Федеральное государственное бюджетное образовательное учреждение высшего образования «Уральский институт Государственной противопожарной службы Министерства Российской федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий»

На правах рукописи

Тикина Ирина Владимировна

ТЕРМИЧЕСКИЕ СВОЙСТВА ЖИДКОМЕТАЛЛИЧЕСКОГО ТЕПЛОНОСИТЕЛЯ СИСТЕМЫ Bi-Pb-Sn-Cd

Специальность 01.04.14 – Теплофизика и теоретическая теплотехника

Диссертация на соискание учёной степени кандидата технических наук

> Научный руководитель: доктор технических наук, доцент Барбин Николай Михайлович

Екатеринбург – 2019

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ		4		
ГЛАВА 1.	ЛИТЕРАТУРНЫЙ ОБЗОР. ХАРАКТЕРИСТИКА			
	РАСПЛАВЛЕННОЙ СИСТЕМЫ Bi-Pb-Sn-Cd И ЕЁ			
	ОКИСЛЕНИЕ			
	ВЫВОДЫ К ГЛАВЕ 1	22		
ГЛАВА 2.	ТЕРМИЧЕСКИЙ АНАЛИЗ СПЛАВА СИСТЕМЫ			
	Bi-Pb-Sn-Cd			
2.1	Установка для проведения термического анализа	23		
2.2	Обработка экспериментальных данных полученных в			
	режиме нагрева и охлаждения сплава системы			
	Bi-Pb-Sn-Cd			
	ВЫВОДЫ К ГЛАВЕ 2			
ГЛАВА 3.	ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ	34		
3.1	Методика термодинамического моделирования, включая	34		
	модель идеальных растворов и идеальных растворов			
	продуктов взаимодействия			
3.2	Проверка модели идеальных растворов и идеальных	43		
	растворов продуктов взаимодействия на расплаве Pb-Bi			
3.3	Определение теплофизических свойств металлических	52		
	соединений и сложных оксидных соединений			
	ВЫВОДЫ К ГЛАВЕ 3	58		
ГЛАВА 4.	РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ	60		
4.1	Термодинамическое моделирование расплава системы	60		
	Bi-Pb-Sn-Cd			
4.1.1	Термодинамическое моделирование паровой фазы при	71		
	испарении расплава системы Bi-Pb-Sn-Cd при различных			
	давлениях			
4.1.2	Теплофизические характеристики системы «расплав (Ві-	78		

	Pb-Sn-Cd) – пар» при различных давлениях	
4.1.3	Пример инженерных расчетов для системы Bi-Pb-Sn-Cd	98
	при давлении 10 ⁵ Па	
4.2	Исследование термической стабильности соединений	101
	системы Bi-Pb-Sn-Cd при различных давлениях	
4.2.1	Теплофизические характеристики системы	103
	«интерметаллическое соединение – пар» при различных	
	давлениях	
	ВЫВОДЫ К ГЛАВЕ 4	108
ЗАКЛЮЧЕНІ	ИE	111
СПИСОК ЛИ	ТЕРАТУРЫ	113
ПРИЛОЖЕНІ	ИЕ 1. ВЕЛИЧИНЫ НЕОБХОДИМЫЕ ДЛЯ ПРОВЕДЕНИЯ	125
РАСЧЕТОВ.	ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА МЕТАЛЛИЧЕСКИХ И	
оксидных	СОЕДИНЕНИЙ	
ПРИЛОЖЕНІ	ИЕ 2. КОЭФФИЦИЕНТЫ РАСЧЕТНЫХ УРАВНЕНИЙ И	129

ТЕПЛОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ СИСТЕМ

введение

Актуальность темы исследования. Жидким металлам и сплавам в последние годы наука уделяет особое внимание ввиду широкой возможности их Для целей применения. использования жидких металлов В качестве теплоносителей и эффективного отвода тепла из активных зон реактора [1-3] применяют металлы с относительно низкой температурой плавления (натрий, свинец, олово, висмут), высокой литий. калий. температурой кипения. относительно высокой теплопроводностью, малой вязкостью И другими подходящими физическими свойствами. Низкое давление пара при высоких температурах позволяет использовать многие металлы в качестве теплоносителя в особо напряженных условиях при температурах 700-800°С, когда все другие вещества (вода, органические соединения) не пригодны [4].

В последние годы активно прорабатываются концепции использования тяжелых жидкометаллических теплоносителей [ТЖМТ], так как они удовлетворяют требованиям обеспечения безопасности [5]. Применение ТЖМТ позволяет исключить такие тяжелые аварии, как «разгон» реактора на мгновенных нейтронах, потерю теплоносителя, химические взрывы и пожары при разгерметизации реакторного контура, разрыв корпуса реактора под действием сил внутреннего давления, исключить расплавление элементов активной зоны при полном обесточивании энергоблока на время около 5 суток.

По критериям безопасности все ТЖМТ, безусловно, превосходят Li жидкометаллические теплоносители, что побуждает проводить дальнейшие исследования в этой области. В этом направлении выполнены как теоретические, опирающиеся на законы статистики, так и экспериментальные (физикохимические) исследования [6-8]. Группа работ посвящена моделированию на ЭФМ строения и свойств расплавленных металлов [9-10]. Изучению термических свойств жидких металлов посвящен ряд работ [11-18].

Система Bi-Sn-Pb-Cd применяется в закалочных печах, технологических установках (переработка отравляющих веществ), системах пожаротушения. Выбор данной системы с целью применения её в качестве тяжелого жидкометаллического теплоносителя обусловлен следующими обстоятельствами: данный сплав обладает низкой температурой плавления (≈70°С) и высокой температурой кипения (≈1700°С), содержит в своем составе Pb, Sn, Bi.

Для целей использования расплава в качестве теплоносителя необходимы знание по теплофизическим свойствам, которые определяются составом расплава в конденсированной и паровой фазе.

