsets of Q. For each element e in X,

is there a path from e to an element in Q?

The pair-wise synchronization condition may be verified by using

backtracking; running Breadth First Search (BFS) algorithm in the in-

verse automaton iA [2] of A [2]. See [17] for a detailed presentation of

BFS technique. The inverse automaton iN (Q,Σ, δi) of the automaton

N (Q,Σ, δ) is the automaton whose transition function has the form

δi(q, a) = {p | δ(p, a) = q}. The automaton is synchronizing if and only

if the BFS starting from the set Q reaches every element of the set X.

For an illustration, look at Figure 1.4, which shows the pair automaton

36

Preliminaries

of the DFA in Figure 1.2.

0

1 2

a

ba

b

b

a

Figure 1.2: A DFA with Q := {0, 1, 2} and Σ := {a, b}

0

1

2

012

01

12 02

a

b

a

ba

b

b

a

b

a

b

a a, b

Figure 1.3: Power automaton of the automaton in Figure 1.2

37

Preliminaries

0

1

2

01

12 02

a

b

a

ba

b

b

a

b

a a, b

Figure 1.4: Pair automaton of the automaton in Figure 1.2

In the following we mention a significant phenomenon of the strongly

connected synchronizing DFAs

Definition 1.14. A directed graph G = (V, E) is called strongly connected

if

for any s, t ∈ V, ∃ (s
path−−→ t) ∧ (t

path−−→ s)

Definition 1.15. A strongly connected automaton is an automaton such

that its underlying graph is a strongly connected graph.

The following lemma comes from the straightforward application of

Definitions 1.14 and 1.15.

Lemma 1.2. Synchronizing strongly connected DFA can be synchronized

to any state.

As soon as verifying that the automaton is synchronizing, the first

question is: what is the synchronizing word for it? Since the automaton

38

Preliminaries

is synchronizing, then the pair-wise condition is verified. A synchronizing

word for the automaton is constructed by finding the synchronizing word

for a one pair then, this word can be appended to the synchronizing

word of another pair of states till reaching to the synchronizing word

of the last pair. This process is illustrated in Algorithm 1. Since the

automaton A [2] has |Q|(|Q|+1)
2 states, Algorithm 1, solves this question in

O(|Q|2 · |Σ|) time and uses O(|Q|2) working space. This algorithm is

considered in [22].

Input : A = (Q,Σ, δ)

Output: a synchronizing word w for A

construct A [2]; Q[2] = X
⋃

Q

initialization

P ← X

w ← ε

while P 6= ∅ do

find υ ∈ P and u ∈ Σ∗ with δ[2](υ, u) ∈ Q
w ← wu

P ← δ(P, u)
⋂

X

end

return w
Algorithm 1: Finding a synchronizing word for a DFA.

On each loop, the algorithm appends the word u of length O(|Q|2),
and the number of loops is O(|Q|). therefore the synchronizing word w

returned by Algorithm 1 has length O(|Q|3).

39

Preliminaries

1.5 NFA Synchronization

In this section we overview different formalizations of synchronization in

nondeterministic automata. Section 1.4 introduced the synchronization

of DFAs. Synchronization of such automata has a unique formalization

as described in Definition 1.13. This is due to the fact that DFAs are

fully specified in the sense that for each q ∈ Q, a ∈ Σ we have |q.a| = 1.

In contrast, NFAs are not fully specified; the knowledge of the current

state and the incoming input is insufficient to uniquely determine the

next state. Accordingly, the concept of synchronization for DFAs was

extended to NFAs in several non-equivalent ways. The following three

nowadays popular versions were suggested and analyzed in [34] in 1999

(although, in an implicit form, some of them appeared in the literature

much earlier, see, e.g., [11, 31]). A given NFA may be synchronizing

with respect to one version but not for another version.

Definition 1.16. Let A = (Q,Σ, δ) be an NFA. A word w ∈ Σ∗ is called

1. D1-synchronizing word if there is a state p ∈ Q such that q.w =

{p} for all q ∈ Q;

2. D2-synchronizing word if q.w = q′.w for all q, q′ ∈ Q;

3. D3-synchronizing word if
⋂

q∈Q q.w 6= ∅.

Definition 1.17. An NFA is called Di-synchronizing, i = 1, 2, 3, if it has

a Di-synchronizing word.

These definitions yield the following properties of Di-synchronizing

words:

40

Preliminaries

Lemma 1.3. 1. A D1-synchronizing word or D3-synchronizing word

is defined at each state.

2. A D2-synchronizing word is either defined at each state or unde-

fined at each state.

3. Every D1-synchronizing word is both D2-synchronizing word and

D3-synchronizing word; every D2-synchronizing word defined at

each state is D3-synchronizing word.

For brevity, we will use the acronym sw for “synchronizing word” and

sws for “synchronizing words”. For an illustration of the three versions

for NFAs synchronization, consider the NFA A in Figure 1.5. It is easy

to see that the word abc is a D1-sw, since 0.abc = 1.abc = 2.abc; the

word ab is a D2-sw since 0.ab = 1.ab = 2.ab, but not D1-sw; and the

word a is a D3-sw since
⋂

0≤i≤2(i.a) 6= ∅, but not a D2-sw.

0

12

a

b
b

a

a, c

a

a, c

Figure 1.5: A NFA with Q = {0, 1, 2} and Σ = {a, b, c}

We also mention in passing thatDi-synchronization gets a very trans-

parent meaning within a standard matrix representation of NFAs. In

41

Preliminaries

this representation, an NFA A = (Q,Σ, δ) becomes a collection of |Σ|
Boolean Q × Q-matrices where to each input symbol a ∈ Σ, a matrix

M(a) is assigned such that the (q, q′)-entry of M(a) is 1 if q′ ∈ δ(q, a)

and 0 otherwise. Then it is not hard to realize that the automaton A

is D3-synchronizing if and only if some product of the matrices M(a),

a ∈ Σ, has a column consisting entirely of 1s. A is D2-synchronizing

if in some product of the matrices M(a), a ∈ Σ, each column consists

either entirely of 1s or entirely of 0s. A is D1-synchronizing if and only

if some product of the matrices M(a), a ∈ Σ, has an exactly one column

consisting entirely of 1s and all other columns with all entires of 0s.

Some information about Di-synchronization, i = 1, 2, 3, can be found

in Chapter 8 of Ito’s monograph [35]. Recently, some aspects of D3-

synchronization have been considered in [7, 12, 19, 28, 80]. (The pa-

pers [7, 28] use the language of matrices rather than that of automata.)

According to Definitions 1.10, 1.12, 1.13, 1.16 and 1.17, the following

lemma is easy to verify

Lemma 1.4. For a DFA, the notions of a D1-synchronizing word, a

D2-synchronizing word and a D3-synchronizing word coincide with each

other and with the notion of a synchronizing word as defined in Sec-

tion 1.4

D3-synchronization is the most general version of synchronization for

NFAs amongst those considered in the literature so far. Besides that, it

reasonably reflects the basic nature of non-determinism. Indeed, if an

NFA A = (Q,Σ, δ) is used as an acceptor, we designate some states

in Q as initial and final and then say that A accepts a word w ∈ Σ∗

whenever there exists a path labeled w that starts at an initial state and

terminates at a final state. The definition of a D3-synchronizing word

42

Preliminaries

very much resembles this concept: a word w ∈ Σ∗ is D3-synchronizing

whenever for each q ∈ Q, there exists a path labeled w that starts at

q and terminates at a certain common state, independent of q. In both

cases we do not require that a starting state uniquely determines the

path labeled w nor that every path labeled w with a given starting state

should arrive at a final/common state.

To understand the ‘physical meaning’ of D2, imagine a big quantity

of identical NFAs which get the same input sequence and work on it

in parallel. If the sequence constitutes a D2-synchronizing word, then

after consuming the input, the NFAs will demonstrate identical (that is,

synchronous) behaviour, even though originally they all might have been

in different states that were unknown to us.

Another situation that the D2 synchronization appears is in the game

theory, since it shrink the uncertainty on the current state of the game.

Consider a player is in a set of possible states S1. If we have a D2-

synchronizing word that sends all states to a set of states S2 with |S2| <
|S1|, then the player has gained information since the number of possible

states given what he knows has decreased.

The equality q.w = q′.w for all q, q′ ∈ Q does not imply that the ac-

tion of w must be everywhere defined. Hence the word that is undefined

everywhere is also a D2-synchronizing word. This special word is called

a mortal word for the given NFA.

In the following we show the relation between various versions of syn-

chronization for NFAs and Complete Nondeterministic Automata (CN-

FAs). Any CNFA is an NFA such that the current set of possible states

is always nonempty:

∀ q ∈ Q, a ∈ Σ, q.a 6= ∅.

43

Preliminaries

Definition 1.18. Let A = (Q,Σ, δ) be an NFA with |Q| = n > 1. For

i ∈ {1, 2, 3},

1. Di is the class of all Di-synchronizing automata,

2. CDi is the class of all complete Di-synchronizing automata,

3. Di(A) is the set of Di-synchronizing words for A ,

4. di(n) = max{Di(A) | A ∈ Di},

5. cdi(n) = max{Di(A) | A ∈ CDi}.

The next lemmas introduce the relation between the three versions

of synchronization for NFA and CNFA

Lemma 1.5. For any CNFA A ,

D1(A) ⊆ D2(A) ⊆ D3(A).

Lemma 1.6. For any NFA A ,

D1(A) ⊆ D2(A) ∩D3(A).

1.6 Complexity of synchronization

in finite automata

Checking synchronization of a DFA is fast and easy. In contrast checking

synchronization for a given NFA or a PFA is hard and takes more time.

The following result was found in [75, 76] and later rediscovered and

strengthened in [58].

44

Preliminaries

Theorem 1.1. [58, 75, 76] The problems of checking whether or not a

given NFA is D1-, D2- or D3-synchronizing are PSPACE-complete.

The PSPACE-completeness result even holds for NFAs with only one

ambiguous transition or only one undefined transition and, even more

surprisingly, also for PFAs [58, 60].

1.7 Shortest synchronizing word

For evident reasons of economy, it is useful to have synchronizing words

as short as possible. This motivated a large number of papers devoted

to the study of bounds for the length of the shortest synchronizing word

of synchronizing automaton. In the following two sections we survey the

basic known results of how these bounds depend on the number of states

for DFAs and NFAs.

1.7.1 Shortest synchronizing word for DFAs

Černý [15] constructed a series of n-states binary DFAs (binary means

that |Σ| = 2). Each automaton in this series is known as the Černý

automaton Cn, where n > 1. The definition of the automaton Cn is

clear from Figure 1.6. Černý proved that the word w = (abn−1)n−2a with

|w| = (n − 1)2 is the shortest synchronizing word for Cn. This result

made him propose the most famous conjecture in the synchronization

theory. It is known in literature as the Černý conjecture.

Conjecture 1.1. [15] Any synchronizing DFA with n states has a syn-

chronizing word of length at most (n− 1)2.

45

Preliminaries

The conjecture resists researchers’ efforts for more than 50 years. The

best upper bound achieved so far is cubic in n; it is due to Shitov [81]

who has slightly improved the bound established by Szyku la [82]. In

turn, Szyku la’s bound is only slightly better than the upper bound n3−n
6

established by Pin [67] and Frankl [23] approx. 38 years ago.

0 1n− 1

2n− 2 . . .

a, b
a

b

a
bb

b

a

a
b

Figure 1.6: Černý automaton Cn

Another problem that is related to the length of the synchronizing

word is the ℓ-Syn-Word problem:

ℓ-Syn-Word: Given a synchronizing automaton A and a positive

integer ℓ, is it true that A has a synchronizing word of length ℓ?

Unfortunately, this problem is computationally hard. Eppstein [22]

proved that the ℓ-Syn-Word problem is NP-complete by a polynomial

reduction from 3-SAT. In [56, 78], it was proved that the problem of

deciding whether the length of the shortest synchronizing word is equal to

ℓ is both NP-hard and coNP-hard. So we can say that under the standard

assumptions of complexity theory even non-deterministic algorithm can

not find the length of the shortest synchronizing word in polynomial

time.

The exact complexity of such problem has been determined by Gaw-

rychowski [24] and, independently, by Olschewski and Ummels [65]. It

46

Preliminaries

turns out that the appropriate complexity class is DP (Difference Poly-

nomial Time) introduced by Papadimitriou [66]; DP consists of lan-

guages of the form L1 ∩L2 where L1 is a language from NP and L2 is a

language in coNP. A ‘standard’ DP-complete problem is SAT-UNSAT

whose instance is a pair of clause systems ψ, χ, say, and whose question

is whether ψ is satisfiable and χ is unsatisfiable.

1.7.2 Shortest synchronizing word for NFA

The problem of finding the shortest Di-synchronizing word for a Di-

synchronizing NFA or even the ℓ-syn word that was described for DFAs

is computationally harder than that for a DFA. In DFAs the length of

the shortest synchronizing word is bounded by polynomial function. On

the contrary, there is no polynomial in n upper bound on the length

of synchronizing words for synchronizing NFA with n states. Burkhard

in [11] introduced D1-synchronization of CNFAs, and proved that:

n ≥ 1, cd1(n) = 2n − n− 1.

In [25, 37, 57], it was proved that

2n − n ≤ d1(n) ≤ Θ(2n)

2n − n− 1 ≤ d2(n) ≤ Θ(2n)

Ω(3n/3) ≤ d3(n) ≤ Θ(n24n/3).

See Section 1.5 for the notions of d1(n), d2(n), and d3(n).

47

Preliminaries

1.8 Careful synchronization

Another version of synchronization for NFAs was introduced in [36, 75]

and systematically studied in [55, 57–60].1 An NFA A = (Q,Σ, δ) is

called carefully synchronizing if there is a word w = a1 · · · aℓ, with

a1, . . . , aℓ ∈ Σ, that satisfies the condition (C), being the conjunction of

(C1)–(C3) below:

(C1): the letter a1 is defined at every state in Q;

(C2): the letter at with 1 < t ≤ ℓ is defined at each state inQ.a1 · · · at−1;

(C3): |Q.w| = 1.

Any w satisfying (C) is called a carefully synchronizing word for A .

Thus, when a carefully synchronizing word is applied at any state in

Q, no undefined transition occurs during the course of application. In

the literature, Careful synchronization is studied for PFAs. Practically

careful synchronization of PFAs is relevant in numerous applications. We

mention two of these applications:

Carefully synchronizing automata may be used in industrial robotics

as DFAs synchronizing automata. See page 7 of the introduction for

a detailed discussion and an illustrative example for the application of

DFAs in such industry. Now imagine that the objects to be oriented or

sorted have a fragile side that could be damaged if hitting an obstacle. In

order to prevent any damage, we have to forbid ‘dangerous’ transitions

in the automaton modelling the orienter/sorter so that the automaton

becomes partial and the obstacle sequences must correspond to carefully

1It should be mentioned that Rystsov [75] used the term “synchronizing word” for what we call
“carefully synchronizing word”, following Martyugin [55, 57–60]

48

Preliminaries

synchronizing words. (Actually, the term ‘careful synchronization’ has

been selected with this application in mind.) For an illustration, we con-

sider the following example from Martyugin’s PhD thesis [54]. Suppose

the part to be oriented has the shape shown in Figure 1.7. The part

has four faces, over two of them there are protrusions, and the corner

between them is fragile. Assume that the part hit the conveyor randomly

and should be oriented correctly. Suppose that there are four possible

orientations of the part shown in Figure 1.8, and for assembly, the part

must be oriented with the tabs to the left and up (position 2 from the

left in the Figure 1.8). To design the orienter, we will use a conveyor

that contains a certain number of obstacles that the parts will have to

overcome while moving along the conveyor. We will use two types of ob-

stacles: tall (T) and short(S). If the part, overcoming a short obstacle lies

on the face without a protrusion (positions 2 and 3 in the Figure 1.8), it

does not turn over, and if it lies on the face with a protrusion (positions

1 and 4 in Figure 1.8), it turns 90 degrees clockwise. Overcoming a tall

obstacle, the part is always turned clockwise by 90 degrees. However, if

the part lies with the fragile side forward (position 4 in Figure 1.8), then

the tall obstacle will hit the part, touch its fragile side and break it. This

situation is not acceptable, so a tall obstacle should not meet the part in

position 4. Thus, we can construct the orienter as an PFA automaton A

whose state set consists of the different orientations, whose input alpha-

bet is {T, S}, and whose transition function δ is defined by the action

of each obstacle on different orientations of the part. This automaton is

described in Figure 1.9 and It is easy to verify that this automaton is

carefully synchronizing and the sequence S–S–T–S–T–S–S of obstacles is

a carefully synchronizing word.

49

Preliminaries

❅❅❅❅

Figure 1.7: Incoming part

❅❅❅❅

❅ ❅❅ ❅ ❅❅❅❅

❅❅ ❅❅

Figure 1.8: Possible orientations of the incoming part

T, S

T

T

S

S

S
Figure 1.9: Carefully synchronizing orienter

Second example relates to so-called synchronized codes. See page 10

of the introduction for a detailed discussion for the application of syn-

chronizing automata in coding theory. Recall that a prefix code over a

finite alphabet Σ is a set X of words in Σ∗ such that no word of X is

50

Preliminaries

a prefix of another word of X. Decoding of a finite prefix code X over

Σ can be implemented by a finite deterministic automaton AX whose

state Q is the set of all proper prefixes of the words in X (including the

empty word ε) and whose transitions are defined as follows: for q ∈ Q
and a ∈ Σ,

q.a :=

qa if qa is a proper prefix of a word of X,

ε if qa ∈ X,
undefined otherwise.

In general, AX is a PFA (it is complete if and only if the code X is

not contained in another prefix code over Σ). It can be shown that if

AX is carefully synchronizing, the code X has a very useful property:

whenever a loss of synchronization between the decoder and the coder

occurs (because of a channel error), it suffices to transmit a carefully

synchronizing word w of AX such that w sends all states in Q to the

state ε to ensure that the following symbols will be decoded correctly.

The synchronizing code {011, 001, 10, 110, 111} and its automaton are

illustrated in Figures 1.10 and 1.11. The word 11011110"is a carefully

synchronizing word.

51

Preliminaries

ε

0

00

001

01

011

1

10 11

110 111

Figure 1.10: The tree of the code {011, 001, 10, 110, 111}

ε 01

11

01

00

0
1

0

1

1

10

1 0, 1

Figure 1.11: The automaton of the code in Figure 1.10

On the theoretical side, every carefully synchronizing word is clearly

D1-synchronizing but the converse is not true in general; moreover, a D1-

synchronizing NFA may admit no carefully synchronizing word. Thus,

if we denote by Di, i = 1, 3, the class of all Di-synchronizing NFAs, by

D∗2 the class of all D2-synchronizing NFAs with D2-synchronizing word

defined at each state, and by C the class of all carefully synchronizing

NFAs, we have the following strict inclusions:

52

Preliminaries

C ⊂ D1 ⊂ D∗2 ⊂ D3.

It is easy to see that each of the conditions (C), D1, D3 leads to the same

notion when restricted to PFAs. As for D2-synchronization, if a word

w is D2-synchronizing for a PFA A , then w carefully synchronizes A

whenever w is defined at each state. Otherwise w is nowhere defined by

Lemma 1.3b, and such mortal words are nothing but usual synchroniz-

ing words for the DFA obtained from A by adding a new sink state and

making all transitions undefined in A lead to this sink state. Synchro-

nization of DFAs with a sink state is relatively well understood (see [74]),

and therefore, we may conclude that D2-synchronization also reduces to

careful synchronization in the realm of PFAs. On the other hand, there

exists a simple transformation that converts every NFA A = (Q,Σ) into

a PFA B = (Q,Σ′) such that A is D3-synchronizing if and only if so

is B and the minimum lengths of D3-synchronizing words for A and B

are equal; see [35, Lemma 8.3.8] and [37, Lemma 3]. These observations

demonstrate that from the viewpoint of optimal synchronization, study-

ing carefully synchronizing words for PFAs may provide both lower and

upper bounds applicable to arbitrary NFAs and all aforementioned kinds

of synchronization.