Степень разработанности Проблемами темы исследования. использования тяжелых жидкометаллических теплоносителей В атомной энергетике занимались: Боришанский В.М., Кутателадзе С.С., Новиков И.И., Фердынский О.С., Кириллов П.Л., Хорасанов Г.Л., Самохин Д.С., Зевякин А.С., Земсков Е.А. Блохин А.И., Безносов Л.В., Драгунов Ю.Г., Боков А.В., Рачков В.И., Кащеев М.В., Кузнецов И.А., Сорокин А.П., Кузин Ю.А., Легких А.Ю., Лаврова О.В., Жуков А.В., Загорулько Ю.И., Орлов Ю.И., Труфанов А.А., Камаев А.А. и др. Термодинамические исследования металлических расплавов проводили Taylor N.W., Elliot J., Никольская А.В., Герассимова Я.И., Швидковский Е.Г., Горяга Г.И., Станкус С.В., Савватимский А.И., Онуфриев С.В., Конюхов С.А., Мубояджян С.А., Середкин Н.Н., Хайрулин Р.А., Абдулаев Р.Н., Агаджанов А.Ш., Талуц С.Г., Ивлиев А.Д., Мешков В.В., Коршунов И.Г., Горбатов В.И., Полев В.Ф, Глагольева Ю.В. и др. Исследовали сплавы различных систем методом термодинамического моделирования: Моисеев Г.К., Трусов Б.Г., Ватолин Н.А., Сидоров В.Е., Ильиных Н.И., Куликова Т.В., Тереньев Д.И. и др.

Цель работы. Исследование термических свойств расплава Bi-Pb-Sn-Cd в атмосфере Ar, и воздуха при нагревании до высоких температур с целью применения его в качестве теплоносителя.

В соответствии с поставленной целью были сформированы следующие задачи:

1. провести обзор, посвященный степени исследования расплава системы Bi-Pb-Sn-Cd. Выявить возможность образования в расплаве металлических соединений и оксидных соединений, оценить их теплофизические характеристики;

2. получить термограммы нагрева и охлаждения сплава системы Bi-Pb-Sn-Cd;

3. выполнить термодинамическое моделирование: а) термических процессов в расплаве системы Bi-Pb-Sn-Cd в атмосфере Ar и окислительной атмосфере; б) термических процессов в индивидуальных интерметаллических соединений в инертной атмосфере и окислительной атмосфере;

4. оценить константы равновесия реакций термической диссоциации протекающих в расплаве системы Bi-Pb-Sn-Cd и реакций диссоциации индивидуальных интерметаллических соединений в инертной и окислительной атмосферах;

5. рассчитать теплофизические свойства и температуры фазовых переходов: «расплав системы Bi-Pb-Sn-Cd – инертная атмосфера»; расплав системы Bi-Pb-Sn-Cd – окислительная атмосфера; интерметаллическое соединение - инертная атмосфера; интерметаллическое соединение - окислительная атмосфера.

Научная новизна диссертационного исследования заключается в следующих результатах:

1. впервые определены теплофизические характеристики (энтальпия, энтропия) расплавленной системы Bi-Pb-Sn-Cd состоящей из бинарных и тройных металлических соединений в интервале температур 300-3000 К и давлений 10² – 10⁷Па;

2. рассчитаны теплофизические свойства бинарных и тройных соединений PbSn, CdSn, SnBi, BiPb, Cd₃Bi₂, Bi₂Sn₃, Bi₅Pb₃, Bi₇Pb₃, Bi₇Pb, Pb₃Bi₄, Pb₃Bi, PbSn₃, Sn₂Bi₄, Sn₃Bi, Sn₄Bi₂, Sn₅Bi, Sn₁₀Bi₃, SnBi₅, Pb₂Bi₄Sn₄, Pb₂Bi₇Sn₄, Pb₃Bi₄Sn₄, Pb₃Bi₉Sn₄, Pb₃BiSn₄, Pb₅Bi₄Sn₄, Pb₇Bi₄Sn₄, PbBi₂Sn₂, PbBi₄Sn₄, Pb₉Bi₄Sn₄. Pb₃Bi₄Sn₁₅;

3. проведено термодинамическое моделирование термического разложения бинарных и тройных соединений, указанных выше, в интервале температур 300-3000 К и давлений от 10² до 10⁷ Па. в атмосфере Ar и воздуха;

4. исследованы температурные зависимости равновесного состава и теплофизические характеристики расплава системы Bi-Pb-Sn-Cd в атмосфере Ar и воздуха в интервале температур 300-3000 К и давлений от 10² до 10⁷ Па.

5. исследованы температурные зависимости парциальных давлений компонентов паровой фазы, образующейся при равновесном нагревании над расплавом системы Bi-Pb-Sn-Cd, а также термическом разложении индивидуальных соединений в широком интервале температур и давлений в атмосфере Ar и воздуха.

Теоретическая и практическая значимость. С помощью метода термодинамического моделирования определен состав расплава в конденсированной и паровой фазе при его нагреве. Рассчитаны теплофизические свойства необходимые для практического использования расплава в качестве теплоносителя.

Основные научные положения диссертационного исследования могут пополнить справочные данные.

Методология и методы исследования. Для исследования расплава использовались методы: термического анализа, электронной микроскопии (сканирующий электронный микроскоп JSM-5900 LV с приставкой электроннозондового микроанализатора) и термодинамического моделирования (программный комплекс TERRA).

Положения, выносимые на защиту:

– результаты термического анализа расплава Bi-Pb-Sn-Cd;

– теплофизические свойства системы расплав (Bi-Pb-Sn-Cd) – пар при различных давлениях;

 теплофизические свойства бинарных и тройных индивидуальных интерметаллических соединений – пар при различных давления;

– теплофизические свойства расплава системы Bi-Pb-Sn-Cd в окислительной атмосфере при различных давлениях;

 теплофизические свойства бинарных и тройных индивидуальных интерметаллических соединений в окислительной атмосфере при различных давлениях.

Достоверность результатов. Достоверность обеспечивается использованием современных математических методов и программных

комплексов, апробированных методик измерений при проведении экспериментальных исследований, хорошим согласованием полученных результатов с экспериментальными данными.

Публикации и апробация работы. По материалам диссертации опубликована 31 научная работа, включая 7 статей в журналах, входящих в перечень, рекомендованный ВАК. Из них 5 публикации, входят в международную базу данных Scopus и Web of Science.

Основные результаты работы докладывались и обсуждались на следующих научных конференциях, симпозиумах и семинарах: XIV Российский семинар «Компьютерное моделирование Физико-химических свойств стекол и расплавов», г. Курган 2018 г., V Всероссийской конференции с элементами научной школы для молодых ученых «Метастабильные состояния и флуктуационные явления» г. Екатеринбург, 2017 г., XII Международной научно-технической конференции «Современные металлические материалы и технологии» г. Санкт-Петербург, 2017 r., Satellite Conference of XX Mendeleev Congress on general and applied chemistry «Ab intio based modeling of advanced materials AMM-2016»; XIII Российский семинар «Компьютерное моделирование Физико-химических свойств стекол и расплавов», г. Курган 2016 и 2018 гг.; III Международной научно-практической конференции «Современные методы и средства исследований теплофизических свойств веществ» г. Санкт-Петербург, 2015 г.; 4 и 5 Международного междисциплинарного симпозиума «Физика поверхностных явлений, межфазных границ и фазовые переходы» Нальчик – Ростов-на-Дону – Грозный - пос. Южный, 2014 и 2015 гг.; XI Международной научно-технической конференции «Современные металлические материалы и технологии» г. Санкт-Петербург, 2015 Г.; Международной научно-технической конференции «Нанотехнологии функциональных материалов» г. Санкт-Петербург, 2014 г.; XIII Российской конференции по теплофизическим свойствам веществ (с международным участием) г. Новосибирск, 2011 г.; Международной научно-технической конференции «Современные металлические материалы и технологии» г. Санкт-Петербург, 2011 и 2017 гг.; Международной научной конференции «Актуальные

проблемы физики твердого тела» г. Минск, 2011 г.; VI Всероссийской научнотехнической конференции «Физические свойства металлов и сплавов» г. Екатеринбург, 2011 г.; II Всероссийской научно-практической конференции с международным участием «Пожарная безопасность: проблемы и перспективы» г. Воронеж, 2011 г.

Личный вклад автора. Анализ литературных данных, проведение экспериментов, моделирование, анализ полученных результатов и их интерпретации, подготовка научных публикаций.

Структура и объем диссертации. Диссертация содержит 124 страницы основного текста (введение, 4 главы с выводами, заключение по работе), 60 рисунков, 28 таблиц, 2 приложения на 30 листах. Список литературных источников содержит 120 наименований. Общий объем диссертации 154 страницы.

ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР. ХАРАКТЕРИСТИКА РАСПЛАВЛЕННОЙ СИСТЕМЫ Bi-Pb-Sn-Cd И ЕЕ ОКИСЛЕНИЕ

Сплавы системы Bi-Sn-Pb-Cd — тяжелые, легкоплавкие, обладающие высокими литейными свойствами, легко заполняют мельчайшие детали формы. [19]. Данные сплавы, содержащие 40-50 масс.% Bi, широко используются в качестве припоев [20] и тепловых датчиков пожарных извещателей [21]. Однако критические точки, фазовый состав и структура этих сплавов изучены недостаточно. Диаграмма состояния системы Bi-Sn-Pb-Cd представлена в работе [22], но фазовые равновесия в этой системе практически не исследованы. В литературе [22] по гетерогенным равновесиям система Bi-Pb-Sn-Cd часто приводится как классический пример четверной системы с нонвариантным эвтектическим равновесием при 69°C: Ж → Bi-Sn-Pb-Cd. В справочнике [23] в разделе о жидкометаллических теплоносителях упоминается, об эвтектическом сплаве 48вес.%Bi – 26вес. %Pb – 13вес.%Sn – 13вес.% Cd со следующими характеристиками: температура плавления 343К, коэффициент теплопроводности при 273К равный 13 [Вт/м*град] при 373К равный 14 [Вт/м*град], теплоемкость 0,1298 кДж/кг*град.

Эвтектика Pb-Bi является наиболее освоенным ТЖМТ. Значительный объем исследований и его практическое освоение осуществлялось в 60-90 годы прошлого века на исследовательских стендах, опытных и серийных транспортных реакторных установках. Опыт эксплуатации отечественных реакторных установок со свинцово-висмутовым теплоносителем атомных подводных лодок показал потребительские свойства, обеспечивающие хорошие ИХ требуемые характеристики соответствующих объектов [24] В работе [25] исследования проводились методом ДТА, металлографического и рентгеновского анализов. По этим данным с учетом [26-28] были построены политермические разрезы систем Pb-Bi-Sn, Pb-Bi-Cd и Bi-Cd-Sn при 40 масс % Ві и аналогичные разрезы системы Pb-Bi-Sn-Cd при 40% Bi+ 25% Pb, 40% Sn+ 25% Cd и 40% Bi+ 13% Sn, а на их