1.9 Exact synchronization

Let A = (Q,Σ, δ) be an NFA. A word w ∈ Σ∗ is called exactly syn-

chronizing for A if there exists a state p ∈ Q such that for each state

q ∈ Q, either w maps q to p or w is undefined at q, and there is at

least one state at which w is defined. That is, a word is called exactly

53

Preliminaries

synchronizing if it maps the whole set of states of the automaton to a

set of size exactly one. Thus, a word w is exactly synchronizing for the

automaton A if it satisfies the condition (C3) from conditions described

in the definition of careful synchronization: |Q.w| = 1. Clearly, a care-

fully synchronizing word is exactly synchronizing but the converse needs

not be true. A NFA is said to be exactly synchronizing if it possesses an

exactly synchronizing word.

Similarly to careful synchronization, exact synchronization has inter-

esting connections and numerous applications. In particular, exact syn-

chronization is relevant in biologically inspired computing where exactly

synchronizing words appear under the name ‘constants’ in the study of

so-called splicing systems, see [10]. Another cause of interest in exact

synchronization is provided by so-called ǫ-machines, important models

in the theory of stationary information sources, see [84, 85].

1.10 Checking careful synchronization

It was proved by Martyugin in [58, 60] that the problem of checking the

careful synchronization for a given PFAs is PSPACE-complete. This

problem remain PSPACE-complete also for strongly connected PFAs.

This result was mentioned in [87] without proof. To the sake of com-

pleteness we provide a proof here.

Theorem 1.2. Checking careful synchronization for a given strongly

connected PFA is PSPACE-complete.

Proof. Given a strongly connected DFA A = (Q, {a, b}, δ). Take S :=

{q1, . . . , qk} ⊆ Q. Construct a PFA C = (P, {a, b, c, d}, γ) such that

54

Preliminaries

P := Q
⋃

{Y, Z} and γ is defined as follows.

For any e ∈ {a, b},

γ(q, e) :=

δ(q, e) if q ∈ Q
Z if q = Z

undefined if q = Y

γ(q, c) :=

q1 if q /∈ S
qk if q = Y

q otherwise.

γ(q, d) :=

Y if q ∈ {Y, Z}
Z if q = qk

undefined otherwise.

The graphical representation of the automaton C is shown in

Figure 1.12.

The automaton C is strongly connected PFA. Moreover, C is carefully

synchronizing if and only if the set S is synchronizing set in A . Let

w ∈ {a, b}∗ be a synchronizing word for the set S. Hence the word

w′ = cwdd is a carefully synchronizing word for C . It is defined at all

states and sends all of them to Y . If C is carefully synchronizing, any

carefully synchronizing word for C must start with the letter c as it the

only one that is defined at all states in C . The application of the letter

c results in S
⋃

Z. The letter c can not be applied at this stage as it

works as an identity function on S
⋃

Z. The letter d is not defined at all

55

Preliminaries

elements in S. Thus we have to apply only a sequence of the letters a

and b. Let w ∈ {a, b}∗ be that sequence. The word w must send S to

qk (the only state from S at which d is defined). This proves that the

word w ∈ {a, b}∗ is a synchronizing word for S.

q1 q2 . . . qk

qk+1 . . . qn

Y Z a, b, c
d

d

d

c
c

c

c c

c

Q \ S

S

Figure 1.12: The automaton C

1.11 Testing exact synchronization

For strongly connected PFAs, exact synchronization behaves similarly

to synchronization of DFAs. In particular, checking whether a given

strongly connected PFA is exactly synchronizing can be done in polyno-

mial time, and for strongly connected exactly synchronizing PFAs with

n states, there exits a cubic in n upper bound on the minimum length of

exactly synchronizing words. Both these facts are straightforward con-

sequences of the following observation by Travers and Crutchfield [84]:

56

Preliminaries

Proposition 1.2. [84] A strongly connected PFA A = (Q,Σ, δ) is

exactly synchronizing if and only if for every pair (q, q′) ∈ Q×Q there

exists a word w such that either q.w = q′.w or w is defined at one of the

states q and q′ and undefined at the other.

Unfortunately, sufficiency in Proposition 1.2 does not extend to gen-

eral PFAs. In the absence of strong connectivity, properties of exact

synchronization became rather similar to those of careful synchroniza-

tion. The following facts were established by Berlinkov [4, Corollary 1]:

Proposition 1.3. [4] Testing a given PFA with 2 input letters for exact

synchronization is PSPACE-complete. There is a series of n-state PFAs

with 2 input letters with the minimum length of exactly synchronizing

words of magnitude 2Ω(n).

In the following results we complement those in [84].

Theorem 1.3. Given a strongly connected PFA B and a positive integer

ℓ, checking whether or not B has an exactly synchronizing word of length

ℓ is NP-complete.

Proof. Given a strongly connected DFA A = (Q, {a, b}, δ) such that

Q := {q0, . . . , qn−1}. We construct a PFA B = (P, {a, b, c, d}, γ) for

which P := Q
⋃

{p0, . . . , pn−1} and γ is defined as follows.

For any e ∈ {a, b}, γ(q, e) :=

{

δ(q, e) if q ∈ Q;

p(i+1) mod n if q = pi.

γ(q, c) :=

{

qi if q = pi;

undefined otherwise.

57

Preliminaries

γ(q, d) :=

pn−1 if q = qn−1;

pi if q = pi;

undefined otherwise.

The automaton B is strongly connected. If the automaton A is

synchronizing then B is exactly synchronizing. Let w ∈ {a, b}∗ be a

synchronizing word for A . The word v = cw is an exactly synchronizing

word for B. Any exactly synchronizing word v for B must contain the

factor w that is a synchronizing word for A . If the length of w is ℓ then

the length of v is at least ℓ+1. The problem of determining if a DFA has

a synchronizing word of length ℓ is known as NP-complete then the same

problem for the PFA is NP-complete. The length of v is still polynomial

and bounded by O(n3)

An automaton A = (Q,Σ) is said to be 0-automaton if it has a

0-state; a state q ∈ Q such that q.a = q for all a ∈ Σ.

Theorem 1.4. Checking exact synchronization for a given 0-PFA can

be done in polynomial time.

Proof. Given a 0-PFA A = (Q,Σ, δ) where Y ∈ Q is a 0-state. We can

convert it to a DFA B = (Q,Σ, γ) as follows.

For any a ∈ Σ,

γ(q, a) :=

δ(q, a) if |δ(q, a)| > 0;

Y if |δ(q, a)| = 0;

Y if q = Y.

The automaton A is exactly synchronizing if and only if the automa-

ton B is synchronizing. Moreover, the synchronizing word for A is an

exactly synchronizing word for B. Hence the theorem is proved.

58

Preliminaries

The proof of the next result is an easy adaptation of the well-known

reduction by Eppstein [22] and is therefore omitted.

Theorem 1.5. Checking whether or not a given 0-PFA has an exactly

synchronizing word of a given length ℓ is NP-complete.

Corollary 1.1. Checking whether or not a given 0-NFA has an exactly

synchronizing word is PSPACE-complete.

Proof. Starting with 0-NFA, we construct 0-CNFA as illustrated in The-

orem 1.4. However, here the original NFA is exact synchronizing if and

only if the new generated 0-CNFA has a D1-synchronizing word which

is known as PSPACE-complete.

Theorem 1.6. A strongly connected PFA A = (Q,Σ, δ) with exactly

one undefined transition is exactly synchronizing by a word of length at

most n(n− 1)/2 where n = |Q|.

Proof. Let q ∈ Q and a ∈ Σ be such that q.a is undefined. Then

|Q.a| < n. If |Q.a| = 1, we are done as the letter a becomes an exactly

synchronizing word of length 1. If |Q.a| = k > 1, we take a shortest

word w1 such that Q.aw1 contains q. Such a word w1 exists because A

is strongly connected, and it is easy to see that the length of w1 is at

most n − k. Now we apply the letter a again. Then |Q.aw1a| < k. If

|Q.aw1a| = 1, we are done as aw1a becomes an exactly synchronizing

word of length at most 1 + (n − k) + 1; if |Q.aw1a| = m > 1, we take

a shortest word w2 such that Q.aw1aw2 contains q; the length of w2

is at most n −m. Repeating the process, we eventually get an exactly

synchronizing word of the form aw1aw2 . . . awsa where s < n − 1 and

one can calculate that the length of this word does not exceed 1 + 1 +

59

Preliminaries

1 + 2 + 1 + 3 + ... + 1 + (n − 2) + 1 = (n − 2)(n − 1)/2 + (n − 1)

= (n− 1)[(n− 2)/2 + 1] = n(n− 1)/2.

The bound established in Theorem 1.6 is tight. The corresponding

series of strongly connected PFAs with exactly one undefined transition

can be obtained by removing 0 in Rystsov’s series of synchronizing au-

tomata with 0 from [74].

From the above discussion of different versions related to NFAs syn-

chronization. We may conclude that the problems of determining whether

or not a given NFA or even PFA is synchronizing (with respect to any ver-

sion of synchronization) and of finding its shortest synchronizing word

turn out to be quite difficult. It is known that the first problem is

PSPACE-complete and that the minimum length of synchronizing word

for synchronizing NFA can be exponential as a function of the number

of states. Thus, one has to use some tools that have proved to be effi-

cient for dealing with computationally hard problems. In the following

chapters, we employ a satisfiability solver as such a tool.

60

Chapter 2

Synchronization of PFAs

In this chapter we consider two problems of PFAs synchronization. We

call them as CSW and ESW for carefully and exactly synchronizing words

respectively.

2.1 Carefully synchronizing words

CSW: the existence of a carefully synchronizing word of a given

length

Input: a PFA A and a positive integer ℓ (given in unary);

Output: YES if A has a carefully synchronizing word of length

ℓ; NO otherwise.

61

Synchronization of PFAs

Remark 2.1. We have to assume that the integer ℓ is given in unary

because with ℓ given in binary, a polynomial time reduction from CSW to

SAT is hardly possible. Indeed, it easily follows from [58] that the version

of CSW in which the integer parameter is given in binary is PSPACE-

hard, and the existence of a polynomial reduction from a PSPACE-hard

problem to SAT would imply that the polynomial hierarchy collapses at

level 1. In contrast, the version of CSW with the unary integer parameter

is easily seen to belong to NP: given an instance (A = (Q,Σ, δ), ℓ) of

CSW in this setting, guessing a word w ∈ Σ∗ of length ℓ is legitimate.

Then one just checks whether or not w is carefully synchronizing for A ,

and time spent for this check is clearly polynomial in the size of (A , ℓ).

Given an arbitrary instance (A , ℓ) of CSW, we construct an instance

(V, C) of SAT such that the answer to (A , ℓ) is YES if and only if so is the

answer to (V, C). As we deal with a fixed automaton A we may simplify

the notation for A , writing A = (Q,Σ) rather than A = (Q,Σ, δ). In

the following presentation of our encoding, precise definitions and state-

ments are interwoven with less formal comments explaining the ‘physical’

meaning of variables and clauses.

So, take a PFA A = (Q,Σ) and an integer ℓ > 0. Denote the sizes

of Q and Σ by n and m respectively, and fix some numbering of these

sets so that Q = {q1, . . . , qn} and Σ = {a1, . . . , am}.
We start with introducing the variables used in the instance (V, C)

of SAT that encodes (A , ℓ).

The set V consists of two sorts of variables: mℓ letter variables xi,t
with 1 ≤ i ≤ m, 1 ≤ t ≤ ℓ, and n(ℓ + 1) state variables yj,t with

1 ≤ j ≤ n, 0 ≤ t ≤ ℓ. We use the letter variables to encode the letters

of a hypothetical carefully synchronizing word w of length ℓ: namely, we

62

Synchronization of PFAs

want the value of the variable xi,t to be 1 if and only if the t-th letter

of w is ai. The intended meaning of the state variables is as follows: we

want the value of the variable yj,t to be 1 whenever the state qj belongs

to the image of Q under the action of the prefix of w of length t, in

which situation we say that qj is active after t steps. We see that the

total number of variables in V is mℓ+ n(ℓ+ 1) = (m+ n)ℓ+ n.

Now we turn to constructing the set of clauses C. It consists of four

groups. The group I of initial clauses contains n one-literal clauses as

in (2.1) and expresses the fact that all states are active after 0 steps.

yj,0, 1 ≤ j ≤ n. (2.1)

For each t = 1, . . . , ℓ, the group L of letter clauses includes the clauses

x1,t ∨ · · · ∨ xm,t, ¬xr,t ∨ ¬xs,t, where 1 ≤ r < s ≤ m. (2.2)

Clearly, the clauses (2.2) express the fact that the t-th position of our

hypothetical carefully synchronizing word w is occupied by exactly one

letter in Σ. Altogether, L contains ℓ
(

m(m−1)
2 + 1

)

clauses.

For each t = 1, . . . , ℓ and each triple (qj, ai, qk) in the transition

relation of A , the group T of transition clauses includes the clause

¬yj,t−1 ∨ ¬xi,t ∨ yk,t. (2.3)

Invoking the basic laws of propositional logic, one sees that the clause

(2.3) is equivalent to the implication yj,t−1 ∧ xi,t → yk,t, that is, (2.3)

expresses the fact that if the state qj has been active after t − 1 steps

and ai is the t-th letter of w, then the state qk = qj.ai becomes active

63

Synchronization of PFAs

after t steps. Further, for each t = 1, . . . , ℓ and each pair (qj, ai) such

that ai is undefined at qj in A , we add to T the clause

¬yj,t−1 ∨ ¬xi,t. (2.4)

The clause is equivalent to the implication yj,t−1 → ¬xi,t, and thus, it

expresses the requirement that the letter ai should not occur in the t-th

position of w if qj has been active after t − 1 steps. Obviously, this

corresponds to the conditions (C1) (for t = 0) and (C2) (for t > 0) in

the definition of careful synchronization. For each t = 1, . . . , ℓ and each

pair (qj, ai) ∈ Q × Σ, exactly one of the clauses (2.3) or (2.4) occurs in

T , whence T consists of ℓmn clauses.

The final group S of synchronization clauses includes the clauses

¬yr,ℓ ∨ ¬ys,ℓ, where 1 ≤ r < s ≤ n. (2.5)

The clauses (2.5) express the requirement that at most one state remains

active when the action of the word w is completed, which corresponds to

the condition (C3) from the definition of careful synchronization. The

group S contains n(n−1)
2 clauses.

Summing up, the number of clauses in C := I ∪ L ∪ T ∪ S is

n + ℓ
(

m(m−1)
2 + 1

)

+ ℓmn + n(n−1)
2 = ℓ

(

m(m−1)
2 +mn + 1

)

+ n(n+1)
2 .

Theorem 2.1. A PFA A has a carefully synchronizing word of length ℓ

if and only if the instance (V, C) of SAT constructed above is satisfiable.

Moreover, the carefully synchronizing words of length ℓ for A are in

a 1-1 correspondence with the restrictions of satisfying assignments of

(V, C) to the letter variables.

64

Synchronization of PFAs

Proof. Suppose that A has a carefully synchronizing word of length ℓ.

We fix such a word w and denote by wt its prefix of length t = 1, . . . , ℓ.

Define a truth assignment ϕ : V → {0, 1} as follows: for 1 ≤ i ≤ m,

0 ≤ j ≤ n, 1 ≤ t ≤ ℓ, let

ϕ(xi,t) :=

{

1 if the t-th letter of w is ai,

0 otherwise;
(2.6)

ϕ(yj,0) := 1; (2.7)

ϕ(yj,t) :=

{

1 if the state qj lies in Q.wt,

0 otherwise.
(2.8)

In view of (2.6) and (2.7), ϕ satisfies all clauses in L and respectively

I . As wℓ = w and |Q.w| = 1, we see that (2.8) ensures that ϕ satisfies

all clauses in S. It remains to analyze the clauses in T . For each fixed

t = 1, . . . , ℓ, these clauses are in a 1-1 correspondence with the pairs in

Q × Σ. We fix such a pair (qj, ai), denote the clause corresponding to

(qj, ai) by c and consider three cases.

Case 1: the letter ai is not the t-th letter of w. In this case

ϕ(xi,t) = 0 by (2.6), and hence, ϕ(c) = 1 since the literal ¬xi,t occurs in

c, independently of c having the form (2.3) or (2.4).

Case 2: the letter ai is the t-th letter of w but it is undefined at qj.

In this case the clause c must be of the form (2.4). Observe that t > 1

in this case since the first letter of the carefully synchronizing word w

must be defined at each state in Q. Moreover, the state qj cannot belong

to the set Q.wt−1 because ai must be defined at each state in this state.

Hence ϕ(yj,t−1) = 0 by (2.8), and ϕ(c) = 1 since the literal 6= yj,t−1
occurs in c.

65

Synchronization of PFAs

Case 3: the letter ai is the t-th letter of w and it is defined at qj.

In this case the clause c must be of the form (2.3), in which the literal

yk,t corresponds to the state qk = qj.ai. If the state qj does not belong

to the set Q.wt−1, then as in the previous case, we have ϕ(yj,t−1) = 0

and ϕ(c) = 1. If qj belongs to Q.wt−1, then the state qk belongs to the

set (Q.wt−1).ai = Q.wt, whence ϕ(yk,t) = 1 by (2.8). We conclude that

ϕ(c) = 1 since the literal yk,t occurs in c.

Conversely, suppose that ϕ : V → {0, 1} is a satisfying assignment

for (V, C). Since ϕ satisfies the clauses in L, for each t = 1, . . . , ℓ, there

exists a unique i ∈ {1, . . . , m} such that ϕ(xi,t) = 1. This defines a map

χ : {1, . . . , ℓ} → {1, . . . , m}. Let w := aχ(1) · · · aχ(ℓ). We aim to show

that w is a carefully synchronizing word for A , i.e., to verify that w fulfils

the conditions (C1)–(C3) from the definition of a carefully synchronizing

word. For this, we first prove two auxiliary claims. Recall that a state

is said to be active after t steps if it lies in Q.wt, where, as above, wt is

the length t prefix of the word w. (By the length 0 prefix we understand

the empty word ε.)

Claim 1. For each t = 0, 1, . . . , ℓ, there are states active after t

steps.

Claim 2. If a state qk is active after t steps, then ϕ(yk,t) = 1.

We prove both claims simultaneously by induction on t. The induc-

tion basis t = 0 is guaranteed by the fact that all states are active after

0 steps and ϕ satisfies the clauses in I . Now suppose that t > 0 and

there are states active after t − 1 steps. Let qr be such a state. Then

ϕ(yr,t−1) = 1 by the induction assumption. Let i := χ(t), that is, ai
is the t-th letter of the word w. Then ϕ(xi,t) = 1, whence ϕ cannot

satisfy the clause of the form (2.4) with j = r. Hence this clause cannot

66

Synchronization of PFAs

appear in T as ϕ satisfies the clauses in T . This means that the letter

ai is defined at qr in A , and the state qs := qr.ai is active after t steps.

Claim 1 is proved.

Now let qk be an arbitrary state that is active after t > 0 steps. Since

ai is the t-th letter of w, we have Q.wt = (Q.wt−1).ai, whence qk = qj.ai
for some qj ∈ Q.wt−1. Therefore the clause (2.3) occurs in T , and thus,

it is satisfied by ϕ. Since qj is active after t− 1 steps, ϕ(yj,t−1) = 1 by

the induction assumption; besides that, ϕ(xi,t) = 1. We conclude that

in order to satisfy (2.3), the assignment ϕ must fulfil ϕ(yk,t) = 1. This

completes the proof of Claim 2.

We turn to prove that the word w fulfils (C1) and (C2). This

amounts to verifying that for each t = 1, . . . , ℓ, the t-th letter of the

word w is defined at every state qj that is active after t−1 steps. Let, as

above, ai stand for the t-th letter of w. If ai were undefined at qj, then

by the definition of the set T of transition clauses, this set would include

the corresponding clause (2.4). However, ϕ(xi,t) = 1 by the construction

of w and ϕ(yj,t−1) = 1 by Claim 2. Hence ϕ does not satisfy this clause

while the clauses from T are satisfied by ϕ, a contradiction.

Finally, consider (C3). By Claim 1, some state is active after ℓ steps.

On the other hand, the assignment ϕ satisfies the clauses in S, which

means that ϕ(yj,ℓ) = 1 for at most one index j ∈ {1, . . . , n}. By Claim 2

this implies that at most one state is active after ℓ steps. We conclude

that exactly one state is active after ℓ steps, that is, |Q.w| = 1.