основе – проекции поверхностей ликвидуса, начала кристаллизации двойных и тройных эвтектик разреза тетраэдра Pb-Bi-Sn-Cd при 40% Bi. Далее на основе полученных изотерм поверхностей ликвидуса, начала кристаллизации различных двойных и тройных эвтектик построена общая проекция пространственной изученного разреза, диаграммы состояния которая позволяет судить 0 критических точках, а также фазовом составе и структурных составляющих сплавов системы Pb-Bi-Sn-Cd с 40% Ві при разных температурах. Обнаруженное в изученных сплавах при 69° C нонвариантное эвтектическое равновесие Ж \leftrightarrow Pb+Bi+Sn+Cd позволяет утверждать, что в системе Pb-Bi-Sn-Cd должно Ж+Pb↔ существовать И нонвариантное перитектическое равновесие Температура этого равновесия должна быть ниже ~145°С Pb₃Bi+Sn+Cd. (температура нонвариантного эвтектического равновесия Ж↔Pb+Sn+Cd в системе Pb+Sn+Cd), но выше ~95°C т.е. составлять ~120 °C

В [29] приведена четверная система Pb-Bi-Sn-Cd с двойным неустойчивым химическим соединением Pb₃Bi. В работе построен тетраэдр данной системы. Этот тетраэдр ограничен двумя парами аналогичных друг другу тройных диаграмм:

a) Pb-Bi-Sn и Pb-Bi-Cd с неустойчивым химическим соединением Pb₃Bi в двойной системе Pb-Bi;

б) Pb-Sn-Cd и Bi-Sn-Cd эвтектического типа.

Термодинамические функции расплавов системы Pb-Bi-Sn-Cd в основном определяются методом ЭДС с использованием расплавленных галогенидных солей в качестве электролита [30,31]. Однако полученная информация для парциальных термодинамических функций кадмия и интегральных величин по Pb-Bi-Sn-Cd четырем разрезам системы недостаточна для корректного определения парциальных функций свинца. Для решения этой задачи в работе [32] измерены ЭДС концентрационных цепей с твердым электролитом в интервале температур 823-923К и концентрацией свинца X_{Pb}=0,1-0,8 мол. доли по трем разрезам y₂ = (X_{Sn}+X_{Cd})/(X_{Sn} +X_{Cd} +X_{Bi})=0.25; y₃ =X_{Sn} /(X_{Sn} +X_{Cd}) =0.75; $y_2=0.20$; $y_3=0.80$ и $y_2=0.90$; $y_3=0.50$.

Термодинамические функции расплавов системы Cd-Sn-Pb ранее определены [33] методом ЭДС В интервале температур 673-873К С использованием расплавленной эвтектической смеси KCl-LiCl в качестве жидкого электролита с кадмиевым электродом сравнения. Измерения ЭДС проводились только по двум разрезам с соотношениями X_{Pb}:X_{Sn} равными 0,5 и 2, что повидимому, недостаточно для точного определения изолиний интегральных величин и расчета парциальных термодинамических функций свинца и олова.

В работе [34] для определения термодинамических функций жидких сплавов системы Cd-Sn-Pb измерены ЭДС концентрационных цепей в интервале температур 823-923К и концентраций олова X_{Sn} =0.1-0.9 мол. доли по трем разрезам с X_{Cd} /(X_{Cd} +X_{Pb})= 0.25,0.50 b 0.75. В работе представлены термодинамические функции жидких сплавов системы Cd-Sn-Pb. Парциальные избыточные термодинамические функции олова В работе существенно отличаются от данных [33]. Это объясняется тем, что тройная система изучена по двум разрезам X_{Pb} : X_{Sn} равным 2 и 0,5 которые пересекаются с сечениями X_{Cd} : X_{Pb} = const только в двух точках, причем при отсутствии значения ΔZ^E для эквимолярного разреза X_{Sn}:X_{Pb}=1. Интегральные избыточные энтропии и энтальпии смешения, полученные в работе [34] и в работе [33], соизмеримы, хотя и несколько отличаются. Согласно данным [35], жидкие сплавы системы Cd-Sn и Cd-Pb образуются с увеличением объема. Тройные жидкие сплавы, прилегающие к системе Pb-Sn, образуются с незначительным изменением энтальпии и избыточной энтропии. Следовательно, эти расплавы из жидких компонентов образуются практически без изменения объема. Максимальные значения энтальпии и избыточной энтропии смешения наблюдаются в области составов, прилегающих к системе кадмий-олово.

В ходе развития ядерной энергетики и ракетостроения встал вопрос исследования высокотемпературного окисления металлов и сплавов, а так же изучения процессов их воспламенения и горения. Это связано со способностью некоторых металлов и сплавов возгораться. Данная способность зависит от скорости окисления в присутствии воздуха. Чем быстрее происходит окисление

сплава или металла, тем больше выделяется тепла и как следствие возможно возгорание. Медленно же окисляющиеся металлы и сплавы не имеют возможности воспламениться ввиду слабого выделения тепла.

Металлы делятся [36] на два класса: летучие (с низкой температурой испарения) и не летучие (с высокой температурой испарения). Выделяются три группы металлов исходя из свойств оксидов: растворимые, летучие и не растворимые. Процесс горения нелетучих металлов может происходить в двух фазах: на поверхности металла; в паровой фазе. Окисление металлов в значительной степени замедляется в присутствии растворимых оксидов. Летучие оксиды способствуют горению в паровой фазе.

Летучие оксиды металлов имеют низкую температуру плавления и при горении находятся в жидком состоянии. Летучие металлы находятся в газообразном состоянии в зоне горения, если они имеют низкую температуру плавления. Пары оксидов из зоны горения диффундируют в твердую корку оксидов и на воздух с последующим охлаждением, конденсацией и превращением в мельчайшие твердые частицы оксида – дым [37]. Один из признаков горения летучих металлов – образование аэрозолей.

Механизм горения металлов и сплавов связан с их физическими свойствами и заключается в следующем: когда в воздухе концентрация паров достигает нижнего предела воспламенения, происходит горение металла. У поверхности оксида наблюдается зона диффузионного горения. Металл разогревается до температуры кипения в результате передачи ему большей части теплоты реакции. Далее происходит разрыв корки оксида вследствие кипения и, как следствие, интенсивное горение. Воспламенение является следствием нарушения теплового равновесия, которое в свою очередь приводит к самоускоряющемуся росту температуры. На процесс воспламенения могут оказать влияние: образование защитной оксидной пленки, состав окислительной среды, её давление, летучесть продукта воспламенения (вызывает охлаждение), теплофизические свойства металла, поверхность и геометрия металла, а так же условия проведения эксперимента. Существует вероятность образования загрязнений в контуре в ходе заполнения его теплоносителем и его эксплуатации. Основная причина возникновения загрязнений – взаимодействие теплоносителя с кислородом воздуха (в случае разгерметизации контура в него попадает кислород). Если разгерметизация произошла в разогретом контуре, кислород взаимодействует с зеркалом теплоносителя. В случае разгерметизации холодного контура кислород сорбируется поверхностями теплоносителя и контура. Последующий разогрев такого контура приводит к окислению теплоносителя путем десорбции кислорода, что в свою очередь ведет к образованию твердых оксидов, которые локализуются на зеркале теплоносителя и поверхности контура. Все вышесказанное может привести к блокировке теплопередающей поверхности, нарушить работу насосов, увеличить гидравлическое сопротивление трактов и т.п.

Наиболее потенциально опасная аварийная ситуация в ядерных энергетических установках – аварийное разуплотнение реакторного контура и истечение из него теплоносителя. В отечественных транспортных энергетических реакторных контурах со свинец-висмутовым теплоносителем происходила течь эвтектики (основные составляющие – твердые оксиды, образующиеся в процессе окисления, а так же в значительных количествах оксиды свинца и компоненты конструкционных материалов (в основном железо)). В процессе эксплуатации экспериментальных стендов с этим теплоносителем неоднократно происходили аварии с истечением этих теплоносителей в помещение [38].

Наиболее тяжелая запроектная авария, рассмотренная в техническом обосновании безопасности ядерных реакторов, является авария с нарушением энергосбережения АЭС с одновременным отказом всех органов управления реактивностью. Вероятность происшествия данной аварии мала (не превышает 4*10⁻¹² 1/год). Есть необходимость рассмотреть возможность расплавления топлива в тех зонах реактора, в которых возникает кипение теплоносителя, а так же расплавление топлива во всей активной зоне. Тем самым возникает задача изучения поведения жидкометаллического теплоносителя при чрезвычайно высоких температурах[39].

Исследование механических свойств сплавов свинца с висмутом, проведенное Томпсоном [40], обнаруживает аномальный ход кривых около 30% Ві.

В 1904-1906 гг. Курнаковым Николаем Семеновичем были выполнены применением работы c методов термического анализа исследования микроструктуры, твердости и электропроводности. Его работы указывают на наличие в области около 30% Ві новой фазы, образующейся при 198-190°С при перитектическом превращении. Для выяснения диаграммы состояния свинецвисмут и пределов существования отдельных фаз, в работах были проведены опыты методами термического анализа, микроструктуры и рентгенографии. В это же время была опубликована работа Стриклера и Зелтца [41], в которой диаграмма системы свинец-висмут подвергнута термодинамическому изучению. Наличие перитектического превращения В сплавах. богатых свинцом, подтверждено ими термическим исследованием двух сплавов, показавших температуру этого превращения равной 184 °С. Границы фаз ниже линии солидуса, в работе Стриклера и Зелтца не определялись.

В работе [42] авторами был проведен физико-химический анализ (термическим, микроструктуры, рентгеновским) системы свинец-висмут и построена диаграмма состояния системы.

Наличие β фазы, образующейся при перитектическом превращении при 182°С, подтверждено всеми применявшимися методами. Область существования фазы β в медленно охлажденных сплавах находится в интервале 65-70% Pb, расширяясь несколько с повышением температуры до эвтектической точки (124°С). Границы фазы β , определенные в работе не согласуются с данными [43]. В данной работе говориться, что границы этой фазы β указаны в пределах от 67 до 75% Pb. Природа фазы β применявшимися в настоящем исследовании методами установлена быть не может. Фазу β можно рассматривать как твердый раствор висмута в несуществующей в свободном состоянии модификации свинца, имеющей гексагональную структуру, или как твердый раствор в каком-либо

химическом соединении. Наиболее вероятно – в химическом соединении Pb₃Bi, что согласуется с определенной для β фазы кристаллической структурой.

Существование фазы Pb₃Bi надежно установлено во многих работах по системам Pb-Bi [44,45], Pb-Bi-Sn [26,27] и Pb-Bi-Cd [28], а так же в исследованиях [25-28]проводившихся методами ДТА, металлографического и рентгеновского анализов. По этим данным построены политермические разрезы систем Pb-Bi-Sn, Pb-Bi-Cd и Bi-Cd-Sn при 40 масс. % Bi и аналогичные разрезы системы Bi-Sn-Pb-Cd при 40Bi+ 25Pb, 40 Sn+ 25Cd и 40Bi+ 13Sn (масс. %), а на их основе – проекции поверхностей ликвидуса, начала кристаллизации двойных и тройных эвтектик разреза тетраэдра Bi-Sn-Pb-Cd при 40 Bi (масс. %).

В [29] приведена четверная система Bi-Sn-Pb-Cd с двойным неустойчивым химическим соединением Pb₃Bi. Там же представлена схема двойной системы Pb-Bi и показано, что неустойчивое химическое соединение Pb₃Bi образуется при температуре 184° C по перитектической реакции L_n+Pb \rightarrow Pb₃Bi.

Для системы Bi-Pb в работах [42] был решен вопрос о существовании промежуточной фазы рентгеновским методом [43] и измерением сверхпроводимости. В [46] для системы Bi-Pb приведены данные о наличии в системе промежуточных фаз BiPb, Bi₃Pb₃, Bi₇Pb₃, Bi₇Pb при повышенных давлениях [47]. По данным [42], растворимость свинца в твердом висмуте при комнатной температуре равна 2.0%; β-фаза, образующаяся по перитектической реакции, гомогенна в пределах 30-35 Bi (масс. %) и, по мнению авторов, является твердым раствором висмута в химическом соединении Pb₃Bi.