67

Synchronization of PFAs

2.2 Exactly synchronizing words

In this section, we deal with the second version of PFAs synchronization,

that is, exact synchronization. We consider the following problem.

ESW: the existence of an exactly synchronizing word of a given

length

Input: a PFA A and a positive integer ℓ (given in unary);

Output: YES if A has an exactly synchronizing word of length

ℓ; NO otherwise.

Here we use the same set of variables as in Section 2.1 but the set of

clauses is essentially different.

The set C of clauses in the encoding of (A , ℓ) as an instance of ESW

consists of four groups I, L, T, S, where the groups I and L play the role

of initial clauses and letter clauses. The main job of the groups I and L

is encoding the automaton at its initial position and define the letters of

a hypothetical exactly synchronizing word. Hence their construction will

be the same as in Clauses (2.1) and (2.2) respectively. In contrast, the

groups T and S are very sensitive to which version of synchronization is

considered. In the following we discuss construction of these groups.

The group T consists of clauses that encode the transitions of A

under the hypothetical exactly synchronizing word. For a state qj ∈ Q,

let Pi(qj) stand for the set of all preimages of qj under the action of the

letter ai, that is,

Pi(qj) := {p ∈ Q | p.ai = qj}.

Consider for every t = 1, . . . , ℓ and every j = 1, . . . , n, the following

formula:

68

Synchronization of PFAs

yj,t ⇐⇒
m
∨

i=1

(

xi,t ∧
∨

qk∈Pi(qj)

yk,t−1
)

. (2.9)

Recall thatm stands for the number of letters in the alphabet Σ. Observe

that the equivalence (2.9) just expresses, in the language of propositional

logic, the fact that the state qj is active after t steps if and only if some

preimage of qj under the action of the t-th letter of w is active after t−1

steps. A direct conversion of (2.9) into a conjunctive normal form leads

to quite a bulky system of clauses. Instead, we use the following lemma.

Lemma 2.1. Fix numbers t ∈ {1, . . . , ℓ} and j ∈ {1, . . . , n} and take

any truth assignment ϕ : V → {0, 1} such that ϕ(xi,t) = 1 for exactly

one value of i ∈ {1, . . . , m}. Then ϕ satisfies the equivalence (2.9) if

and only if ϕ satisfies the following system of clauses:

¬yj,t ∨ ¬xi,t ∨
∨

qk∈Pi(qj)

yk,t−1 for each i ∈ {1, . . . , m}, (2.10)

yj,t ∨ ¬xi,t ∨ ¬yk,t−1 for each i ∈ {1, . . . , m} and each qk ∈ Pi(qj).

(2.11)

Proof. Let i0 be such that ϕ(xi0,t) = 1. Then ϕ(xi,t) = 0 for all i 6= i0
whence the right-hand side of the equivalence (2.9) gets the same value

under ϕ as the expression
∨

qk∈Pi0
(qj)

yk,t−1. Thus, if (2.9) is satisfied by

ϕ, so are the implications

yj,t →
∨

qk∈Pi0
(qj)

yk,t−1, (2.12)

∨

qk∈Pi0
(qj)

yk,t−1 → yj,t. (2.13)

69

Synchronization of PFAs

The implication (2.12) is equivalent to the clause ¬yj,t∨
∨

qk∈Pi0
(qj)

yk,t−1,

and we see that ϕ satisfies the clause (2.10) with i = i0. The implica-

tion (2.13) is equivalent to the system of clauses yj,t ∨ ¬yk,t−1 where k

runs over the indices of states in Pi0(qj). Hence, if ϕ satisfies (2.13), we

see that ϕ satisfies all clauses (2.11) with i = i0. Besides that, ϕ satisfies

all clauses (2.10) and (2.11) with i 6= i0 because each of these clauses

includes ¬xi,t as a literal and ϕ(xi,t) = 0 for all i 6= i0.

Thus, we have shown that if ϕ satisfies the equivalence (2.9), then

ϕ also satisfies all clauses (2.10) and (2.11). All our arguments are re-

versible, and therefore, the converse claim holds as well.

We collect clauses of the form (2.10) and (2.11) for all t = 1, . . . , ℓ

and j = 1, . . . , n in the group T of transition clauses. There are ℓmn

clauses of the form (2.10); as for clauses of the form (2.11), its number

for each triple (i, j, t) depends on the cardinality of the set Pi(qj), which

clearly does not exceed n. Hence the number of clauses of the form (2.11)

is at most ℓmn2 whence T contains at most ℓmn(n+ 1) clauses in total.

It may be worth explaining how the clauses of the form (4.5) and (2.11)

are understood in the case when one of the sets Pi(qj) happens to be

empty. In (2.10) the disjunction over the empty set is omitted so that

if Pi(qj) = ∅, then the clause (2.10) reduces to ¬yj,t ∨ ¬xi,t. The latter

clause simply means that if the t-th letter of w is ai and the state qj
has no preimage under ai, then qj cannot be active after t steps. As

for (2.11), the clauses of this sort disappear for all i such that Pi(qj) is

empty.

The final group S of synchronization clauses describes the situation

at the end of the synchronization process when the action of the word w

is completed. It consists of the following clauses:

70

Synchronization of PFAs

y1,ℓ ∨ · · · ∨ yn,ℓ, (2.14)

¬yr,ℓ ∨ ¬ys,ℓ, where 1 ≤ r < s ≤ n. (2.15)

Clearly, the clauses in (2.14) and (2.15) express the fact that exactly one

state remains active after ℓ steps, which corresponds to the requirement

|Q.w| = 1. The group S contains n(n−1)
2 + 1 = n(n+1)

2 clauses.

We let C := I ∪ L ∪ T ∪ S. The number of clauses in the set C is

no greater than ℓm
(

(m+1)
2

+ n(n+ 1)
)

+ n(n+3)
2

. Now we can state and

prove the main theorem of this section.

Theorem 2.2. A PFA A has an exactly synchronizing word of length ℓ

if and only if the instance (V, C) of SAT constructed above is satisfiable,

and the construction of this instance can be done in polynomial time.

Moreover, the exactly synchronizing words of length ℓ for A are in a

one-to-one correspondence with the satisfying assignments of (V, C).

As the reader sees, Theorem 2.2 looks similar to Theorem 2.1 that

dealt with carefully synchronizing words. The arguments in the proof of

Theorem 2.1 partly repeat the ones from the proof of Theorem 2.2. How-

ever, for the reader’s convenience we have decided to present the proof

of Theorem 2.2 in full details, without referring to analogous arguments

in the proof of Theorem 2.1.

Proof. We keep the notation and terminology introduced in the course

of the construction of our encoding (A , ℓ) 7→ (V, C). In particular,

A = (Q,Σ) with Q = {q1, . . . , qn} and Σ = {a1, . . . , am}. The fact

that the instance (V, C) can be constructed in polynomial of n, m, and

ℓ time follows from the estimates of |V | and |C| established above.

71

Synchronization of PFAs

Now suppose that A has an exactly synchronizing word of length ℓ

and fix such a word w. We define a truth assignment ϕ : V → {0, 1} as

follows: for the letter variables xi,t with 1 ≤ i ≤ m, 1 ≤ t ≤ ℓ,

ϕ(xi,t) =

{

1 if the t-th letter of w is ai,

0 otherwise;

for the state variables yj,t with 1 ≤ j ≤ n, 0 ≤ t ≤ ℓ,

ϕ(yj,t) =

{

1 if the state qj is active after t steps,

0 otherwise.

Clearly, ϕ satisfies all clauses in L and I . Since w is an exactly syn-

chronizing word, exactly one state remains active after ℓ steps, whence

ϕ satisfies all clauses in S. By the construction, ϕ satisfies the formulas

(2.9) for t = 1, . . . , ℓ and j = 1, . . . , n as these formulas describe the

propagation of active states. Since ϕ is such that ϕ(xi,t) = 1 for exactly

one value of i ∈ {1, . . . , m}, Lemma 2.1 ensures that ϕ also satisfies all

clauses in T . We see that the SAT-instance (V, C) is satisfied by ϕ.

Conversely, suppose that (V, C) is satisfiable and fix a satisfying

assignment ϕ for (V, C). Since ϕ satisfies all clauses in L, for each

t = 1, . . . , ℓ, there exists exactly one index i(t) ∈ {1, . . . , m} such that

ϕ(xi(t),t) = 1. Define a word w := ai(1) · · · ai(ℓ) and let wt be the prefix

of w of length t for t = 0, 1, . . . , ℓ. (Here w0 is the empty word ε.) We

aim to prove that for each t = 0, 1, . . . , ℓ,

Q.wt = {qj | ϕ(yj,t) = 1}. (2.16)

72

Synchronization of PFAs

We induct on t. The claim (2.16) holds for t = 0 since ϕ satisfies all

clauses in I . Now suppose that t > 0. Lemma 2.1 applies to ϕ whence

the condition that ϕ satisfies all clauses in I implies that ϕ also satisfies

the equivalences (2.9) for t = 1, . . . , ℓ and j = 1, . . . , n. By the induction

assumption, we have that a state qk is active after t− 1 steps if and only

if ϕ(yk,t−1) = 1. As mentioned, the equivalence (2.9) translates into the

language of propositional logic that qj is active after t steps if and only

if some preimage of qj under the action of the letter ai(t) is active after

t−1 steps; on the other hand, since ϕ satisfies (2.9), we have ϕ(yj,t) = 1

if and only if ϕ(yk,t−1) = 1 for some k ∈ Pi(t)(qj). Combining these two

facts, we get (2.16).

Since ϕ satisfies all clauses in S, the equality ϕ(yj,ℓ) = 1 holds for

exactly one value of j ∈ {1, . . . , n}. By (2.16), this means that |Q.wℓ| =
1, that is, w = wℓ is an exactly synchronizing word for A .

We see that any exactly synchronizing word of length ℓ for A de-

termines a satisfying assignment for (V, C) and vice verse. Moreover,

from the above proof it is clear that if we start with an exactly syn-

chronizing word w of length ℓ, construct from w a satisfying assignment

ϕ for (V, C), and then build an exactly synchronizing word from ϕ, we

get back the word w. Thus, the correspondence between the exactly

synchronizing words of length ℓ for A and the satisfying assignments of

(V, C) is indeed one-to-one.

Remark 2.2. Encoding of ESW uses the same set of variables as the above

encoding for CSW but the set of clauses is essentially different. One may

think that since the definition of an exactly synchronizing word differs

from the definition of a carefully synchronizing word by the absence

of the conditions (C1) and (C2), one could get an encoding for ESW

73

Synchronization of PFAs

by just omitting the clauses (2.4) that control these conditions in the

encoding for CSW, and vice versa, one could encode CSW by appending

the clauses (2.4) to the encoding for ESW. However, it is easy to exhibit

counterexamples to show that such a naive transformation of our CSW

encoding into an encoding for ESW fails. In the converse direction, the

transformation produces a valid encoding for CSW but this encoding has

many more clauses than the CSW encoding suggested here.

For an illustration of the presented encodings, we consider the au-

tomaton in Figure 2.1. Table 2.1 shows the encodings of (Ep, 1) as an

instance of CSW and ESW respectively.

Clauses CSW (Ep, 1) ESW (Ep, 1)

I
y0,0
y1,0

y0,0
y1,0

T

¬y0,0 ∨ ¬x1 ∨ y1,1
¬y1,0 ∨ ¬x1
¬y0,0 ∨ x1 ∨ y0,1
¬y1,0 ∨ x1 ∨ y0,1

¬y1,1 ∨ y0,0
¬y1,1 ∨ x1
¬y0,1 ∨ y0,0 ∨ y1,0
¬y0,1 ∨ ¬x1
¬y0,0 ∨ ¬x1 ∨ y1,1
¬y1,0 ∨ ¬x1
¬y0,0 ∨ x1 ∨ y0,1
¬y1,0 ∨ x1 ∨ y0,1

S ¬y1,1 ∨ ¬y0,1
y1,1 ∨ y0,1
¬y1,1 ∨ ¬y0,1

Table 2.1: The SAT encoding of the CSW and ESW instances (Ep, 1)

74

Synchronization of PFAs

q0 q1

0

1

0

Figure 2.1: The PFA Ep

2.3 Ladder encoding

Observe that all clauses in (2.5) and (2.15) and a majority of clauses

in (2.2) are typical “at-most-one” constraints. There are various way

to express such constraints by fewer clauses. In our implementation,

we have used the so-called ladder encoding suggested in [27], see also [6,

Chapter 2]. We demonstrate how the ladder encoding works on the set S.

We introduce n − 1 additional variables f1, f2, . . . , fn−1 and substitute

the clauses (2.5) for CSW and (2.15) for ESW by two new groups of

clauses: the ladder validity clauses

¬fj+1 ∨ fj (2.17)

for j = 1, 2, . . . , n − 2, and the channelling clauses that correspond to

the equivalence yj,ℓ ←→ fj−1 ∧ ¬fj:

¬fj−1 ∨ fj ∨ yj,ℓ, ¬yj,ℓ ∨ fj−1, ¬yj,ℓ ∨ ¬fj (2.18)

for j = 1, 2, . . . , n, where the clauses containing f0 or fn are simplified

as if f0 = 1 or fn = 0. Altogether, we get 4n − 4 clauses in (2.17) and

(2.18) instead of n(n−1)
2 clauses in (2.5) on the price of adding n−1 extra

variables. The same trick allows us to decrease the number of clauses in

75

Synchronization of PFAs

the set L, but this is less important because the parameter m (the size

of the input alphabet) is usually small. Our experiments have shown

that using ladder encoding significantly reduces time needed to solve

CSW and ESW instances, especially for automata with large number of

states.

Remark 2.3. In a majority of our experiments, we deal with PFAs that

have only two input letters. As above, we call such PFAs binary. To

encode the CSW/ESW instance (A , ℓ), where A is a binary PFA,

we can use only ℓ letter variables x1, . . . , xℓ to encode the letters of

a hypothetical carefully/exactly synchronizing word w of length ℓ since

there is an obvious 1 - 1 correspondence between the truth assignments

on the set {x1, . . . , xℓ} and the words of length ℓ over any fixed 2-

letter alphabet. In more formal terms, we can modify the encoding

of CSW and ESW, substituting xt for x1,t and ¬xt for x2,t for all t =

1, 2, . . . , ℓ in all clauses in which x1,t or x2,t occur. Observe that the

letter clauses (2.2) become tautologies after this substitution, and hence,

they can be safely omitted. Thus, for a binary PFA A with n states,

we may encode the CSW instance (A , ℓ) into a SAT instance with

ℓ(n + 2) + n − 2 variables and only 2ℓn + 5n − 4 clauses if we use

both the modification just described and the ladder encoding.

76

Chapter 3

Experimental study in

PFAs synchronization

It was discussed in Chapter 1 that the upper bound for the length of the

shortest exactly or carefully synchronizing word may be an exponential

function in the number of states. But what about the average of such

length? What are the parameters that may affect this length? In this

chapter we present an experimental study from which we can partly

answer these questions.

3.1 General settings of our experiments

The general framework of our experiments with random automata con-

sists of the following basic steps.

1. A positive integer n (the number of states) is fixed.

2. A random PFA A with n states is generated.

77

Experimental study in PFAs synchronization

3. The pair (A , 1) is encoded into a SAT instance (V ′, C ′) as de-

scribed in Section 2.1 (if we study careful synchronization) or in

Section 2.2 (if we study exact synchronization).

4. The instance (V ′, C ′) is scaled to the instance (V, C) that encodes

the pair (A , ℓ), see Remark 3.1 below.

5. The MiniSat 2.2.0 is invoked to solve the SAT instance (V, C).

We refer to [20] for a description of the underlying ideas of the SAT

solver MiniSat and to [21] for a discussion and the source code of the

solver.

Remark 3.1. An important feature of our encodings is that as soon as we

have constructed the “primary” SAT instance (V ′, C ′) that encodes the

CSW/ESW instance (A , 1), we are in a position to scale (V ′, C ′) to the

SAT instance encoding the CSW/ESW instance (A , ℓ) for any value of

ℓ. In order to explain this feature, recall that MiniSAT accepts its input

in the following text format (so-called simplified DIMACS CNF format).

Every line beginning with c is a comment. The first non-comment line

is of the form:

p cnf NUMBER_OF_VARIABLES NUMBER_OF_CLAUSES

Variables are represented by integers from 1 to NUMBER_OF_VARIABLES.

The first non-comment line is followed by NUMBER_OF_CLAUSES non-

comment lines each of which defines a clause. Every such line starts

with a space-separated list of different non-zero integers corresponding

to the literals of the clause: a positive integer corresponds to a literal

which is a variable, and a negative integer corresponds to a literal which

is the negation of a variable; the line ends in a space and the number 0.

78

Experimental study in PFAs synchronization

For simplicity, we describe the scaling procedure for binary PFAs

only and we assume that the ladder encoding not been used. (Both the

generalization to PFAs over larger alphabets and the modification needed

to accommodate additional variables involved in the ladder encoding are

fairly straightforward.) Given a binary PFA A with n states, we write

the SAT instance (V ′, C ′), which corresponds to (A , 1), in DIMACS

CNF format, representing the variables x1, yj,0, yj,1, j = 1, . . . , n, by

the numbers, respectively, n + 1, j, j + n + 1. For an illustration, see

Table 3.1 that shows the SAT encoding of CSW for the PFA E4 from

Figure 3.1.

1 2

34

a

b

b

b

a

a

a

Figure 3.1: The automaton E4

79

Experimental study in PFAs synchronization

Table 3.1: The SAT encoding of the CSW instance (E4, 1)

Clauses DIMACS CNF lines

p cnf 9 18

I ′

y1,0
y2,0
y3,0
y4,0

1 0

2 0

3 0

4 0

T ′

¬y1,0 ∨ ¬x1 ∨ y2,1
¬y2,0 ∨ ¬x1 ∨ y2,1
¬y3,0 ∨ ¬x1 ∨ y3,1
¬y4,0 ∨ ¬x1 ∨ y1,1
¬y1,0 ∨ x1 ∨ y2,1
¬y2,0 ∨ x1 ∨ y3,1
¬y3,0 ∨ x1 ∨ y4,1
¬y4,0 ∨ x1

-1 -5 7 0

-2 -5 7 0

-3 -5 8 0

-4 -5 6 0

-1 5 7 0

-2 5 8 0

-3 5 9 0

-4 5 0

S ′

¬y1,1 ∨ ¬y2,1
¬y1,1 ∨ ¬y3,1
¬y1,1 ∨ ¬y4,1
¬y2,1 ∨ ¬y3,1
¬y2,1 ∨ ¬y4,1
¬y3,1 ∨ ¬y4,1

-6 -7 0

-6 -8 0

-6 -9 0

-7 -8 0

-7 -9 0

-8 -9 0

80

Experimental study in PFAs synchronization

Now, in order to scale (V ′, C ′) to the SAT instance (V, C) that en-

codes the pair (A , ℓ) for some given ℓ > 1 one has to transform the

DIMACS CNF representation of C ′ = I ′ ∪ T ′ ∪ S ′ as described in Fig-

ure 3.2 and in the following steps:

1. In the first non-comment line, replace the numbers 2n + 1 and

2n+ n(n+1)
2 by respectively (ℓ+ 1)n+ ℓ and 2ℓn + n(n+1)

2 .

2. Apply the following three commands

2.1. k: Keep the lines corresponding to the clauses in C ′0 and C ′1.

2.2. rt: For each t = 2, . . . , ℓ, add all the lines obtained from the

lines that correspond to the clauses in T ′ by keeping the sign

of every non-zero integer and adding (t − 1)(n + 1) to its

absolute value.

2.3. rs: In each line corresponding to a clause in S ′, substitute

every nonzero integer ±k by the integer ±(k+(ℓ−1)(n+1)).

C ′0

C0

C ′1

C1 Ct

S ′

S

k k
rt

rs

Figure 3.2: Scaling procedure

81

Experimental study in PFAs synchronization

3.2 Experiments and implementation

We have performed four series of experiments with random PFAs.

Series 1: studying the probability of being synchronizing for each ver-

sion of synchronization for randomly generated binary PFAs with

one undefined transition.