В [48] Тейлором работе было проведено ОДНО ИЗ первых термодинамических исследований металлических расплавов методом э.д.с., исследованы бинарные сплавы системы Cd-Sn, Cd-Pb, Cd-Bi и др. Система Cd-Bi изучена Тейлором в интервале 420-535°С. Обнаружено ее более сложное поведение, чем остальных изученных систем, а именно, наибольшее отклонение от идеальных законов, перемена знаков этих отклонений и необычное возрастание отрицательного отклонения с ростом температуры. Тейлором было предположено наличие в расплаве соединения Cd₃Bi₂, которое не отмечено на диаграммах

плавкости. Исследование [49] подтвердило перемену знака, отклонение от идеального раствора, но обработка результатов авторами проведена лишь для одной температуры.

В работе [50] было проведено новое исследование системы Cd-Bi и более подробно и тщательно изучена связь между отклонениями этого расплава от идеальных законов и составом в более широком интервале температур и концентраций. Полученные авторами данные подтверждали основные результаты Тейлора [48], но давали в то же время ряд интересных подробностей, показывающих, что на поведение этого расплава отражаются как общие закономерности межатомных взаимодействий, так и специфические, повидимому, химические взаимодействия, резко проявляющиеся в узких интервалах концентраций.

Измерение э.д.с. жидких металлических сплавов Cd-Bi были проведены в области концентраций 10-90 Cd (масс %) в температурном интервале 400 - 650 °C.

Рассчитаны коэффициенты активности кадмия и висмута в указанном температурном интервале, а так же теплоты образования расплавов из жидких компонентов и избыточные энтропии смешения при температурах 400, 475 и 575°C. Установлено, что тепловой эффект образования расплава Cd-Bi имеет небольшое отрицательное отклонение по сравнению с регулярным раствором. Энтропия расплава несколько выше, чем энтропия регулярного раствора.

В работе [50] были построены графики зависимости:

– коэффициента активности висмута от состава расплава Cd-Bi при различных температурах;

- теплоты смешения расплава Cd-Bi от состава расплава;

– избыточной энтропии смешения от состава расплава Cd-Bi. Обнаружены местные отклонения на кривых, которые настоятельно повторялись при всех температурах и сплавах одного и того же состава. Наличие сложного хода кривых в интервале концентраций кадмия от 0,08 до 0,30 заставляет предполагать здесь наличие сложных химических взаимодействий между компонентами. Фазовая диаграмма бинарной системы Cd-Bi не дает указаний на существование твердых

металлических соединений в этой системе. Тем не менее, в работе на основании результатов утверждают, что в расплаве имеет место химическое взаимодействие компонентов с образованием нескольких неустойчивых соединений находящихся в состоянии диссоциации. Для атомного расплава, находящегося при высокой температуре, авторы полагают, что химизм выражается в преобладании в расплавах известного состава упорядоченного расположения ближайших различных атомов с ближним порядком иного характера, чем для чистых компонентов. Авторы считают, что относительное преобладание таких структур растет с ростом температур, что формально можно связать с эндотермическим характером получающихся металлических «соединений». Абсолютная же роль всех форм ближнего порядка падает с ростом термического движения атомов в расплаве.

Таким образом, подробное изучение термодинамических свойств расплава Bi-Cd, характеризующегося небольшими отклонениями от идеального состояния, показывает сложность взаимодействия между компонентами, наличие далеко идущей компенсации отклонений различных законов и только кажущейся близости системы к идеальной. Отклонения, распространяющиеся на большие интервалы концентраций, могут быть количественно учтены и в некоторой мере объяснены при помощи той или иной общей теории растворов (например, теории Ламсдена [51], гл. 17 и 18). Однако применение формулы Ламсдена не может охватить столь сложного хода кривых, выделение же местных отклонений с целью упрощения кривых и обработки упрощенных кривых по уравнениям той или иной общей теории расплавов связано со значительным произволом в определении «отклонений»; авторы отказались от такой обработки своих данных. Очевидно, что эти местные отклонения связаны со специфическими химическими взаимодействиями и указывают на наличие таких взаимодействий в расплавах изученной системы, несмотря на то, что кристаллические соединения между компонентами для данного случая неизвестны.

Для системы Bi-Cd в работе [50] на основании данных о ходе кривых изменения электродвижущей силы в сплаве при 400-650°C предполагают наличие

химических взаимодействий. В [52] обнаружен небольшой изгиб кривой возле состава Cd₃Bi₂, объясняющийся отклонением расплава от идеального раствора. Тейлор предположил наличие в расплаве соединения Cd₃Bi₂, которое не отмечено на диаграммах плавкости [52].

В работе [53] измерялась кинематическая вязкость сплавов висмут-олово на вращательно-колебательном вискозиметре. Было выяснено, что у сплавов богатых висмутом (100 - 46, 44% Ві), кинематическая вязкость изменялась в процессе опыта благодаря конденсации металла на крышке тигля (вследствие вертикального температурного градиента). Металл скапливался в виде маленьких шариков, равномерно распределенных по всей внутренней площади крышки тигля. Эти отдельные капли образуют «присоединенную к тиглю массу, которая вызывает увеличение момента инерции подвесной системы. Можно считать, что в начале опыта масса капелек была незначительна, и тогда измерения, проведенные через большой промежуток времени в той же области температур, что и первые, должны дать отклонения (уменьшения) в значениях декремента затухания, вызванные процессом конденсации. В работе предлагается способ учета явления конденсации при предположении, что вязкостные свойства сплава за это время не изменились. Авторами построены изотермы кинематическая вязкость - состав (восемь сплавов и исходных металлов в интервале 250-700°С в вакууме). Высказано предположение, что в жидкой фазе существуют соединение в виде кластера $Sn_{10}Bi_3$ и, возможно, $SnBi_5$ только при низких температурах, а Sn_3Bi и SnBi, сохраняются при высоких температурах. Обнаружены такие соединения, как Sn₂Bi₄, Sn₄Bi₂, Sn₅Bi.