Series 2: finding an approximation for the average length of shortest

carefully synchronizing words and exactly synchronizing words for

randomly generated binary PFAs with one undefined transition.

Series 3: studying the influence of the input alphabet size on the length

of the shortest synchronizing word.

Series 4: studying the influence of the density (the number of defined

transitions) on the length of the shortest synchronizing word.

All our algorithms were implemented in C++ and compiled with

GCC 4.9.2. In our experiments we used a personal computer with an

Intel(R) Core(TM) i5-2520M processor with 2.5 GHz CPU and 4GB of

RAM. Our code and datasets are available under https://github.com/

hananshabana/SynchronizationChecker.

3.3 Generating random PFAs

In experiments from Series 1 and 2 we worked with binary PFAs

A = (Q,Σ, δ) with n ≤ 100 states and only one undefined transition.

Then one letter must be everywhere defined; we denoted it by a and

selected the action of a uniformly at random from all nn maps Q→ Q.

82

Experimental study in PFAs synchronization

To ensure that there is a unique undefined transition with b, we chose

uniformly at random a state qb ∈ Q and then selected the action of b

uniformly at random from all nn−1 maps Q \ {qb} → Q.

In experiments from Series 3, we again considered PFAs with an

everywhere defined letter and defined its action as above. Then, for each

of the remaining letters, we first chose the number k of states at which

the letter should be defined; k was chosen uniformly at random from the

set {1, 2, . . . , n− 1}. Then we selected uniformly at random k different

states from Q, and for each of these states we chose uniformly at random

a state in Q as its image under the action of the letter.

In experiments from Series 4, we considered binary PFAs A with

n ≤ 100 states. Let ρA stand for the density of A . In experiments

with careful synchronization, possible values of ρA were chosen between

n + 1 and 2n − 1 since one of the letters must be everywhere defined.

For the other letter, we set k := ρA − n and then proceeded as in the

preceding paragraph. In experiments with exact synchronization, the

value of ρA can be any number between 1 and 2n − 1. However, it is

easy to realize that a PFA with density 1, that is, a PFA with a unique

defined transition, is always exactly synchronizing by a word of length 1

(namely, by the letter which action at some state is defined). Thus, the

case of density 1 is not interesting at all, and we chose possible values

of ρA from numbers between 2 and 2n − 1. Then we chose uniformly

at random a non-negative number k ≤ ρA and applied the procedure

described in the preceding paragraph first to k and then to ρA − k.

83

Experimental study in PFAs synchronization

3.4 Experimental results for randomly

generated PFAs and their analysis

3.4.1 Series 1: Probability of synchronization

This series of our experiments aims to compare the probability of being

exactly or carefully synchronizing for the same sample of random au-

tomata. Figure 3.3 shows the probability of being synchronizing in each

of these two versions of synchronization for the class of binary PFAs

(Q, {a, b}) such that the letter a is everywhere defined and the letter b

is undefined at exactly one state in Q. For brevity, we refer to automata

from this class as almost complete PFAs. Observe that the problem of

deciding whether or not a given PFA is carefully synchronizing remains

PSPACE-complete even if restricted to this rather special case [58, The-

orem 3]. For each fixed n, we generated up to 1000 random almost

complete PFAs.

Let PE(n) stand for the probability of a random almost complete

PFA with n states to be exactly synchronizing and let PC(n) be the

probability that the same random PFA is carefully synchronizing. We

have PE(n) > PC(n) since, as mentioned, every carefully synchronizing

PFA is exactly synchronizing. The data in Figure 3.3 show that the

gap between PE(n) and PC(n) decreases as n grows but remains non-

negligible ever for n close to 100. We also see that PE(n) quickly tends to

1 as the state number grows. Recall the same effect was experimentally

observed for DFAs and was then theoretically justified by Berlinkov [5]

and Nicaud [63, 64]: the probability PS(n) that a random binary DFA

with n states is synchronizing tends to 1 as n tends to infinity. Moreover,

84

Experimental study in PFAs synchronization

0 20 40 60 80 100

0.4

0.6

0.8

1

Number of states n

P
ro

b
ab

il
it
y

PC(n)
PE(n)

Figure 3.3: Probability of being synchronizing for two versions of syn-
chronization

it is shown in [5] that 1−PS(n) = O(1
n). It is not difficult to extend the

latter result to random almost complete PFAs. Since we have not found

such an extension in the literature, we have included it here, without any

originality claim.

The extension is based on the following easy observation.

Lemma 3.1. Let A be a synchronizing DFA. Then every PFA obtained

from A by removing a single transition is exactly synchronizing.

Proof. Let A = (Q,Σ, δ). Fix an arbitrary pair (p, b) ∈ Q × Σ and

consider the PFA B = (Q,Σ, ζ), where ζ coincides with δ on the set

Q×Σ \ {(p, b)} and ζ(p, b) is undefined. Let w ∈ Σ∗ be a synchronizing

word for A so that |δ(Q,w)| = 1. Clearly, if w is defined in B at

some q ∈ Q, then ζ(q, w) = δ(q, w) whence |ζ(Q,w)| = 1 and w is

an exactly synchronizing word for B. Thus, assume that w is nowhere

85

Experimental study in PFAs synchronization

defined in B. Let v be the longest prefix of w which is defined in B

at some state and let x be the letter that follows v in w. By the choice

of v, the set P := ζ(Q, v) is not empty but ζ(P, x) is empty. Thus, all

transitions of the form ζ(q, x) with q ∈ P must be undefined. However,

by the definition of ζ, the only undefined transition in B is ζ(p, b) whence

x = b and P = {p}. In particular, |ζ(Q, v)| = 1 and v is an exactly

synchronizing word for B.

Given an almost complete PFA B = (Q, {a, b}, ζ), its completion

is any DFA obtained by defining the only undefined transition of A .

Let n := |Q|. If the letter b is undefined at a certain state p ∈ Q,

then we can choose any state in Q as the image of p under b in the

completion, whence B has n different completions. Conversely, any given

DFA A = (Q, {a, b}, δ) serves as a completion for n different almost

complete PFAs obtained from A by ‘forgetting’ the value of δ(p, b),

where p runs over Q.

Now consider the set P of all pairs (B,A) such that A is a com-

pletion of B and B is not exactly synchronizing. Denoting by N the

number of almost complete PFAs with the state set Q that are not ex-

actly synchronizing, we have |P| = Nn. Lemma 3.1 implies that no DFA

A such that there is B with (B,A) ∈ P can be synchronizing. Any

non-synchronizing DFA may occur in at most n pairs from P whence

the number M of DFAs with the state set Q that are not synchronizing

satisfies M ≥ |P|
n

=
Nn

n
= N . Observe that the total number n2n of bi-

nary DFAs is the same as the total number of almost complete PFAs: to

construct an an almost complete PFA with n states, we have nn choices

for the action of the everywhere defined letter, n choices for a state at

which the other letter is undefined, and nn−1 choices for the action of

86

Experimental study in PFAs synchronization

the latter letter at the remaining n − 1 states. Therefore, we conclude

that

1− PE(n) =
N

n2n
≤ M

n2n
= 1− PS(n) = O

(

1

n

)

.

Hence, 1− PE(n) = O(1
n).

For complete deterministic binary automata, Berlinkov [5] has shown

that the bound 1 − PS(n) = O(1
n) is tight, that is, 1 − PS(n) = Θ(1

n).

We have proved the same result for almost complete PFAs. For this we

describe a construction that yields “sufficiently many” almost complete

PFAs with n states and 2 letters a and b that are not exactly synchroniz-

ing. The construction is as follows. First we choose a state q0 at which

b is undefined. There are n choices for q0. Then we define the action of

a at q0 in an arbitrary way. This gives n choices. After that, there are

n − 1 choices for the state q1 which is fixed by both a and b. Finally,

there are (n−2)2(n−2) choices for the actions of a and b at the remaining

n − 2 states. Altogether, the construction gives n2(n − 1)(n − 2)2(n−2)

almost complete automata which are not exactly synchronizing. Now

when we calculate the fraction n2(n− 1)(n− 2)2(n−2)/n2n, we get

n2(n− 1)(n− 2)2(n−2)

n2n
=

(

1− 1

n

)(

1− 2

n

)2n(

1− 2

n

)−4
1

n
.

As n tends to the infinity, the first and the third factors tend to 1,

and the second factor tends to e−4. Thus, the fraction is asymptotically

equivalent to e−4

n . Hence 1− PE(n) = Ω(1
n).

Summarizing, we have

Proposition 3.1. 1− PE(n) = Θ(1
n
).

Back to Figure 3.3, we see that the probability PC(n) also grows

87

Experimental study in PFAs synchronization

with n but it not clear if it tends to 1 as n tends to infinity. To the

best of our knowledge, no theoretical results published so far predict

the asymptotic behavior of the function PC(n) nor, more generally, the

asymptotic behavior of the probability of being carefully synchronizing

for any class of random PFAs. Here, as a result on analysis of the outcome

of our experiments, we are able to show that even if PC(n) does approach

1 as n→∞, it does it at much slower rate than PE(n); see the discussion

at the end of the subsection.

First, let us discuss how we proceeded to determine if a PFA A

from our sample was carefully/exactly synchronizing. According to the

general scheme described in Section 3.1, we encoded (A , 1) as a SAT

instance, wrote the instance in DIMACS CNF format, and scaled it to

the instances encoding (A , ℓ) with ℓ = 2, 4, 8, . . . until we reached an

instance on which the SAT solver returned YES. Of course, sometimes

it happened that we did not reach such an instance which indicated

that either A was not carefully/exactly synchronizing or the minimum

length of carefully/exactly synchronizing words for A was too big so

that MiniSat 2.2.0 could not handle the resulting SAT instance. In such

cases, we had to use some additional ideas to distinguish between non-

synchronizing and “too slowly” synchronizing automata.

For exact synchronization, an additional analysis was needed only

for small values of n (n ≤ 20) and for a few exceptional PFAs with

n > 30. We analyzed these cases using a brute force algorithm known

as the successor tree method. See the recent paper by Türker [86] for a

description of the method and its modern implementation1.

The situation for careful synchronization was more involved. The

1Notice that Türker [86] uses the term “reset sequence” for what we call “exactly synchronizing
word”.

88

Experimental study in PFAs synchronization

only known brute force algorithm for careful synchronization is the par-

tial power automaton method, which we will discuss (and compare with

our approach) in Section 3.6. It turned out that this method could hardly

handle PFAs with more than 20 states. Therefore, we devised a simple

theoretical condition under which a binary PFA is not carefully synchro-

nizing and checked PFAs against this condition, prior to having started

the procedures from Section 3.1.

Let q be a state and a letter of a PFA. We say that q is a-cyclic if

q = q.ak for some positive integer k.

Lemma 3.2. Let a PFA A = (Q, {a, b}) be such that the letter a is

everywhere defined and has at least two a-cyclic states. If the letter b is

undefined at some a-cyclic state, A is not carefully synchronizing.

Proof. Arguing by contradiction, suppose that w ∈ {a, b}∗ is a carefully

synchronizing word for A . Then w starts with a because of the condition

(C1). Further, w cannot be a power of a because of the condition (C3)

as a has at least two a-cyclic states and each a-cyclic state belongs to the

image of an arbitrary power of a. Thus, the letter b occurs in w whence

w has a prefix of the form asb for some positive integer s. As mentioned,

each a-cyclic state belongs to Q.as, and we get a contradiction with the

condition (C2) as b is undefined at some a-cyclic state.

Clearly, given a binary PFA, it is easy to verify if the PFA satisfies the

premises of Lemma 3.2. It is Lemma 3.2 that we used to filter out almost

complete PFAs that were not carefully synchronizing before having run

the SAT-solver method. We stress that Lemma 3.2 is only a sufficient

condition for an almost complete PFA to be not carefully synchronizing.

However, it was well suited for our purposes because it turned out to

89

Experimental study in PFAs synchronization

be applicable frequently enough. Indeed, the statistical properties of

random maps are well studied; in particular, if the random variable ξ

represents the number of cyclic points of a map chosen uniformly at

random from all nn maps on an n-element set, the following expression

for the probability of the event ξ = j, where j ∈ {1, 2, . . . , n}, is known

(see [33]):

P (ξ = j) =
(n− 1)!j

(n− j)!nj . (3.1)

For the premises of Lemma 3.2 to hold for an almost complete PFA

A = (Q, {a, b}, δ), the map Q → Q induced by the letter a must have

at least two cyclic points (= a-cyclic states), and the only state at which

the letter b is undefined must be a-cyclic. Denoting |Q| by n, we derive

from (3.1) the following expression for the probability that Lemma 3.2

applies to A :
n−1
∑

j=2

j

n
P (ξ = j) =

n−1
∑

j=2

(n− 1)!j2

(n− j)!nj+1
. (3.2)

Observe that the expression (3.2) differs in just one summand, namely,

in 1
n
P (ξ = 1) =

1

n2
, from

n−1E[ξ] =

n
∑

j=1

j

n
P (ξ = j).

Evaluating the expression (3.2) at n = 100, one gets 0.121989414.

(For these numerical computations, we used an elegant method suggested

by Zubkov [91].) Thus, more than 12% of randomly chosen almost com-

plete PFAs with 100 states satisfy the premises of Lemma 3.2. On the

other hand, the SAT-solver approach in our experiments succeeded for

90

Experimental study in PFAs synchronization

more than 87% of almost complete PFAs with 100 states. It is what

we meant above when having said that Lemma 3.2 was well sufficient

to confirm the absence of careful synchronization for an overwhelming

majority of almost complete PFAs which are not carefully synchronizing,

and thus, to avoid the SAT-solver having to work in vain.

Back to the aforementioned question of the asymptotic behavior of

the function PC(n), we notice that even though Lemma 3.2 does not

exclude PC(n) tending to 1, it allows us to show that even if PC(n)

tends to 1 as n → ∞, the convergence rate should be relatively slow.

Indeed, it is known (see [33]) that the expectation E[ξ] is asymptotically

equivalent to

√

πn

2
. As observed, the probability (3.2) that Lemma 3.2

applies to a random almost complete PFAs with n states differs from

n−1E[ξ] ∼
√

π

2n
by

1

n2
, which is asymptotically negligible in comparison

with

√

π

2n
. By Lemma 3.2, we have that the difference 1− PC(n), that

is, the probability that an almost complete PFAs with n states is not

carefully synchronizing is asymptotically greater than or equivalent to
√

π

2n
. Thus, 1 − PC(n) = Ω(1√

n
), while we have demonstrated above

that 1− PE(n) = O(1
n).

3.4.2 Series 2: Average length of the shortest

synchronizing word

We have applied the encoding constructed in Sections 2.1 and 2.2 to solve

with the help of a SAT solver CSW and ESW instances respectively. We

worked with almost complete PFAs.

91

Experimental study in PFAs synchronization

For CSW, we worked with such PFAs that were found to be care-

fully synchronizing in the course of the experiment detailed in Subsec-

tion. 3.4.1. For such a PFA A , we were left at the end of the experiment

with a number ℓ, the least power of 2 for which MiniSat returns YES

on the SAT instance that encodes the CSW instance (A , ℓ). In order

to find a carefully synchronizing word or exactly synchronizing word of

minimum length for A , we performed standard binary search, having

started with ℓmax := ℓ and ℓmin :=
ℓ

2
. That is, we

1) let ℓ :=
ℓmin + ℓmax

2
;

2) run MiniSat on the SAT instance that encodes the CSW instance

(A , ℓ);

3) let ℓmax := ℓ if the answer returned by Minisat was YES, and let

ℓmin := ℓ if the answer was NO;

4) check if ℓmax − ℓmin = 1: YES means that ℓmax is the minimum

length of carefully synchronizing words for A ; NO means that we

have to return to Step 1).

In the following we define the length of the shortest synchronizing

word as the reset threshold (RT). By RCT we define the length of the

shortest carefully synchronizing word and byRET we define the length of

the shortest exactly synchronizing word. Using experimental data found

this way, we calculated the average for RCT of carefully synchronizing

almost complete PFAs with n states and define this average by AC(n).

Then we used the least squares method to find a function that best

92

Experimental study in PFAs synchronization

reflects how AC(n) depends on n. It turned out that our results are

reasonably well approximated by the following expression:

AC(n) ≈ 3.92 + 0.49n− 0.005n2 + 0.000024n3. (3.3)

20 40 60 80 100

10

15

20

25

Number of states n

A
C

(n
)

Observed
Our estimation

Figure 3.4: Approximation of AC(n)

The relation between the approximation (3.3) and our experimental

data is shown in Figure 3.4, while Figure 3.5 shows the relation between

the relative standard deviation (r.s.d) of our datasets and the number of

states. We see that the relative standard deviation gradually decreases

as the number of states grows.

We have followed the same strategy to find an approximation of the

average length AE(n) of the shortest exactly synchronizing word for al-

most complete PFAs. The results yield that AE(n) turns out to be

smaller than AC(n). However, both values seem to follow the same pat-

tern. These observations are illustrated in Figure 3.6 where A(n) stands

93

Experimental study in PFAs synchronization

20 40 60 80 100

0.15

0.2

0.25

0.3

0.35

0.4

Number of states

(r
.s

.d
)

Figure 3.5: Relative standard deviation of datasets

for the average length of shortest synchronizing word for randomly gen-

erated almost complete PFAs.

0 20 40 60 80 100
0

5

10

15

20

25

Number of states n

A
(n

)

AC(n)
AE(n)

Figure 3.6: Comparison between AC(n) and AE(n)

94

Experimental study in PFAs synchronization

3.4.3 Series 3: Influence of the input alphabet size

This series of experiments aimed to see how the length of the shortest

carefully synchronizing word is affected by the number of input letters.

We experimented with samples of carefully synchronizing PFAs with

varying state and input alphabet sizes but approximately the same rela-

tive density, that is, the same ratio between the density and the number

of states. We generated random PFAs as described in Section 3.3 and

applied Lemma 3.2 for filtering out PFAs that were not carefully synchro-

nizing. Then we used binary search as in Subsection 3.4.2 to determine

the minimum length of carefully synchronizing words.

Figure 3.7 may serve as an illustration for typical results found in this

series of experiments. It shows the average lengths of shortest carefully

synchronizing words for carefully synchronizing PFAs with 2 or 3 input

letters and relative density close to 2. More precisely, we considered PFAs

with n states and the density ρ = 2n− 1. (Thus, in the case of 2 input

letters, we dealt with almost complete PFAs so that we were in a position

to partly re-use the data computed in experiments in Subsection 3.4.2.)

We see that the corresponding graphs have similar regular shape and that

PFAs with a larger input alphabet synchronize faster. These conclusions

held also when other values of relative density were fixed. The observed

phenomena are intuitively plausible as having more letters gives more

degrees of freedom for careful synchronization and it is to expect that

carefully synchronizing words become shorter. However, we have got no

rigorous theoretical explanations for these phenomena so far.

95

Experimental study in PFAs synchronization

30 40 50 60 70 80
10

15

20

25

Number of states n

A
ve

ra
ge

R
C

T

|Σ| = 3
|Σ| = 2

Figure 3.7: The cardinality of the input alphabet versus the average
RCT when ρ = 2n− 1

3.4.4 Series 4: Influence of density

In this series, we fixed two parameters n and ρ ≤ 2n−1. For pairs (n, ρ)

such that ρ ≥ n+1, we generated a sample of random binary PFAs with

n states, density ρ, and an everywhere defined letter as described in

Section 3.3. Then we computed the average length of shortest carefully

synchronizing words for PFAs in this sample, having used the same pro-

cedure as above, that is, the pre-selection based on Lemma 3.2 followed

by binary search as described in Subsection 3.4.2. Similarly, for pairs

(n, ρ) with ρ ≥ 2, we prepared a sample of random binary PFAs with n

states and density ρ, and then we computed the average length of short-

est exactly synchronizing words for these PFAs. Dealing with shortest

exactly synchronizing words was slightly more involved. The complica-

tion was due to the fact that, in the absence of an everywhere defined

96

Experimental study in PFAs synchronization

letter, a PFA having an exactly synchronizing word of some length, may

have no exactly synchronizing word of any larger length. In fact, such

situations occur quite often for PFAs of low density. Due to this sub-

tlety, binary search could not be used, and therefore, we were forced to

check, for each PFA A in our sample, the SAT instances that encoded

the ESW instances (A , 1), (A , 2), (A , 3), etc.