Химическое соединение SnBi, согласно исследованиям П. В. Бриджмена [54], существует и в твердых сплавах, но только при высоких давлениях. По данным исследователя это соединение может быть получено из эвтектической смеси висмута и олова при давлении свыше 20000 кг/см² и комнатной температуре и существует в двух модификациях: стойкой при давлениях от 20000 до 15000 кг/см²; стойкой при давлениях выше 20000 кг/см².

Модификация стойкая при более низких давлениях, образуется только при постепенном снятии давления, а после быстрого снятия давления может существовать некоторое время в метастабильном состоянии при атмосферном давлении, медленно переходя в эвтектическую смесь.

Для системы Bi-Sn, поданным [43], было показано, что промежуточных фаз в системе не имеется, и указаны эффекты, связанные с сильным уменьшением растворимости Bi-Sn. Но в [54] говорится, что при достаточно высоком давлении все же в этой системе появляется металлид BiSn.

В системе Cd-Sn обнаружена промежуточная фаза CdSn [55]. Наблюдается превращение при 133°C, которое объяснено как перитектоидное образование промежуточной фазы CdSn₄, но данное предположение не подтвердилось.

По данным [56], в системе Sn-Pb-Bi наблюдаются: PbSn, PbSn₃, Pb₃Bi₄ и Bi_2Sn_3 , а также тройные металлические соединения: Pb₃Bi₄Sn₄, Pb₅Bi₄Sn₄, Pb₅Bi₄Sn₄, Pb₃Bi₄Sn₁₅, Pb₃BiSn₄, PbBi₂Sn₂, Pb₂Bi₇Sn₄, Pb₃Bi₉Sn₄, Pb₇Bi₄Sn₄, Pb₂Bi₄Sn₄, Pb₉Bi₄Sn₄, PbBi₄Sn₄, PbBi₄Sn

В таблице 1.1 представлены металлические соединения, которые могут содержаться в расплаве системы Bi-Sn-Pb-Cd в виде кластеров.

В [57] есть указания на существование семи соединений системы Bi_2O_3 -PbO. Два стабильных, сохраняющихся при комнатной температуре: $PbBi_2O_{19}$, $Pb_5Bi_8O_{17}$, и ряд устойчивых в узком интервале температур: $Pb_3Bi_2O_6$, $Pb_2Bi_6O_{11}$, $Pb_7Bi_6O_{16}$, $PbBi_8O_{13}$ и $Pb_2Bi_2O_5$ (три последних не отмечены на наиболее полной на сегодняшний день диаграмме состояния [58], и их существование ставится под сомнение). Изучение физических свойств соединений этой системы указывают на перспективы их практического применения, как материала для литиевых батарей, пьезоэлектрических датчиков поверхностно акустических волн и др. [57].

В [59] проведен термодинамический анализ дефектных состояний в кристаллах сложных висмутосодержащих соединений Bi_2CdO_4 и $Bi_{10}Cd_3O_{18}$. Данные соединения образуются в квазибинарной системе $Bi_2O_3 - CdO$ [60].

Соединение	Pb ₃ Bi	PbSn ₃	${\rm Pb}_{3}{\rm Bi}_{4}$	PbSn	CdSn	$\mathrm{Cd}_3\mathrm{Bi}_2$	${\rm Pb}_{3}{\rm Bi}_{4}{\rm Sn}_{4}$	$Pb_5Bi_4Sn_4$	$Pb_{3}Bi_{4}Sn_{15}$	$Pb_{3}BiSn_{4}$
Источник	25-29, 42-47	56	56	56	55	50, 52	56	56	56	56
Соединение	$\mathrm{Sn}_2\mathrm{Bi}_4$	$\mathrm{Sn_4Bi_2}$	Sn ₅ Bi	SnBi	$\mathrm{Bi}_2\mathrm{Sn}_3$	$\mathrm{Sn}_{10}\mathrm{Bi}_3$	$Pb_7Bi_4Sn_4$	$Pb_3Bi_9Sn_4$	$Pb_2Bi_7Sn_4$	PbBi ₂ Sn ₂
Источник	53	53	53	47,53, 54	56	53	56	56	56	56
Соединение	Sn ₃ Bi	SnBi ₅	BiPb	Bi ₅ Pb ₃	${\rm Bi}_7{\rm Pb}_3$	${\rm Bi}_7{\rm Pb}$	$Pb_2Bi_4Sn_4$	$Pb_9Bi_4Sn_4$	$PbBi_4Sn_4$	
Источник	53	53	22, 47	46, 47	46, 47	46, 47	56	56	56	

Таблица 1.1. – Сводная таблица соединений, обнаруженных в литературных источниках

В [61] говорится об образовании станната висмута состава $Bi_2Sn_2O_7$ со структурой пирохлора при атомарном отношении Bi:Sn=1. При изменении соотношения Bi:Sn образуются двухфазные смеси указанного станната висмута и соответствующего оксида. Станнат висмута многофазного состава $Bi_2Sn_2O_7$ возможно получить по гидролитическому способу совместным осаждением Sn (IV) и Bi (III) из нитратных растворов.

В [62] изучена структура и термическое поведение метастабильных твердых растворов со структурой селенита, полученных механохимической обработкой в планетарной мельнице с номинальным составом Bi_2PbO_4 , $Bi_{12}CdO_{19}$ (в результате термического распада выше 700К метастабильной фазы Bi_4CdO_7 с ОЦК структурой). Автором исследовались образцы следующих составов: Bi_4CdO_7 , Bi_4PbO_7 , Bi_2PbO_4 , $Cd_3Bi_{10}O_{18}$.