Our experiments showed that the average length of the shortest

exactly synchronizing word increased as the density increased. This

strongly contrasts the case of careful synchronization where the results

were opposite: the more the density was, the less was the average length

of shortest carefully synchronizing word. Figures 3.8 and 3.9 illustrate

these observations.

When an automaton becomes complete, its carefully and exactly syn-

chronizing words become nothing but classical synchronizing words of the

complete case. Therefore, it is natural to expect that, when ρ approaches

2n, the average lengths of both carefully and exactly synchronizing words

for synchronizing binary PFAs with n states tend to the average length

of synchronizing words for synchronizing binary CFAs with n states. The

latter length has been evaluated by Kisielewicz, Kowalski, and Szyku la

in [43] as a result of a series of massive experiments. Namely, the aver-

age length of synchronizing word for synchronizing binary CFAs with n

states is approximately equal to 2.5
√
n− 5. If one looks at the graphs

in Figures 3.8 and 3.9, one may observe that they match the expectation

above. Indeed, the expression 2.5
√
n− 5 gives 12.5 for n = 30 and ap-

proximately 21.65 for n = 80. Extrapolating the graphs in Figures 3.8

and 3.9 to the right, one gets very close values for the ordinates that

would correspond to ρ = 60 and respectively ρ = 160.

97

Experimental study in PFAs synchronization

0 10 20 30 40 50 60
0

5

10

ρ

A
ve

ra
ge

E
R
T

Figure 3.8: Influence of density on the average RET for 30 states

155 156 157 158 159

24

25

26

27

ρ

A
ve

ra
ge

C
R
T

Figure 3.9: Influence of density on the average RCT for 80 states

The same behaviour was observed in our experiments with PFAs of

other sizes.

98

Experimental study in PFAs synchronization

3.5 Slowly synchronizing automata

and benchmarks

Besides experimenting with randomly generated PFAs, we have tested

our approach on certain provably “slowly synchronizing” automata, that

is, the ones with the minimum length of carefully synchronizing words

close to of the state number squared.

We restrict ourselves to almost complete PFAs in the sense of

Subsection 3.4.1; recall that these are binary PFAs with only one un-

defined transitions. De Bondt, Don, and Zantema [18, Theorem 17] have

proved that for any sufficiently large n divisible by 10, there exists an

almost complete PFA with n states whose shortest carefully synchroniz-

ing word length is Ω(2
n
5). This remarkable result has been obtained by a

series of non-trivial constructions, built one of the top of others, so that

it is very difficult to estimate the constant behind the Ω-notation, to say

nothing of exhibiting any such PFA in an explicit form. Therefore we

could not test our method on these PFAs.

Fortunately, the same paper [18] provides also the following explicit

series of slowly synchronizing almost complete PFAs. For each n ≥ 3,

let Pn stand for the PFA with the state set {1, 2, . . . , n}, on which the

input letters a and b act as follows:

q.a :=

{

q + 1 if q = 1, 2,

q if 3 ≤ q ≤ n;
q.b :=

undefined if q = 1,

q + 1 if 2 ≤ q ≤ n− 1,

1 if q = n.

The automaton Pn with n ≥ 4 is shown in Figure 3.10.

99

Experimental study in PFAs synchronization

n

1

2

3

4

a

a

a
b

a
a
b

b

.

Figure 3.10: The automaton Pn

Recall that the classic sequence fib(m) of the Fibonacci numbers is

defined by the recurrence fib(m) = fib(m− 1) + fib(m− 2) for m ≥ 2,

together with the initial condition fib(0) = 0, fib(1) = 1. The following

result is stated in [18] without proof:

Proposition 3.2. For n ≥ 3, let m be a unique integer that satisfies the

double inequality fib(m − 1) < n − 2 ≤ fib(m). The shortest carefully

synchronizing word for the automaton Pn has length

n2 +mn− 5n− fib(m+ 1)− 2m+ 8.

We applied our algorithm to automata Pn with n = 4, 5, . . . , 12,

and for each of them, our result matched the value predicted in Propo-

sition 3.2. The time consumed ranged from 0.301 sec for n = 4 to 14164

sec for n = 12. Observe that in the latter case the shortest carefully

synchronizing word has length 141 so that the “honest” binary search

started with (P12, 1) required 16 calls of MiniSat, namely, for the en-

codings of (P12, ℓ) with ℓ = 1, 2, 4, 8, 16, 32, 64, 128, 256, 192, 160, 144,

136, 140, 142, 141. (Of course, if one just wants to confirm (or to dis-

prove) a theoretical prediction ℓ for the minimum length of carefully syn-

100

Experimental study in PFAs synchronization

chronizing words for a given PFA A , two calls of a SAT solver suffice—on

the encodings of the CSW instances (A , ℓ) and (A , ℓ− 1).)

In our experiments, we kept track of PFAs with the minimum length

of carefully synchronizing words close to the square of the number of

states. Whenever we encountered such examples, we made an attempt

to generalize them in order to get infinite series of provably “slowly syn-

chronizing” PFAs. We present here two of the series we found this way.

n−2

n−1

1

2

3

0

a

a

a a

a
b

b
a
b

b

.

Figure 3.11: The automaton H ′
n

For n > 4, let H ′
n be the PFA with the state set {0, 1, . . . , n− 1} on

which the input letters a and b act as follows:

q.a :=

{

2 if q ≤ 2,

q if q ≥ 3;
q.b :=

undefined if q = 0,

q + 1 if 0 < q < n− 1,

1 if q = n− 1.

The automaton H ′
n is shown in Figure 3.11. The reader acquainted

with the theory of complete synchronizing automata immediately recog-

nizes that the subautomaton induced by the action of a and b on the

set {1, . . . , n − 1} is exactly the (n − 1)-state automaton Cn−1 from

101

Experimental study in PFAs synchronization

the famous series discovered by Černý [15], see Figure 1.6. Clearly, if

a PFA A has a subautomaton B, then every carefully synchronizing

word for A (if exists) also serves as a carefully synchronizing word for

B. Hence, every carefully synchronizing word for H ′
n (if exists) must

be a synchronizing word for the complete subautomaton Cn−1. It fol-

lows from [15, Lemma 1], see also [3, Theorem 3] for an easy alterna-

tive proof, that the shortest synchronizing word for Cn−1 is the word

w := (abn−2)n−3a of length (n − 2)2 which brings every state of the

subautomaton to the state 2. Hence no carefully synchronizing word for

H ′
n can be shorter than w. On the other hand, one can readily compute

that 0.w = 2 as well, whence w is a carefully synchronizing word for the

whole automaton H ′
n . We have thus established

Proposition 3.3. The automaton H ′
n is carefully synchronizing and

the minimum length of carefully synchronizing words for H ′
n is equal to

(n− 2)2.

For n > 4, let H ′′
n be the PFA with the state set {0, 1, . . . , n − 1}

on which the input letters a and b act as follows:

q.a :=

{

q + 1 if q ≤ n− 2,

1 if q = n− 1;
q.b :=

{

undefined if q = 0,

q + 1 (mod n) if q ≥ 1.

The automaton H ′′
n is shown in Figure 3.12. We observe that the au-

tomata H ′′
n are closely related to the so-called Wielandt automata Wn

which plays a role in the theory of complete synchronizing automata;

see [3, Theorem 2]. Namely, Wn is just H ′′
n with the transition 0

b→ 1

added.

102

Experimental study in PFAs synchronization

n−2

n−1

0

1

2

a
a
b

b

a
b

a

.

Figure 3.12: The automaton H ′′
n

Proposition 3.4. The automaton H ′′
n is carefully synchronizing and

the minimum length of carefully synchronizing words for H ′
n is equal to

n2 − 3n+ 3.

Proof. We use a suitable adaptation of the argument developed in [3] for

studying slowly synchronizing DFAs.

Suppose that H ′′
n is carefully synchronizing and let w be its carefully

synchronizing word of minimum length. Then w must bring the automa-

ton to the state 1; otherwise, removing from w its last letter would yield

a shorter carefully synchronizing word. Since the letter a is everywhere

defined, for every positive integer i, the word aiw also brings H ′′
n to

the state 1. In particular, 1.aiw = 1, that is, aiw labels a cycle in the

underlying digraph of H ′′
n . Therefore, for every ℓ ≥ |w|, there is a cycle

of length ℓ in H ′′
n . The underlying digraph of H ′′

n has simple cycles only

of two lengths: n and n − 1. Each cycle of the digraph must consist of

simple cycles of these two lengths, whence each number ℓ ≥ |w| must be

expressible as a non-negative integer combination of n and n − 1. Here

we invoke the following well-known and elementary result from number

theory:

103

Experimental study in PFAs synchronization

Lemma 3.3 ([72, Theorem 2.1.1]). If k1, k2 are relatively prime positive

integers, then k1k2− k1− k2 is the largest integer that is not expressible

as a non-negative integer combination of k1 and k2.

Lemma 3.3 implies that |w| > n(n− 1)−n− (n− 1) = n2− 3n+ 1.

Suppose that |w| = n2 − 3n + 2. Since 0.w = 1, there should be a

path of this length the state 0 to the state 1. The only letter defined at

0 is the letter a, whence w = av for some v. Since 0.a = 1, we have

1.v = 1 so that the word v labels a cycle in H ′′
n . However, the length

of v is n2 − 3n+ 1 = n(n− 1)− n− (n− 1) and Lemma 3.3. no cycles

of this length may exist in the digraph of H ′′
n , a contradiction. Hence,

|w| ≥ n2 − 3n + 3. On the other hand, it can be readily verified that

the word (aban−2)n−3aba of length n(n− 3) + 3 = n2 − 3n+ 3 carefully

synchronizes the automaton H ′′
n . Hence H ′′

n is carefully synchronizing,

and n2 − 3n + 3 is the minimum length of its carefully synchronizing

words.

From the viewpoint of our studies, the series H ′
n and H ′′

n are of in-

terest as they exhibit two extremes with respect to amenability of careful

synchronization to the SAT-solver approach. The series H ′
n is turned

to be a hard nut to crack for our algorithm: the maximum n for which

the algorithm was able to find a carefully synchronizing word of mini-

mum length is 13, and computing this word (of length 121) took almost

4 hours. In contrast, automata in the series H ′′
n turn out to be quite

amenable: for instance, our algorithm found a carefully synchronizing

word of length 343 for H ′′
20 in 13.38 sec. At present, we have no explana-

tion for what causes such a strong contrast: is this an intrinsic structure

of the PFAs under consideration, or the nature of the algorithm build in

MiniSat, or just a peculiarity of our implementation?

104

Experimental study in PFAs synchronization

3.6 A comparison with the partial power

automaton method

We made a comparison between our approach and the only method for

computing carefully synchronizing words of minimum length that we

had found in the literature, namely, the method based on partial power

automata; see [60, p. 295]. Given a PFA A = (Q,Σ, δ), its partial power

automaton P(A) has the non-empty subsets of Q as the states, the same

input alphabet Σ, and the transition function defined as follows: for each

a ∈ Σ and each P ⊆ Q,

P.a :=

{

{q.a | q ∈ P} provided q.a is defined for all q ∈ P ,
undefined otherwise.

Recall that this definition differs from the one we introduced in (1.1)

in Section 1.4 where P.a was defined just as P.a := {q.a | q ∈ P}.
Under that definition, a letter a was undefined at P if and only if a

was undefined at every q ∈ P . Here, in contrast, a is defined at P if

and only if a is defined at every q ∈ P . For an illustration, Figures 3.13

and 3.14 show a PFA and its partial power automaton.

0 2

1

b

a ba,b

Figure 3.13: A carefully synchronizing PFA

105

Experimental study in PFAs synchronization

012

02

120120

1

b

a b

a,b

b

b

a
b

b

Figure 3.14: Partial power automaton of the PFA in Figure 3.13

It is easy to see that w ∈ Σ∗ is a carefully synchronizing word of

minimum length for A if and only if w labels a minimum length path

in P(A) starting at Q and ending at a singleton. Such a path can be

found by breadth-first search in the underlying digraph of P(A).

We implemented the partial power automaton method and ran it on

our samples of random PFAs. Figure 3.15 presents the results of the com-

parison. In this experiment we had to restrict to PFAs with at most 16

states since beyond this size of states, our implementation of the method

based on partial power automata could not complete the computation

due to memory restrictions (recall that we used rather modest compu-

tational resources). However, we think that the exhibited data suffice to

demonstrate that the SAT-solver approach performs by far better.

106

Experimental study in PFAs synchronization

6 8 10 12 14 16

0

100

200

300

Number of states n

T
im

e
(s

ec
)

SAT-solver approach
MPPA

Figure 3.15: Comparison between the partial power automaton method
and the SAT-solver approach

107

Chapter 4

Synchronization problems

of NFAs

In this chapter we are concerned with modelingDi-synchronization prob-

lems of a general NFA as SAT problems. Each one of these problems

requires its own encoding. However, the three encodings share the same

core: a part of clauses that encode the computation of a given NFA.

We first present this common part and then proceed with parts that are

specific for each version of synchronization.

4.1 Modeling NFA computation as SAT:

Variables

Given an NFA A and an integer ℓ, we will construct, in polynomial

time with respect to the size of (A , ℓ), an instance (V, C) of SAT that

simulates the computation of a word of length ℓ in A . Following the

108

Synchronization problems of NFAs

style adopted in Chapter 2, in the presentation of our modeling, precise

definitions and statements are interwoven with less formal comments

explaining the “physical” meaning of variables and clauses we introduce

and with estimations of their numbers.

Take a NFA A = (Q,Σ, δ) and an integer ℓ > 0. Denote the size ofQ

by n and fix some numbering of the states in Q so that Q = {q1, . . . , qn}.
Let Σ = {0, 1}, we restrict our selves to the case of binary NFAs.

We start with introducing the variables used in the instance (V, C)

of SAT that encodes (A , ℓ).

The set V consists of two sorts of variables:

1. Letter variables

2. Token variables

The letter variables are x1, . . . , xℓ. They are just placeholders for the

input symbols 0 and 1. There is an obvious 1-1 correspondence between

the truth assignments on the set X = {x1, . . . , xℓ} and the words in

Σℓ: given a truth assignment τ : X → {0, 1}, the corresponding word is

τ(x1) · · · τ(xℓ), and, conversely, given a word a1 · · · aℓ with a1, . . . , aℓ ∈
{0, 1}, the corresponding truth assignment is xt 7→ at for each t =

1, . . . , ℓ.

The role of the letters variables is exactly the same as for PFAs. In

contrast, we need some new sort of variables in order to reflect the non-

determinism. When an input word is applied at specified state of an

NFA A there may be several states to which A may transfer. Given

an input word w and an NFA A = (Q,Σ, δ), the significant parameter

in verifying whether or not w is a Di-synchronizing word for A is the

relation between all the sets δ(q, w) for each q ∈ Q. In contrast for PFAs

109

Synchronization problems of NFAs

the significant parameter of synchronization is the set of active states at

the end of the application of the word w. Hence the state variables used

in encoding of PFAs may be not sufficient in Di-synchronization. We

introduce new sort of variables called token variables.

The token variables are ytij where i, j ∈ {1, . . . , n} and t = 0, 1, . . . , ℓ.

To explain the role of these variables, we use a solitaire-like game Γ on

the underlying directed graph representing the NFA A .

In the initial position of Γ, each state qi ∈ Q holds exactly one token

denoted i.

In the course of the game, tokens migrate and may multiply or dis-

appear according to certain rules that will be specified a bit later, when

we describe the clauses in C.

For the moment, it is sufficient to say that the rules are designed to

ensure that the variable ytij gets value 1 in a satisfying truth assignment

for C if and only if after t rounds of the game, one of the tokens held by

the state qj is i.

4.2 Modeling NFA computation as SAT:

Clauses

The computation of the input word with length ℓ in A will be read from

the set of clauses C. It is the disjoint union of ℓ+ 1 sets:

1. The set C0 of Initial clauses

2. The sets Ct, t = 1, . . . , ℓ, of Transition clauses

3. The set S of Synchronization clauses.

110

Synchronization problems of NFAs

The clauses in C0 describes the automaton at the initial position(no

word has been applied). Hence they encode the initial position of our

game Γ. As mentioned, in this position, each state qi ∈ Q holds the token

i and nothing else. In order to reflect this setting, we let C0 consist of

the clauses:

y011, . . . , y
0
nn (4.1)

along with all clauses of the form

¬y0ij; i 6= j (4.2)

Altogether the set of clauses in (4.1) with the set of clauses in (4.2), the

initial clauses C0 contains n2 one-literal clauses. Recall that in encoding

for PFAs, the set of initial clauses consisted of just n clauses.

The transition clauses are the clauses that encode the rules of Γ. In

the course of the game, tokens migrate and may multiply or disappear

according to the previous position of the game and the action of the

player. So the transition clauses set is the set of clauses Ct, t = 1, . . . , ℓ.

The token status is determined according the following rules:

1. At each move an input symbol a ∈ Σ is chosen.

2. For each state q ∈ Q such that q.a 6= ∅, all tokens that were held

by q slide along the edges labeled a to all states in the set q.a.

3. If |q.a| > 1, then every token held by q multiplies to |q.a| identical

tokens, one for each state in q.a.

4. If q.a = ∅, then all tokens that were held by q disappear.

From these rules we have a guarantee that, after the move, the token

111

Synchronization problems of NFAs

Applying 0 Applying 1

1

5 2

4 3

0

0

0

1

0
1

11

0

0

1

1, 5

1

3, 4 2

4 2, 5

1 1

0

0

0

1
1

0
1

1

0

0

1 0

0

0

1
1

0
1

1

0

0

1

Figure 4.1: Redistribution of tokens after the first move

i occurs at a state p ∈ Q if and only if p ∈ q.a for some state q that had

held i just prior to the move.

For an illustration, Figure 4.1 demonstrates the initial distribution

of tokens on a 5-state NFA with the input alphabet {0, 1} (top), along

with the outcomes of the first move, depending on whether 0 or 1 has

been chosen for the move (bottom left and bottom right, respectively).

Perhaps, it makes sense to add a matrix interpretation of the game

Γ as the token variables get quite a clear meaning under this interpreta-

tion. The initial position of Γ can be thought of as the identity Boolean

Q×Q-matrix. At each move, an input symbol a ∈ Σ is chosen and the

112

Synchronization problems of NFAs

matrix of the current position is right multiplied by the matrix M(a) see

Subsection 1.5 for matrix representation of NFAs. Then for each fixed

t, the values of the variables ytij are exactly the entries of the matrix

corresponding to the position of Γ after t moves. For instance, the ma-

trices that correspond to two possible positions of the game played on

the 5-state NFA in Fig. 4.1 are respectively

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

1 0 0 0 0

0 0 1 1 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 1

0 1 0 0 0

.

From that encoding, the following observation is immediate.

Lemma 4.1. Suppose that in the game Γ played on A = (Q,Σ, δ),

the sequence of chosen symbols forms a word w ∈ Σ∗. Then for each

i = 1, . . . , n, the set of states holding the token i at the end of the game

is qi.w.

4.3 Propositional logic formulas for rules

This section expresses the rules of Γ by formulas of propositional logic.

Recall from Section 2.2, that for a state q ∈ Q, P0(q) and P1(q) stand

for the sets of all preimages of q under the actions of the input symbols

0 and respectively 1, that is, if a is either of the two symbols,

Pa(q) = {p ∈ Q | q ∈ p.a} (4.3)

113

Synchronization problems of NFAs

Consider for every t = 1, . . . , ℓ and all i, j = 1, . . . , n, the following

formulas:

Ψt
ij : ytij ⇐⇒

(

xt ∧
∨

qk∈P1(qj)

yt−1ik

)

∨
(

¬xt ∧
∨

qh∈P0(qj)

yt−1ih

)

(4.4)

Observe that the equivalence Ψt
ij just translates in the language of

propositional logic our propagation rule for the tokens that says that

the token i occurs at the state qj after t moves if and only if one of the

following alternatives takes place:

• the t-th move was done with the input symbol 1 and one of the

preimages of qj under the actions of 1 was holding i after t − 1

moves, or

• the t-th move was done with the input symbol 0 and one of the

preimages of qj under the actions of 0 was holding i after t − 1

moves.

Lemma 4.2. For every t = 0, 1, . . . , ℓ, every truth assignment τ on the

set X of letter variables has a unique extension τ to the token variables

ysij that makes the clauses in C0 and the formulas Ψs
ij hold true (i, j =

1, . . . , n, s = 1, . . . , t). The token variable ysij gets value 1 under τ if

and only if after the moves τ(x1), . . . , τ(xs) of the game Γ, one of the

tokens held by the state qj is i.

Proof. We induct on t. The induction basis t = 0 is clear: we have to

satisfy the clauses in C0 and the only way to satisfy a one-literal clause

is to assign value 1 to its only literal. Hence, independently of ϕ, we

have to set for all i, j = 1, . . . , n,

114

Synchronization problems of NFAs

τ(y0ij) =

{

1 if i = j,

0 otherwise.

Observe that then, in the accordance with the initial setting of the game

Γ, the variable y0ij gets value 1 exactly when the token held by the state

qj is i.

Now suppose that t > 0 and there exists a unique way to define

ϕ(ysij) for all i, j = 1, . . . , n, s = 0, . . . , t − 1, such that the clauses in

C0 and the formulas Ψs
ij with i, j = 1, . . . , n and s = 1, . . . , t − 1 hold

true. If the variable xt is assigned the value ϕ(xt), the value of the right

hand side of each equivalence Ψt
ij is uniquely defined, and to make this

equivalence hold true, we must assign the value to the left hand side,

that is, the variable ytij. This gives a unique way to extend τ to the

variables ytij, where i, j = 1, . . . , n. As observed prior to the formulation

of the lemma, the equivalences Ψt
ij express the rule of Γ. Therefore the

token i will migrate to the state qj after the move τ(xt) if and only if

the variable ytij gets value 1 under this extension.

4.4 CNF formulas

For each t = 1, . . . , ℓ, we define the set Ct as the set of all clauses of a

suitable CNF (conjunctive normal form) equivalent to
∧

1≤i,j≤n
Ψt

ij. In our

basic encoding, the set Ct consists of the following clauses:

115

Synchronization problems of NFAs

¬ytij ∨ xt ∨
∨

qh∈P0(qj)

yt−1ih , ¬ytij ∨ ¬xt ∨
∨

qk∈P1(qj)

yt−1ik , (4.5)

ytij ∨ ¬xt ∨ ¬yt−1ik for each qk ∈ P1(qj), (4.6)

ytij ∨ xt ∨ ¬yt−1ih for each qh ∈ P0(qj). (4.7)

The verification of the equivalence between
∧

1≤i,j≤n
Ψt

ij and the conjunc-

tion of the clauses in (4.5)–(4.7) is routine, but we include it here for the

sake of completeness.

For each t = 1, . . . , ℓ, and i, j = 1, . . . , n and any truth assignment

such that xt = 1, the equivalence Ψt
ij in (4.4) simplifies to

Ψt
ij : ytij ⇐⇒

(

∨

qk∈P1(qj)

yt−1ik

)

. (4.8)

And the set of clauses from (4.5)–(4.7) will have the forms

¬ytij ∨
∨

qk∈P1(qj)

yt−1ik , (4.9)

ytij ∨ ¬yt−1ik for each qk ∈ P1(qj). (4.10)

Let xt = 0. Then the equivalence Ψt
ij in (4.4) simplifies to

Ψt
ij : ytij ⇐⇒

(

∨

qh∈P0(qj)

yt−1ih

)

. (4.11)

And the set of clauses from (4.5)–(4.7) will have the forms

116

Synchronization problems of NFAs

¬ytij ∨
∨

qh∈P1(qj)

yt−1ih , (4.12)

ytij ∨ ¬yt−1ih for each qh ∈ P1(qj). (4.13)

It may be worth explaining how the clauses of the form (4.5)–(4.7) are

understood in the case when one of the sets P0(qj) or P1(qj) or both

of these sets happen to be empty. In (4.5) the disjunctions over the

empty sets are omitted so that if, say, P0(qj) = ∅, then the first clause

in (4.5) reduces to ¬ytij ∨xt As for (4.6) or (4.7), these clauses disappear

whenever P1(qj) or, respectively P0(qj) are empty.

In the next sections we formally present the three different problems.

All of them use the encoding described in Sections 4.1–4.4 and an extra

part called synchronization clauses. Such part is a critical part for each

problem as it defines the required conditions for the problem.

4.5 NFA-synchronization problems

The synchronization of nondeterministic automata has several issues.

Each one has its rules and formalization that the given automaton must

satisfy in order to be a synchronizing with respect this issue. In this

section we will show how model works in each problem of NFA synchro-

nization.

4.5.1 D3-synchronization

This subsection presents a model from which we can test if the given

NFA has a D3-synchronizing word of a specified length or not. This

problem is formally described in the following D3W problem

117

Synchronization problems of NFAs

D3W: the existence of a D3-synchronizing word of a given length

Input: A NFA A with two input symbols and a positive integer

ℓ.

Output: YES if A has a D3-synchronizing word of length ℓ; NO

otherwise.

Recall that the automaton A = (Q,Σ, δ) is a D3-synchronizing if it

has a word w ∈ Σ∗ such that

⋂

q∈Q
q.w 6= ∅

In previous section, the computation of the word w of length ℓ in

the automaton A = (Q,Σ = {0, 1}, δ) is encoded to the set of clauses

C0 and Ct; 1 ≤ t ≤ ℓ. In order to make the complete reduction from

the D3W problem to an instance (V, C) of SAT, we need yet another

set of clauses added to C0 and Ct that simulates the condition of D3-

synchronization. This set of clauses is called the set of synchronization

clauses and is denoted by S.

By the definition of D3-synchronization, the answer to the instance

(A , ℓ) is YES if and only if there exists a word w ∈ Σℓ such that

⋂

q∈Q
q.w 6= ∅.

Lemma 4.1 readily implies that a word w = a1 · · · aℓ is D3-synchronizing

for A if and only if after the moves a1, . . . , aℓ in the game Γ on A , some

state qj holds all tokens 1, . . . ,n. This is equivalent to saying that the

formula

118

Synchronization problems of NFAs

n
∨

j=1

n
∧

i=1

yℓij (4.14)

holds true under the extension, specified in Lemma 4.2, of the truth as-

signment on X defined by w. A little difficulty is that a direct conversion

of the formula (4.14) into a CNF produces 2n clauses. To overcome this

difficulty, we use a standard trick for which we need new variables. We

call such variables synchronization variables.

The synchronization variables are z1, . . . , zn. They play the role of

indicators showing which states may occur at the end of applying the

input word w. The clauses of C will be chosen so that the variable zj gets

value 1 in a satisfying assignment for C if and only the state qj belongs

to the set
⋂

q∈Q q.w, where w is the word defined by the restriction of

the assignment to X. Let S consist of the following n2 + 1 clauses:

n
∨

j=1

zj (4.15)

¬zj ∨ yℓij for all i, j = 1, . . . , n. (4.16)

It is easy to see that the set S and the formula (4.14) are equisatisfi-

able; moreover, if Y = {yℓij | i, j = 1, . . . , n} and Z = {z1, . . . , zn}, then

every truth assignment on Y that satisfies (4.14) can be extended to a

truth assignment on Y ∪ Z that satisfies S, and, conversely, for every

truth assignment on Y ∪ Z that satisfies S, its restriction to Y satisfies

(4.14).

Theorem 4.1. There is a polynomial reduction from the D3W problem

to an instance (V, C) of SAT

Proof. Starting with D3W problem, the reduced SAT has the set of

119

Synchronization problems of NFAs

variables V that is the collection of three sets of variables; letter variables,

the token variables, and synchronization variables. Summing up the

cardinalities of these sets, the total number of variables in V is ℓ +

n2(ℓ+ 1) + n.

Now let us estimate the number of clauses in the set C = S∪⋃ℓ
t=0Ct.

Let m stand for the number of all transitions in A , that is, triples

(q, a, q′) ∈ Q × Σ × Q with q′ ∈ δ(q, a). Clearly, m ≤ 2n2. For each

fixed i, the number
∑n

j=1(|P1(qj)|+ |P0(qj)|) of clauses of the forms (4.6)

and (4.7) is equal to m, whence the total number of such “short” clauses

is mn. As for “long” clauses in (4.5), there are at most two such clauses

for each fixed pair (i, j), whence their total number does not exceed 2n2.

Altogether, |Ct| ≤ n(m+ 2n) ≤ 2n2(n+ 1) for each t = 1, . . . , ℓ. |S| =
n2 +1, and |C0| = n2. Hence C consists of at most n(m+2n)ℓ+2n2+1

clauses. Thus, constructing (V, C) from A takes time polynomial in n

and ℓ.

Summarizing the above discussion, we arrive at the main result of

the subsection.

Theorem 4.2. An NFA A has a D3-synchronizing word of length ℓ if

and only if the instance (V, C) of SAT constructed above is satisfiable.

Moreover, the above reduction from D3W to SAT yields the following

fact:

Corollary 4.1. There is a 1-1 correspondence between the D3-synchro-

nizing words of length ℓ for A and the restrictions of satisfying assign-

ments of (V, C) to the letter variables.

120

Synchronization problems of NFAs

4.5.2 D2 synchronization

At this time we are concerned with another problem of NFA synchro-

nization, that is, D2-synchronization. Recall that a word w ∈ Σ∗ is said

to be D2-synchronizing for A = (Q,Σ, δ) if q.w = q′.w for all q, q′ ∈ Q.
The equality q.w = q′.w ensures that if a D2-synchronizing word is un-

defined at some state, the word must be nowhere defined. Thus, a D2-

synchronizing word is either nowhere or everywhere defined. Hence the

synchronization clauses have different formulas depending on the criteria

that the word w must satisfy. Indeed, there is a basic criterion:

∀q ∈ Q ∃R ⊂ P(Q), q.w = R (4.17)

And some other criteria that depend on the practical digital system of

that NFA. that is: does the needed D2-synchronizing word have to be

defined everywhere or nowhere defined? The answer to this question

determines the cardinality of the set R, and hence we can classify the

D2-synchronization into three subclasses; Dr
2; r ∈ {1, 2, 3}.

Definition 4.1. The word w ∈ Σ∗ will be a Dr
2-synchronizing word for an

NFA A = (Q,Σ, δ) if it satisfies the condition (Dr
2) from the list below:

(D1
2): ∃R ⊂ P(Q) ∀q ∈ Q, q.w = R and |R| > 0,

(D2
2): ∃R ⊂ P(Q) ∀q ∈ Q, q.w = R and |R| > 0,

(D3
2): ∃R ⊂ P(Q) ∀q ∈ Q, q.w = R and |R| = 0.

In D1
2 and D3

2 the requirement q.w 6= ∅ for all q ∈ Q is neglected.

In these two versions, every word that is nowhere defined becomes a

D2-synchronizing word.

121

Synchronization problems of NFAs

Definition 4.2. A given NFA A = (Q,Σ, δ) is Dr
2-synchronizing if it has

a Dr
2-synchronizing word; r ∈ {1, 2, 3}.
Hence we describe the main problem of this subsection by D2rW

problem.

D2rW: the existence of a Dr
2-synchronizing word of a given length

Input: A NFA A with 2 input symbols, a positive integer ℓ, and

a positive integer r ∈ {1, 2, 3}.
Output: YES if A has a Dr

2-synchronizing word of length ℓ; NO

otherwise.

In the following, we formulate the set of synchronizing clauses Sr for

Dr
2-synchronizing words for every r = 1, 2, 3.

S1 : ¬yℓij ∨ yℓi+1 (mod n) j, i, j = 0, . . . , n− 1; (4.18)

S2 : ¬yℓij ∨ yℓi+1 (mod n) j, i, j = 0, . . . , n− 1;
∨

0≤j≤n−1
yℓ0j;

(4.19)

S3 :
∧

0≤i,j≤n−1
¬yℓij. (4.20)

Here, S1 means that all tokens are held by the same set of states or

no tokens are held by any state q ∈ Q.

S2 means that there is at least one state q ∈ Q holds all tokens. We

call this version as proper D2-synchronization

S3 means that there are no tokens held by any state q ∈ Q. This set

simulates the mortal word.

122

Synchronization problems of NFAs

Summarizing the above discussion, we arrive at the main theorem of

this subsection.

Theorem 4.3. An NFA A has a Dr
2-synchronizing word, r ∈ {1, 2, 3},

of length ℓ if and only if the instance (V, C) of SAT constructed above

is satisfiable, and the construction takes time polynomial in the size of A

and the value of ℓ. Moreover, a word w = a1 · · · aℓ with

a1, . . . , aℓ ∈ {0, 1} is Dr
2-synchronizing for A if and only if the map

xt 7→ at, t = 1, . . . , ℓ, extends to a satisfying assignment for (V, C).

Proof. Let the instance SAT (V, C) be satisfiable. This means that every

clause is true. Then each clause in S2 is true. The set of clauses

¬yℓij ∨ yℓi+1 (mod n) j, i, j = 0, . . . , n− 1.

are equivalent to the cycle of implications

yℓ0j → yℓ1j, y
ℓ
1j → yℓ2j, . . . , y

ℓ
n−1 j → yℓ0j

Case 1: If the variable yℓij is true then so are all variables yℓkj with

k 6= i, 0 ≤ k ≤ n − 1. This means that the state qj must hold

all n tokens 0, 1, . . . ,n− 1. So we can say that the application of

the word w sends all the states of the automaton to the state j.

Case 2: Let all variables yℓij, 0 ≤ i, j ≤ n− 1, be false. From the meaning

of the token variables yij, we can extract that, at the end of the

application of the word w there are no token held by any state in

Q. Hence, the application of the word w sends all the states of the

automaton to an undefined state. that is equivalent to the word w

is nowhere defined

123

Synchronization problems of NFAs

Then the SAT problem with a set of synchronization clauses S1 is sat-

isfiable in either case 1 or case 2. These two situations imply that the

word w is a D1
2-synchronizing word for the given automaton.

In the case of D2
2, we have the set of clauses S2. If the SAT instance

is satisfiable, then the clause

∨

0≤j≤n−1
yℓ0j.

must be true. This clause is true if at least one of its variables yℓ0j is true.

With the cycle of implications for the variables yℓij, this means that there

is at least one state that hold all n tokens, and hence the automaton is

a D2
2-synchronizing.

For D3
2, the synchronization clauses S3 are true if and only if all

variables yℓij are false. Thus there are no token held by any states which

implies that the word w is a mortal word for the automaton.

If the automaton is D1
2-synchronizing; q.w = q′.w for all q, q′ ∈ Q.

In our encoding this means that, there is some state qj that holds all n

tokens 0, 1, . . . ,n− 1 and hence all the variables yℓij, 0 ≤ i ≤ n−1, must

be true. So the SAT problem is satisfiable. If the word w is nowhere

defined, then after the move ℓ, 0 ≤ i ≤ n− 1, the variables yℓij must be

false which means the SAT is satisfiable. This is the same situation for

D3
2-synchronizing.

Let the automaton is D2
2-synchronizing; q.w = q′.w 6= ∅ for all

q, q′ ∈ Q. In our encoding this means that, there is at least one state

qj that holds all n tokens 0, 1, . . . ,n− 1. Thus all clauses in the set S2

must be true. So the SAT problem is satisfiable.

The whole set C = S ∪ ⋃ℓ
t=0Ct has at most 2n2((n + 1)ℓ+ 1) + 1

124

Synchronization problems of NFAs

clauses. The number of variables is less than the number of variables of

D3W problem as in D2W we do not use the synchronization variables

Thus, the polynomial 2x2((x+ 1)y+ 1) + 1 can be taken as c(x, y) from

the definition of polynomial reduction.

4.5.3 D1-synchronization

In this subsection, we search for a word of specified length that sends the

NFA automaton from any state to a unique state. This is the version

of NFAs synchronization that is very similar to DFAs synchronization.

The problem that we study is the following D1W problem.

D1W: the existence of a D1-synchronizing word of a given length

Input: A NFA A with 2 input symbols and a positive integer ℓ.

Output: YES if A has a D1-synchronizing word of length ℓ; NO

otherwise.

A word w is a D1-synchronizing for the automaton A = (Q,Σ, δ) if

∃ p ∈ Q such that ∀ q ∈ Q, q.w = p. In our encoding, the word w ∈ Σℓ

is a D1-synchronizing word if and only if after the move ℓ there is at

least one state holds all tokens and this state must be the only state that

holds tokens. This requirement can be simulated in the coding in two

ways.

The first way is dependent on the synchronization variables. Any D1-

synchronizing automaton is D3-synchronizing, whence the synchroniza-

tion clauses of D3W problem are used here. These clauses are necessary

for D1W problem but no sufficient. In order to simulate the definition of

D1-synchronization and have a guarantee that there is exactly one state

that holds all n tokens, we put the set of synchronization clauses as in

125

Synchronization problems of NFAs

the following formulas.

n
∨

j=1

zj (4.21)

¬zj ∨ yℓij for all i, j = 1, . . . , n. (4.22)

¬zi ∨ ¬zj for all i, j = 0, . . . , n− 1, and i < j (4.23)

The second way comes from the fact that the automaton is D1-syn-

chronizing if at least it is D2
2-synchronizing. With that fact we have at

least one state holds all n tokens and no tokens are held by other states.

In order to obtain that only one state holds all tokens, the synchroniza-

tion clauses described as the conjunction of all the following clauses:

¬yℓij ∨ yℓi+1 (mod n) j, i, j = 0, . . . , n− 1. (4.24)

∨

0≤j≤n−1
yℓ0j. (4.25)

¬yℓ0i ∨ ¬yℓ0j, 0 ≤ i < j ≤ n− 1. (4.26)

From the discussion of D2 and D3, the following theorem is easy to prove

Theorem 4.4. The automaton A has a D1 synchronizing word of length

ℓ if the reduced SAT has a satisfying assignment and the construction

takes time polynomial in the size of A and the value of ℓ.

In two ways of encoding we have an instance of SAT with number of

clauses no more than 2n2((n+ 1)ℓ+ 1) + 1 +
(

n
2

)

clauses. Moreover, the

126

Synchronization problems of NFAs

ladder encoding, see Section 2.3 can be used to decrease this number of

clauses as the majority of clauses in the set of synchronization clauses

are “at-most-one” constraints.

4.6 Example of the CNF table

for DiW problems

In what follows we explain how to use the SAT solver to solve any of

the described DiW problems. Given an NFA A with n states, we write

the SAT instance (V ′, C ′), which corresponds to (A , 1), in DIMACS

CNF format, representing the variables y0ij, y
1
ij, and x1 by the numbers,

respectively, in + j + 1, n2 + in + j + 2, and n2 + 1. Consider, for a

simple illustration, the NFA E2 shown in Fig. 4.2.

q0 q1

0

1

0

0

Figure 4.2: The NFA E2

Table 4.1 presents our encoding of the D3W instance (E2, 1) as a SAT

instance. Where we need 2 synchronization variables z0 and z1. These

variables are represented as 2n2 + i + 2. In the left column the SAT

instance is shown as a list of clauses while the right column shows it in

DIMACS CNF format.

Tables 4.2 and 4.3 present our encoding of the D22W, D1W instances

(E2, 1) respectively as a SAT instance.

127

Synchronization problems of NFAs

Table 4.1: The SAT encoding of the D3W instance (E2, 1)

Clauses DIMACS CNF lines

p cnf 11 29

C ′

0

y000
¬y001
¬y010
y011

1 0

-2 0

-3 0

4 0

C ′

1

¬y100 ∨ x1 ∨ y000 ∨ y001
¬y100 ∨ ¬x1
y100 ∨ x1 ∨ ¬y000
y100 ∨ x1 ∨ ¬y001
¬y101 ∨ x1 ∨ y001
¬y101 ∨ ¬x1 ∨ y000
y101 ∨ ¬x1¬y000
y101 ∨ x1 ∨ ¬y001
¬y110 ∨ x1 ∨ y010 ∨ y011
¬y110 ∨ ¬x1
y110 ∨ x1 ∨ ¬y010
y110 ∨ x1 ∨ ¬y011
¬y111 ∨ x1 ∨ y011
¬y111 ∨ ¬x1 ∨ y010
y111 ∨ ¬x1¬y010
y111 ∨ x1 ∨ ¬y011

-6 5 1 2 0

-6 -5 0

6 5 -1 0

6 5 -2 0

-7 5 2 0

-7 -5 1 0

7 -5 -1 0

7 5 -2 0

-8 5 3 4 0

-8 -5 0

8 5 -3 0

8 5 -4 0

-9 5 4 0

-9 -5 3 0

9 -5 -3 0

9 5 -4 0

S ′

z0 ∨ z1
¬z0 ∨ y100
¬z0 ∨ y110
¬z1 ∨ y101
¬z1 ∨ y111
¬y100 ∨ z0
¬y110 ∨ z0
¬y101 ∨ z1
¬y111 ∨ z1

10 11 0

-10 6 0

-10 8 0

-11 7 0

-11 9 0

10 -6 0

10 -8 0

11 -7 0

11 -9 0

128

Synchronization problems of NFAs

Table 4.2: The SAT encoding of the D22W instance (E2, 1)

Clauses DIMACS CNF lines

p cnf 9 25

C ′

0

y000
¬y001
¬y010
y011

1 0

-2 0

-3 0

4 0

C ′

1

¬y100 ∨ x1 ∨ y000 ∨ y001
¬y100 ∨ ¬x1
y100 ∨ x1 ∨ ¬y000
y100 ∨ x1 ∨ ¬y001
¬y101 ∨ x1 ∨ y001
¬y101 ∨ ¬x1 ∨ y000
y101 ∨ ¬x1¬y000
y101 ∨ x1 ∨ ¬y001
¬y110 ∨ x1 ∨ y010 ∨ y011
¬y110 ∨ ¬x1
y110 ∨ x1 ∨ ¬y010
y110 ∨ x1 ∨ ¬y011
¬y111 ∨ x1 ∨ y011
¬y111 ∨ ¬x1 ∨ y010
y111 ∨ ¬x1¬y010
y111 ∨ x1 ∨ ¬y011

-6 5 1 2 0

-6 -5 0

6 5 -1 0

6 5 -2 0

-7 5 2 0

-7 -5 1 0

7 -5 -1 0

7 5 -2 0

-8 5 3 4 0

-8 -5 0

8 5 -3 0

8 5 -4 0

-9 5 4 0

-9 -5 3 0

9 -5 -3 0

9 5 -4 0

S ′

¬y100 ∨ y101
¬y101 ∨ y100
¬y110 ∨ y111
¬y111 ∨ y110
y100 ∨ y101

-6 7 0

-7 6 0

-8 9 0

-9 8 0

6 7 0

129

Synchronization problems of NFAs

Table 4.3: The SAT encoding of the D1W instance (E2, 1)

Clauses DIMACS CNF lines

p cnf 9 30

C ′

0

y000
¬y001
¬y010
y011

1 0

-2 0

-3 0

4 0

C ′

1

¬y100 ∨ x1 ∨ y000 ∨ y001
¬y100 ∨ ¬x1
y100 ∨ x1 ∨ ¬y000
y100 ∨ x1 ∨ ¬y001
¬y101 ∨ x1 ∨ y001
¬y101 ∨ ¬x1 ∨ y000
y101 ∨ ¬x1¬y000
y101 ∨ x1 ∨ ¬y001
¬y110 ∨ x1 ∨ y010 ∨ y011
¬y110 ∨ ¬x1
y110 ∨ x1 ∨ ¬y010
y110 ∨ x1 ∨ ¬y011
¬y111 ∨ x1 ∨ y011
¬y111 ∨ ¬x1 ∨ y010
y111 ∨ ¬x1¬y010
y111 ∨ x1 ∨ ¬y011

-6 5 1 2 0

-6 -5 0

6 5 -1 0

6 5 -2 0

-7 5 2 0

-7 -5 1 0

7 -5 -1 0

7 5 -2 0

-8 5 3 4 0

-8 -5 0

8 5 -3 0

8 5 -4 0

-9 5 4 0

-9 -5 3 0

9 -5 -3 0

9 5 -4 0

S ′

z0 ∨ z1
¬z0 ∨ ¬z1
¬z0 ∨ y100
¬z0 ∨ y110
¬z1 ∨ y101
¬z1 ∨ y111
¬y100 ∨ z0
¬y110 ∨ z0
¬y101 ∨ z1
¬y111 ∨ z1

10 11 0

-10 -11 0

-10 6 0

-10 8 0

-11 7 0

-11 9 0

10 -6 0

10 -8 0

11 -7 0

11 -9 0

130

Chapter 5

Experiments in NFA

synchronization

In this chapter we overview the application of our model on a general

NFA to find the length of its shortest Di-synchronizing word. Our basic

procedure has been organized as follows.

1. A positive integer n (the number of states) is fixed. In the experi-

ments which results we report here, we have considered n ≤ 100.

2. A random NFA A with n states and 2 input symbols is generated.

We have used two models of random generation that are specified

below.

3. We check whether A has an input symbol whose action is defined

at each state. If it is not the case, the NFA A cannot be Di-

synchronizing (where we consider D2
2), and we return to Step 2 to

generate another random NFA.

131

Experiments in NFA synchronization

4. A positive integer ℓ0 (the hypothetical length of the shortest Di-

synchronizing word for A) is chosen. Initially, we chose ℓ0 to be

close to n but, as our early experiments have revealed, it is much

more practical to start with smaller values of ℓ0. We introduce

three integer variables ℓmin, ℓ, and ℓmax and initialize them as fol-

lows: ℓmin := 1, ℓ := ℓ0, ℓmax := 2ℓ0. Taking into account the fact

that D2
2- and D1-synchronization is more restrictive than D3-syn-

chronization, we have used for D2
2- and D1 slightly larger values of

ℓ0 than that for D3

5. With the aid of a scaling procedure, the pair (A , ℓ) is encoded into

a SAT instance as described in Chapter 4.

6. A SAT solver is invoked to solve the SAT instance obtained in

Step 5.

7. The binary search on ℓ is performed. In more detail, if the SAT

solver returns YES on the encoding of the pair (A , ℓ), we first

check whether or not ℓ = ℓmin. If ℓ = ℓmin, then ℓ is the length of

the shortest D3-synchronizing word for A , and we go to Step 2 to

generate another random NFA. If ℓ > ℓmin, we update the variables

ℓmax and ℓ by letting

ℓmax := ℓ, ℓ := ⌊ℓmin + ℓmax

2
⌋,

keep the value of ℓmin and go to Step 5. If the SAT solver returns

NO on the encoding of the pair (A , ℓ), we check whether or not

ℓ = ℓmax. If ℓ = ℓmax, we interpret this as the evidence that the

132

Experiments in NFA synchronization

NFA A fails to be Di-synchronizing1 and go to Step 2 to generate

another random NFA. If ℓ < ℓmax, we update the variables ℓmin

and ℓ by letting

ℓmin := ℓ+ 1, ℓ := ⌈ℓmin + ℓmax

2
⌉,

keep the value of ℓmax and go to Step 5.

5.1 NFA Generation

Here, we describe the methods used for random generation of NFAs. It

turns out that the literature on random NFAs is sparse and no “standard”

notion of a random NFA seems to have been developed so far. For

instance, Tabakov and Vardi, in their widely cited paper [83], defined a

random NFA A = (Q, {a, b}, δ) as the pair (D0, D1) of directed graphs

sharing Q as the vertex set, where the edges of D0 and D1 represented

the transitions caused by the inputs 0 and 1, respectively, and for some

integer parameter k > 0, each of the directed graphs D0 and D1 had k

edges chosen uniformly at random from all possible |Q|2 directed edges

that could be drawn between the vertices in Q. While this definition was

well suited for the purposes of [83], it does not look natural for us since

there is no obvious reason why different input symbols should label the

same number of transitions.

We have suggested and examined two other models to produce a ran-

1Of course, the equality ℓ = ℓmax only means that A has no Di-synchronizing word of length
≤ 2ℓ0, and it is not excluded, in principle, that the NFA is Di-synchronizing but its shortest Di-
synchronizing word is very long. However, by suitable preprocessing and choosing an appropriate
value of the parameter ℓ0, we have got rid of the “bad” cases when the SAT solver returns NO and
ℓ = ℓmax in our experiments.

133

Experiments in NFA synchronization

dom NFA A = (Q,Σ, δ) with n states and 2 input symbols. We called

these models as uniform model and Poisson model. With the uniform

model, the random generation of A based on the uniform distribution,

while in the Poisson model, the generation based on the Poisson distri-

bution with some parameter λ.

For each state q ∈ Q and each symbol a ∈ Σ, we first choose a number

k ∈ {0, 1, 2, . . . , n} that serves as the cardinality of the set δ(q, a). In

the uniform model, each k is chosen with probability 1
n+1 while in the

Poisson model with parameter λ, each k < n is chosen with probability

e−λλ
k

k! and n is chosen with probability 1− e−λ
∑n−1

k=0
λk

k! .

With k being chosen, we proceed the same in both models, by choos-

ing a k-element subset from all
(

n
k

)

subsets of Q with cardinality k uni-

formly at random and letting δ(q, s) be the chosen subset. In each of the

two models, it is easy to estimate the fraction of automata that survive

Step 3. The corresponding results are stated in the following

Proposition 5.1. The probability that a random NFA with n states and

2 input symbols has an input symbol whose action is defined at each state

is

2

(

1− 1

n+ 1

)n

−
(

1− 1

n+ 1

)2n

(5.1)

if the NFA is generated under the uniform model and

2(1− e−λ)n − (1− e−λ)2n (5.2)

if the NFA is generated under the Poisson model with parameter λ.

Proof. We will introduce 2n discrete variables kqa, k
q
b representing the

cardinality k of the sets q.a and q.b respectively for each q ∈ Q. In

134

Experiments in NFA synchronization

the uniform model each of these variables has a uniform distribution on

[0, n]. Then, the probability that the symbol a is defined at state q or

(q.a 6= ∅) = p(kqa 6= 0) = 1 − 1
n+1 . Therefore the probability that a is

defined at each state is

p(
∧

q∈Q
kqa 6= 0) = (1− 1

n + 1
)n. (5.3)

Similarity, the probability that b is defined at each state is

p(
∧

q∈Q
kqb 6= 0) = (1− 1

n + 1
)n. (5.4)

When the number of states grows, limn→∞(1 − 1
n+1)n = e−1 and hence

the probability that the automaton has at least one symbol is defined

everywhere is

lim
n→∞

p((
∧

q∈Q
kqa 6= 0)

∨

(
∧

q∈Q
kqb 6= 0))

= e−1 + e−1 − 1

e2
≈ 0.6.

This ratio increases as the number of input symbols increases.

In Poisson model, the probability that a is defined at each state is

p(kqa 6= 0) = (1−e−λ)n. The probability that the automaton has at least

one symbol is defined everywhere is 2(1− e−λ)n− (1− e−λ)2n that tends

to 0 as n grows.

In the further discussion, we always assume that the NFA considered

have passed Step 3.

135

Experiments in NFA synchronization

5.2 Uniform Model results

For NFAs generated under the uniform model, our experiments produced

results that may seem surprising at the first glance. Namely, we have

observed that for an overwhelming majority of D3 and D2
2-synchronizing

NFAs, the length of the shortest D3 and D2
2-synchronizing word is 2

and 3 respectively, and this conclusion does not depend on the number

of states within the range of our experiments. For an illustration, see

Figure 5.1 in which the horizontal axis is the length of the shortest D3-

synchronizing word and the vertical axis is the number of NFAs. The

blue and the yellow circles represent NFAs with 20 and 30 states respec-

tively. Insofar, we have got no rigorous theoretical explanation of the

0 2 4 6 8 10 12 14 16

0

100

200

300

The length of the shortest synchronizing word

F
re

q
u
en

cy

n=20
n=30

Figure 5.1: Distributions of 20- and 30-state NFAs generated under the
uniform model according to the length of their shortest D3-synchronizing
words

observed phenomenon. However, even a quick analysis of the uniform

136

Experiments in NFA synchronization

model reveals that NFAs it produces should tend to have rather short

D3-synchronizing words. Indeed, if an NFA A = (Q,Σ, δ) with n states

and 2 input symbols is generated under the uniform model, then the

expected cardinality of the set δ(q, s) is n
2 for every q ∈ Q and s ∈ Σ.

Therefore the expected size of every set of the form q.w with w ∈ Σ2

is close to n. Hence it is quite likely that
⋂

q∈Q q.w 6= ∅ for some word

w of length 2, which is then a D3-synchronizing word for A . The same

situation holds for the case of D2
2.

Thus, the uniform model fails to produce any “slowly synchronizing”

NFAs. This indicates that using SAT-solvers in the uniform setting was

not really necessary since a brute-force approach would suffice. Indeed,

given an NFA A = (Q,Σ, δ), one can write all words over Σ up to a

given length in the short-lex order and apply each of these words to A

until one finds a D3- or D2-synchronizing word. As our experiments

reveal, for a majority of NFAs generated under the uniform model, the

brute-force approach requires to check only words up to length 3.

5.3 Poisson Model results

Some sample experimental results for the Poisson model are presented

in Figure 5.2. The three histograms in Figure 5.2 correspond to 60-state

NFAs generated under the Poisson models with three different values of

the parameter λ and demonstrate how these NFAs are distributed ac-

cording to the length of their shortest D3-synchronizing words. In the

following Subections, we use Ei(λ, n) for the average length of the short-

est Di-synchronizing words for n-state binary NFAs generated under the

Poisson model with parameter λ.

137

Experiments in NFA synchronization

0 5 10 15 20

0

5

10

15

20

25

Length of shortest D3-sw

F
re

q
u
en

cy

0 2 4 6 8 10 12

0

50

100

150

200

250

Length of shortest D3-sw

F
re

q
u
en

cy

0 1 2 3 4

0

100

200

300

Length for shortest D3-sw

F
re

q
u
en

cy

Figure 5.2: Distributions of 60-state NFAs generated under the Poisson
models with λ = 1 (top left), λ = 2 (top right), and λ = 5 (bottom)
according to the length of their shortest D3-synchronizing words

138

Experiments in NFA synchronization

5.3.1 D3 results

We see that if the number of states is fixed, the expected length of the

shortestD3-synchronizing word decreases as the parameter λ grows. This

can be explained by an informal argument of the same flavour as the rea-

soning used above to explain the outcome of our experiments with NFAs

generated under the uniform model. Indeed, if an NFA A = (Q,Σ, δ)

with n states and 2 input symbols is generated under the Poisson model

with parameter λ, it follows from a basic property of the Poisson distri-

bution that λ is close to the expected cardinality of sets δ(q, s) for every

q ∈ Q and s ∈ Σ. The larger are these sets, the smaller is the value of ℓ

such that the expected size of sets of the form q.w with w ∈ Σℓ becomes

close to n.

Our experiments also show that if the parameter λ is fixed, the ex-

pected length of the shortest D3-synchronizing word grows with the

number of states but the growth rate is rather small. For each n ≤
100, we have calculated the average length E1(n) of the shortest D3-

synchronizing words for n-state NFAs generated under the Poisson model

with λ = 1. Then, using the method of least squares, we have searched

for an explicit function of n that approximates E1(n) and found the

following solution:

E3(1, n) ≈ (0.57 + 0.66 lnn)2.

For λ = 2, the same procedure has led to the following approximation

of the similarly defined quantity E2(n) calculated from our experimental

data:

E3(2, n) ≈ (0.77 + 0.43 lnn)2.

139

Experiments in NFA synchronization

5.3.2 D2 results

For random NFAs generated under the Poisson model, our experiments

show that if the parameter λ is fixed, the length of the shortest proper

D2-synchronizing word grows with the number of states but the growth

rate is rather small. Some sample experimental results are presented

in Fig. 5.3. The three graphs in Fig. 5.3 correspond to NFAs with 30,

45, and 60 states generated under the Poisson models with λ = 2 and

demonstrate how these NFAs are distributed according to the length of

their shortest proper D2-synchronizing words. The horizontal axis is the

minimum length of proper D2-synchronizing words and the vertical axis

is the number of NFAs.

6 8 10 12

0

200

400

The length of the shortest D2-synchronizing word

F
re

q
u
en

cy

n=30
n=45
n=60

Figure 5.3: Distributions of random NFAs with 30, 45, and 60 states
generated under the Poisson model with λ = 2 according to the minimum
lengths of their proper D2-synchronizing words

We have applied the method of least squares to our experimental

data, searching for an explicit function of n that approximates the mean

140

Experiments in NFA synchronization

value Eλ(n) of the minimum lengths of proper D2-synchronizing words

for n-state NFAs generated under the Poisson model with a given pa-

rameter λ. The best approximations have been provided by logarithmic

functions; for instance, for λ = 2, we have found the following solution:

E2(2, n) ≈ −0.39 + 2.2 ln(n).

0 20 40 60 80 100

0.1

0.15

0.2

0.25

Number of states

R
el

at
iv

e
st

an
d
ar

d
d
ev

ia
ti

on

Figure 5.4: The relative standard deviation of the minimum lengths of
proper D2-synchronizing words for n-state NFAs as a function of n

Fig. 5.4 shows the relation between the relative standard deviation

of our datasets and the number of states (for λ = 2).

5.4 Enhancement of the algorithm

We see several resources for improvements. First of all, we may try to

modify the basic encoding described above. There are several options

141

Experiments in NFA synchronization

for such modifications that all look promising but it is hard to predict a

priori which one will prove to be the most efficient, and we have to go

through several rounds of trial-and-error. As an example of a relatively

successful trial; we present here the following modificationof the basic

encoding.

As mentioned in the description of our basic algorithm, every Di-syn-

chronizing NFA A must have an everywhere defined input symbol. If

all input symbols of A are everywhere defined, one can use the trans-

formations described in [35, Lemma 8.3.8] or [19, Section 2] to convert

A into a DFA A ′ such that A is D3-synchronizing if and only if A ′ is

synchronizing and the minimum length of D3-synchronizing words for A

is the same as the minimum length of synchronizing words for A ′. Since

there are powerful methods to compute shortest synchronizing words for

DFAs with up to 350 states (see, e.g., [43]), we can apply one of these

methods to A ′. Hence, we can restrict ourselves to the case when one

of the input symbols of A is not everywhere defined.

If we consider only NFAs with 2 input symbols, 0 and 1, say, we

conclude that we may assume that 0 is everywhere defined while 1 is

not. Every D3-synchronizing word for such an NFA should start with

the symbol 0. Therefore one can start our solitaire-like game Γ described

in Section 4.1 from the position that arises after the first application of

0, and the basic encoding can be modified accordingly2. For an NFA

with n states and m transitions, this preprocessing allows one to save

n2 variables and around n2 + 2m clauses in the resulting instance of

SAT. Our experiments show that this modification indeed reduces the

execution time of solving D3W-instances for NFAs with ≥ 20 states, and

2If we re-use the illustrative example in Figure 4.1, the new initial position for this example will
be the one shown in bottom left.

142

Experiments in NFA synchronization

the average time decrease reaches 50% for NFAs with ≥ 50 states. Also,

the modification has allowed us to solve D3W for NFAs with more than

100 states which size was out of reach with the basic encoding.

Table 5.1: Comparison of running time between two versions of coding

n without modification with modification
10 41.54 sec 46.88sec
20 140.9 sec 121.5 sec
25 273.9 sec 210.9sec
30 400.9 sec 302.5 sec
40 1218 sec 595.8 sec
50 2357 sec 1377 sec
60 4351 sec 2157 sec
100 ? 1.027e4 sec

Remark 5.1. It is possible to reduce the number of variables by getting

rid of the letter variables. Namely, for each pair of i, j ∈ {1, . . . , n} and

each t ∈ {1, . . . , ℓ}, one could take the clause

¬ytij ∨
∨

qh∈P0(qj)

yt−1ih ∨
∨

qk∈P1(qj)

yt−1ik (5.5)

instead of the clauses in (4.5) and the set of clauses of the form

ytij ∨ ¬yt−1ih ∨ ¬yt−1ik for h and k such that qh ∈ P0(qj) and qk ∈ P1(qj)

(5.6)

instead of the ones in (4.6) and (4.7). It is easy to see that (4.5) and

143

Experiments in NFA synchronization

(5.5) are equisatisfiable, and so are the sets of clauses in (4.6), (4.7) on

the one hand and in (5.6) on the other.

We have preferred to keep the letter variables because of the fact

mentioned in Theorems 4.2, 4.3, and 4.4: if a Di-synchronizing word of

length ℓ exists, we can immediately recover it from the the restrictions

of a satisfying assignment to the letter variables.

144

Conclusion

Through the thesis we studied the synchronization of nondeterministic

automata and partial deterministic automata. The synchronization of

such automata is more complicated than that of complete deterministic

automata. There are more than one formalization of synchronization for

nondeterministic and partial deterministic automata. We have consid-

ered five formalization. For PFAs we gave attention to Careful and Exact

synchronization. In NFAs we studied three versions of synchronization;

D1-, D2-, and D3-synchronization. Each version of synchronization ap-

pears in some applications. The length of the synchronizing word is

significant and the minimum length of such words has got a lot of at-

tention from the practical and theoretical point of view. We introduced

a technique that takes the problem (A , ℓ) as an input and the output

of it determines if the automaton A has a synchronizing word of length

ℓ or not. We proved the validity of this technique and used some of

benchmarks to prove the efficiency of it comparing to the other known

algorithms.

With successful application of this technique we can find the length

of the shortest synchronizing word for a given automaton. We performed

a series of experiments on randomly generated NFAs and PFAs with n

states. The results of this experimental study were the approximation of

145

Conclusion

the length of the shortest synchronizing word for the given automaton.

We study parameters that affect this length. Two new infinite series of

slowly synchronizing PFAs have been found.

It turns out that our approach works reasonably well even though

our implementations have employed a very basic SAT solver (MiniSat)

and very modest computational resources (an ordinary personal com-

puter). In order to expand the range of future experiments, it makes

sense to use more advanced SAT solvers. Using more powerful comput-

ers constitutes another obvious direction for improvements. Clearly, the

approach is amenable to parallelization since computations needed for

different automata are completely independent so that one can process

in parallel as many automata as many processors are available. Still, we

think that the present results, obtained without any advanced tools, do

provide some evidence for our approach to be feasible in principle.

146

Bibliography

[1] Altun, Ö.F., Atam, K.T., Karahoda, S., Kaya, K.: Synchronizing

heuristics: Speeding up the slowest. In Testing Software and Sys-

tems, 29t Int. Conf., ICTSS 2017, volume 10533 of LNCS, pages

243–256. Springer, 2017.

[2] Ananichev, D.S., Volkov, M.V.: Some results on Černý type prob-

lems for transformation semigroups. In Semigroups and Languages,

pages 23–42, 2004.

[3] Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs

with large exponents and slowly synchronizing automata. J. Math.

Sci., 192(3):263–278, 2013.

[4] Berlinkov, M.V.: On two algorithmic problems about synchro-

nizing automata. In Developments in Language Theory, 18th Int.

Conf., DLT 2014, volume 8633 of LNCS, pages 61–67. Springer,

2014.

[5] Berlinkov, M.V.: On the probability of being synchronizable. In Al-

gorithms and Discrete Applied Mathematics, 2nd Int. Conf., CAL-

DAM 2016, volume 9602 of LNCS, pages 73–84. Springer, 2016.

147

Bibliography

[6] Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook on

Satisfiability. IOS Press, 2009.

[7] Blondel, V.D., Jungers, R.M., Olshevsky, A.: On primitivity of

sets of matrices. Automatica, 61(C):80–88, 2015.

[8] Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A.:

Model-Based Testing of Reactive Systems. volume 3472 of LNCS.

Springer, 2005.

[9] Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata.

Cambridge University Press, 2009.

[10] Bonizzoni, P., Jonoska, N.: Existence of constants in regular splic-

ing languages. Information and Computation, 242:340–353, 2015.

[11] Burkhard, H.-D.: Zum Längenproblem homogener Experimente an

determinierten und nicht-deterministischen Automaten. Elektron-

ische Informationsverarbeitung und Kybernetik, 12:301–306, 1976

(in German).

[12] Chang, Y., Studený, J. Suomela, J.: Distributed graph problems

through an automata-theoretic lens. Available at https://arxiv.

org/abs/2002.07659, 2020.

[13] Capocelli, R.M., Gargano, L., Vaccaro, U.: On the characteri-

zation of statistically synchronizable variable-length codes. IEEE

Transactions on Information Theory, 34(4):817–825, 1988.

[14] Catalano, C., Jungers, R.M.: On random primitive sets, directable

NFAs and the generation of slowly synchronizing DFAs. J. Au-

tomata, Languages and Combinatorics, 24(2-4):185–217, 2019.

148

Bibliography

[15] Černý, J.: Poznámka k homogénnym eksperimentom s konečnými

automatami. Matematicko-fyzikalny Časopis Slovenskej Akadémie

Vied 14(3): 208–216, 1964 (in Slovak); Engl. translation: A note

on homogeneous experiments with finite automata. J. Automata,

Languages and Combinatorics, 24(2-4):121–130, 2019.

[16] Chow, T.S.: Testing software design modeled by finite state ma-

chines. IEEE Transactions on Software Engineering, 4:178–178,

1978.

[17] Cormen, T.H., Leiserson, Ch.E., Rivest, R.L., Stein, C.: Introduc-

tion to Algorithms. MIT Press, 2001.

[18] de Bondt, M., Don, H., Zantema, H.: Lower bounds for synchro-

nizing word lengths in partial automata. Int. J. Found. Comput.

Sci., 30(1):29–60, 2019.

[19] Don, H., Zantema, H.: Synchronizing non-deterministic finite au-

tomata. J. Automata, Languages and Combinatorics, 23(4):307–

328, 2018.

[20] Eén, N., Sörensson, N.: An extensible SAT-solver. In Theory and

Applications of Satisfiability Testing (SAT 2003), volume 2919 of

LNCS pages 502–518. Springer, 2004.

[21] Eén, N., Sörensson, N.: The MiniSat Page. http://minisat.se.

[22] Eppstein, D.: Reset sequences for monotonic automata. SIAM

Journal on Computing, 19:500–510, 1990.

[23] Frankl, P.: An extremal problem for two families of sets. European

J. Combinatorics, 3:125–127, 1982.

149

Bibliography

[24] Gawrychowski, P.: Complexity of shortest synchronizing word. Pri-

vate communication, 2008.

[25] Gazdag, Z., Iván, S., Nagy-György, J.: Improved upper bounds

on synchronizing nondeterministic automata. Inf. Process. Lett.,

109:986–990, 2009.

[26] Geldenhuys, J., van der Merwe, B., van Zijl, L.: Reducing non-

deterministic finite automata with SAT solvers. In Finite-State

Methods and Natural Language Processing, 8th Int. Workshop,

FSMNLP 2009, volume 6062 of LNCS, pages 81–92. Springer,

2010.

[27] Gent, I.P., Nightingale, P.: A new encoding of AllDifferent into

SAT. In Modelling and Reformulating Constraint Satisfaction

Problems: Towards Systematisation and Automation, 3rd Int.

Workshop, pages 95–110, 2004. Available at http://www-users.

cs.york.ac.uk/~frisch/ModRef/04/proceedings.pdf

[28] Gerencsér, B., Gusev, V.V., Jungers, R.M.: Primitive sets of non-

negative matrices and synchronizing automata. SIAM J. Matrix

Analysis and Applications, 39(1):83–98, 2018.

[29] Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiabil-

ity solvers. Chapter 2 in Handbook of Knowledge Representation.

Elsevier, 89–134, 2008.

[30] Goldberg, K.Y.: Orienting polygonal parts without sensors. Algo-

rithmica, 10(2-4):210–225, 1993.

[31] Goralč́ık, P., Hedrĺın, Z., Koubek, V., Ryšlinková, J.: A game of

composing binary relations. RAIRO Inform. Théor., 16(4):365–

369, 1982.

150

Bibliography

[32] Güniçen, C., Erdem, E., Yenigün, H.: Generating shortest syn-

chronizing sequences using Answer Set Programming. In Proceed-

ings of Answer Set Programming and Other Computing Paradigms

(ASPOCP), 6th Int. Workshop, pages 117–127, 2013. Available at

https://arxiv.org/abs/1312.6146

[33] Harris, B.: Probability distributions related to random mappings.

Ann. Math. Statist., 31(4), 1045–1062, 1960.

[34] Imreh, B., Steinby, M.: Directable nondeterministic automata.

Acta Cybernetica, 14:105–115, 1999.

[35] Ito, M.: Algebraic Theory of Automata and Languages. World

Scientific, 2004.

[36] Ito, M., Shikishima-Tsuji, K.: Some results on directable au-

tomata. In Theory Is Forever. Essays dedicated to Arto Salomaa

on the occasion of his 70th birthday, volume 3113 of LNCS, pages

125–133. Springer, 2004.

[37] Ito, M., Shikishima-Tsuji, K.: Shortest directing words of

nondeterministic directable automata. Discrete Mathematics,

308(21):4900–4905, 2008.

[38] Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. In

Automata, Languages and Programming, 18th Int. Colloquium,

ICALP 1991 , volume 510 of LNCS, pages 629–640. Springer, 1991.

[39] Karahoda, S., Erenay, O.T., Kaya, K., Türker, U.C., Yenigün,

H.: Parallelizing heuristics for generating synchronizing sequences.

In Testing Software and Systems, 28th Int. Conf., ICTSS 2016,

volume 9976 of LNCS, pages 106–122. Springer, 2016.

151

Bibliography

[40] Karahoda, S., Erenay, O.T., Kaya, K., Türker, U.C., Yenigün, H.:

Multicore and manycore parallelization of cheap synchronizing se-

quence heuristics. J. Parallel and Distributed Computing, 140:13–

24, 2020.

[41] Karahoda, S., Kaya, K., Yenigün, H.: Synchronizing heuristics:

Speeding up the fastest. Expert Syst. Appl., 94:265–275, 2018.

[42] Kari, J., Volkov, M.V.: Černý’s conjecture and the Road Coloring

Problem. Chapter 15 in Handbook of Automata Theory, Volume I

of EMS Publishing House (in print).

[43] Kisielewicz, A., Kowalski, J., Szyku la, M.: Computing the shortest

reset words of synchronizing automata. J. Comb. Optim., 29(1):88–

124, 2015.

[44] Kowalski, J., Roman, A.: A new evolutionary algorithm for syn-

chronization. In Applications of Evolutionary Computation, 20th

European Conf., EvoApplications 2017, Part I, volume 10199 of

LNCS, pages 620–635. Springer, 2017.

[45] Kushik, N., El-Fakih, Kh., Yevtushenko, N.: Preset and adap-

tive homing experiments for nondeterministic finite state machines.

In Implementation and Application of Automata, 16th Int. Conf.,

CIAA 2011, volume 6807 of LNCS, pages 215–224. Springer, 2011.

[46] Kushik, N., El-Fakih, Kh., Yevtushenko, N.: Adaptive homing and

distinguishing experiments for nondeterministic finite state ma-

chines. In Testing Software and Systems, 25th Int. Conf., ICTSS

2013, volume 8254 of LNCS, pages 33–48. Springer, 2013.

[47] Kushik, N., Yevtushenko, N.: On the length of homing sequences

for nondeterministic finite state machines. In Implementation and

152

Bibliography

Application of Automata, 18th Int. Conf., CIAA 2013, volume

7982 of LNCS, pages 220–231. Springer, 2013.

[48] Kushik, N., Yevtushenko, N.: Describing homing and distinguish-

ing sequences for nondeterministic finite state machines via syn-

chronizing automata. In Implementation and Application of Au-

tomata, 20th Int. Conf., CIAA 2015, volume 9223 of LNCS, pages

188–198. Springer, 2015.

[49] Kushik, N., Yevtushenko, N., Bourdonov, I.B. Kossatchev, A.S.:

Deriving synchronizing and homing sequences for input/output

automata, Automatic Control and Comput. Sci., 52(7), 589–595,

2018.

[50] Kushik, N., Yevtushenko, N., Yenigün, H.: Reducing the complex-

ity of checking the existence and derivation of adaptive synchroniz-

ing experiments for nondeterministic FSMs. In Proc. Int. Workshop

on domAin specific Model-based AppRoaches to vErificaTion and

validaTiOn, AMARETTO@MODELSWARD 2016, pages 83–90.

SciTePress, 2016.

[51] Lee, D., Yannakakis, M.: Testing finite-state machines: State

identification and verification. IEEE Transactions on Computers,

43(3):306–320, 1994.

[52] Lee, D., Yannakakis, M.: Principles and methods of testing finite

state machines. Proceedings of the IEEE, 84(8):1090–1126, 1996.

[53] Liu, C.L.: Some memory aspects of finite automata. Technical

Report 411, Research Lab. Electronics, Massachusetts Inst. Tech-

nology, Cambridge, MA, 1963.

153

Bibliography

[54] Martyugin, P.V.: Problems concerning synchronization of finite

automata. PhD thesis, Ural State University. Yekaterinburg, 2008

(in Russian)

[55] Martyugin, P.V.: Lower bounds for the length of the shortest

carefully synchronizing words for two- and three-letter partial au-

tomata. Diskretn. Anal. Issled. Oper., 15(4):44–56, 2008 (in Rus-

sian).

[56] Martyugin, P.V.: Complexity of problems concerning reset Words

for some partial cases of automata. Acta Cybernetica 19:517–536,

2009.

[57] Martyugin, P.V.: A lower bound for the length of the shortest

carefully synchronizing words. Russian Math. (Iz. VUZ), 54(1):46-

54, 2010.

[58] Martyugin, P.V.: Synchronization of automata with one undefined

or ambiguous transition. In Implementation and Application of Au-

tomata, 17th Int. Conf., CIAA 2012 , volume 7381 of LNCS, pages

278–288. Springer, 2012.

[59] Martyugin, P.V.: Careful synchronization of partial automata with

restricted alphabets. In Computer Science – Theory and Applica-

tions, 8th Int. Comput. Sci. Symposium in Russia, CSR 2013,,

volume 7913 of LNCS, pages 76–87. Springer, 2013.

[60] Martyugin, P.V.: Complexity of problems concerning carefully syn-

chronizing words for PFA and directing words for NFA. Theory

Comput. Syst., 54(2):293–304, 2014.

154

Bibliography

[61] Natarajan, B.K.: An algorithmic approach to the automated de-

sign of parts orienters. In 27th Annual Symposium on Foundations

of Computer Science, pages 132–142, 1986.

[62] Natarajan, B.K.: Some paradigms for the automated design of

parts feeders. Int. J. Robotics Research, 8(6):89–109, 1989.

[63] Nicaud, C.: Fast synchronization of random automata. In Approx-

imation, Randomization, and Combinatorial Optimization. Algo-

rithms and Techniques.APPROX/RANDOM 2016, volume 60 of

LIPIcs, pages 43:1–43:12. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 2016.

[64] Nicaud, C.: The Černý Conjecture holds with high probability. J.

Automata, Languages and Combinatorics, 24(2-4), 343–365, 2019.

[65] Olschewski, J., Ummels, M.: The complexity of finding reset words

in finite automata. In Mathematical Foundations of Computer Sci-

ence, volume 6281 of LNCS, pages 568–579. Springer, 2010.

[66] Papadimitriou, C.H.: Computational Complexity. Addison-

Wesley, 1994.

[67] Pin, J.-E.: On two combinatorial problems arising from automata

theory. Annals of Discrete Mathematics, 17:535–548, 1983.

[68] Pixley, C., Jeong, S.-W., Hachtel, G.D.: Exact calculation of

synchronization sequences based on binary decision diagrams. In

Proceedings 29th Design Automation Conference, pages 620–623,

1992.

[69] Podolak, I.T., Roman, A., Jȩdrzjczyk, D.: Application of hierarchi-

cal classifier to minimal synchronizing word problem. In Artificial

155

Bibliography

Intelligence and Soft Computing, 11th Int. Conf., ICAISC 2012,

volume 7267 of LNCS, pages 421–429. Springer, 2012.

[70] Podolak, I.T., Roman, A., Szyku la, M., Zieliński, B.: A machine

learning approach to synchronization of automata. Expert Syst.

Appl., 97:357–371, 2018.

[71] Rabin, M.O., Scott, D.: Finite automata and their decision prob-

lems. IBM J. Research and Development, 3(2):114–125, 1959.

[72] Ramı́rez Alfonśın, J.L.: The Diophantine Frobenius Problem. Ox-

ford University Press, 2005.

[73] Roman, A.: Genetic algorithm for synchronization. In Language

and Automata-Theory and Applications, 3rd Int. Conf., LATA

2009, volume 5457 of LNCS, pages 684–695. Springer, 2009.

[74] Rystsov, I.K.: Reset words for commutative and solvable au-

tomata. Theor. Comput. Sci., 172(1):273–279, 1997.

[75] Rystsov, I.K.: Asymptotic estimate of the length of a diagnostic

word for a finite automaton. Cybernetics, 16(1):194–198, 1980.

[76] Rystsov, I.K.: Polynomial complete problems in automata theory.

Inf. Process. Lett., 16(3):147–151, 1983.

[77] Skvortsov, E., Tipikin, E.: Experimental study of the shortest reset

word of random automata. In Implementation and Application of

Automata, 16th Int. Conf., CIAA 2011, volume 6807 of LNCS,

pages 290–298. Springer, 2011.

[78] Samotij, W.: A note on the complexity of the problem of finding

shortest synchronizing words. In Proceedings of AutoMathA: Au-

156

Bibliography

tomata from Mathematics to Applications, University of Palermo

(CD), 2007.

[79] Sandberg, S.: Homing and synchronizing sequences. In Model-

Based Testing of Reactive Systems, volume 3472 of LNCS, pages

5–33. Springer, 2005.

[80] Steinby, M.: Directable fuzzy and nondeterministic automata.

Available at https://arxiv.org/abs/1709.07719, 2017.

[81] Shitov, Y.: An improvement to a recent upper bound for syn-

chronizing words of finite automata. J. Automata, Languages and

Combinatorics, 24(2–4):367–373, 2019.

[82] Szyku la, M.: Improving the upper bound on the length of the

shortest reset word. In 35th Symposium on Theoretical Aspects of

Computer Science, volume 96 of LIPIcs, pages 56:1–13. Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[83] Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical

automata constructions. In Logic for Programming, Artificial In-

telligence, and Reasoning, 11th Int. Conf., LPAR 2004, , volume

3835 of LNCS, pages 396-411. Springer, 2005.

[84] Travers, N., Crutchfield, J.: Exact Synchronization for finite-State

Sources. J. Stat. Phys., 145(5):1181–1201, 2011.

[85] Travers, N., Crutchfield J.: Asymptotic synchronization for finite-

state sources. J. Stat. Phys., 145(5):1202–1223, 2011.

[86] Türker, U.C.: Parallel brute-force algorithm for deriving reset se-

quences from deterministic incomplete finite automata. Turk. J.

Elec. Eng & Comput. Sci., 27:3544–3556, 2019.

157

Bibliography

[87] Vorel, V.: Subset synchronization and careful synchronization of

binary finite automata. Int. J. Found. Compu. Sci., 27(5):557–577,

2016.

[88] Volkov, M.V.: Synchronizing automata and the Černý conjecture.

In Language and Automata Theory and Applications, volume 5196

of LNCS, pages 11–27. Springer, 2008.

[89] Yenigün, H., Yevtushenko, N., Kushik, N.: The complexity of

checking the existence and derivation of adaptive synchronizing

experiments for deterministic FSMs. Inf. Process. Lett., 127: 49–

53, 2017.

[90] Yevtushenko, N., Kuliamin, V.V., Kushik, N.: Evaluating the com-

plexity of deriving adaptive homing, synchronizing and distinguish-

ing sequences for nondeterministic FSMs, In Testing Software and

Systems, 31st Int. Conf., ICTSS 2019, volume 11812 of LNCS,

pages 86–103. Springer, 2019.

[91] Zubkov, A.M.: Computation of distributions of the numbers of

components and cyclic points for random mappings. Mat. Vopr.

Kriptogr., 1(2):5–18, 2010 (in Russian).

158

159

160

	TitlePage_Hanan
	thesis -council 2