В [63] упоминается о рентгеноструктурном исследовании кристаллов CdSnO₃ при комнатной температуре.

В [64] обнаружены аномалии зависимости электропроводности монокристаллов $CdSnO_3$ от температуры при 80, 140 и 220 ⁰C.

В [65] уточняется структура CdSnO₃, и рассчитываются величины смещений атомов металлов из центров кислородных полиэдров.

В работе [66] был проведен синтез станнатов CdSnO₃ и Cd₂SnO₄ путем термообработки соосажденных из растворов термически нестабильных соединений олова и кадмия.

В [67] говорится об образовании оксида $Bi_{12}PbO_{20}$ (в Главе 3. Экспериментальные результаты и их обсуждение) при выявлении кинетической закономерности катодного внедрения висмута и талия в медь, свинец и свинцовомедные электроды из водных растворов их солей. Найдено, что при катодном внедрении висмута свинца и талия в медь из водных растворов их солей помимо металлических фаз образуются оксиды и фазы различных составов, включая $Bi_{12}PbO_{20}$, который нас интересует.

Термодинамические свойства перечисленных тройных оксидных соединений изучены недостаточно, имеются только отдельные данные для PbBi₁₂O₁₉ и Pb₅Bi₈O₁₇ [68 – 69].

ВЫВОДЫ К ГЛАВЕ 1

В ходе проведенного литературного обзора выявлено, что в составе pacплава Bi-Sn-Pb-Cd могут присутствовать порядка 29-ти металлических соединений: PbSn, CdSn, SnBi, BiPb, Cd₃Bi₂, Bi₂Sn₃, Bi₅Pb₃, Bi₇Pb₃, Bi₇Pb, Pb₃Bi₄, Pb₃Bi, PbSn₃, Sn₂Bi₄, Sn₃Bi, Sn₄Bi₂, Sn₅Bi, Sn₁₀Bi₃, SnBi₅, Pb₂Bi₄Sn₄, Pb₂Bi₇Sn₄, Pb₃Bi₄Sn₄, Pb₃Bi₉Sn₄, Pb₃BiSn₄, Pb₅Bi₄Sn₄, Pb₇Bi₄Sn₄, PbBi₂Sn₂, PbBi₄Sn₄, Pb₉Bi₄Sn₄. Pb₃Bi₄Sn₁₅, которые могут оказывать влияние на его теплофизические свойства

При окисление расплава могут образовываться 23 сложных и 9 простых оксидных соединений: PbBi₁₂O₁₉, Pb₂Bi₆O₁₁, Pb₅Bi₈O₁₇, Pb₃Bi₂O₆, Bi₂PbO₄, Bi₄PbO₇, Bi₁₂PbO₂₀, Pb₇Bi₆O₁₆, PbBi₈O₁₃, Pb₂Bi₂O₅, PbSnO₃, PbSnO₄, Bi₁₂CdO₁₉, Bi₄CdO₇, Cd₃Bi₁₀O₁₈, Bi₂CdO₄, Bi₂Sn₂O₇, CdPbO₃, Cd₂PbO₄, CdPb₂O₅, CdSnO₃, Cd₂SnO₄, CdSnO₂, Pb₃O₄, Pb₂O₃, PbO₂, PbO, SnO₂, SnO, Bi₂O₃, BiO, CdO.

ГЛАВА 2. ТЕРМИЧЕСКИЙ АНАЛИЗ СПЛАВА СИСТЕМЫ Bi-Pb-Sn-Cd

2.1.Установка для проведения термического анализа

Основными элементами установки для термического анализа (термоанализатора) являются печь, держатель образца и измерительная аппаратура.

На рисунке 2.1 приведена схема вертикальной трубчатой печи для термического анализа. Нагреватель состоит из кварцевой трубы (длина 230 мм, внутренний диаметр 50 мм), на которую намотан нихромовый провод. Печь обеспечивает симметричное и равномерное нагревание образца.

Рисунок 2.1 – Схема вертикальной трубчатой печи для термического анализа:

1 – металлический каркас; 2 – корпус печи; 3 – электронагреватель;

4 –изолированные контакты токоподвода; 5 – измельчённый корунд.

Объектом исследования служил сплав системы Bi-Sn-Pb-Cd химического состава 42масс.%Bi-40,6масс.%Pb-10масс.%Sn-7.4масс%Cd. Для исследования процесса плавления и кристаллизации применяли метод термического анализа с последующим численным дифференцированием по времени кривых нагрева и

охлаждения [70]. Особенности проведения экспериментов заключаются в следующем: гранулы исходного сплава помещали в корундовый тигель, находящийся в специальной измерительной ячейке термоанализатора.

На рисунке 2.2. представлена конструкция измерительной ячейки. Она состоит из массивного никелевого блока *1*, обеспечивающего изотермичность зоны расположения образца. В нижнюю часть блока устанавливается корундовый тигель *2* с исследуемым образцом *3*. Тигель с образцом фиксируется штифтом *5*.

Рисунок 2.2 – Измерительная ячейка: 1 – никелевый блок; 2 – тигель из Al₂O₃; 3 – исследуемый образец; 4 – горячий спай термопары; 5 – штифт; 6 – двухканальная огнеупорная соломка; 7 – огнеупорная опорная крышка; 8 – хромель-

алюмелевая термопара.

Гранулы исходного сплава системы Bi-Sn-Pb-Cd насыпают в тигель и на расстоянии 10 мм от донной части тигля в образце помещают горячий спай 4 хромель-алюмелевой термопары 8, находящейся в двухканальной соломке 6 из оксида алюминия. Контакты холодного спая термопары погружают в тающий лед и с помощью медных проводов подсоединяются к клеммам цифрового

вольтметра, для фиксирования термоэдс. Измерительную ячейку помещают в рабочее пространство вертикальной трубчатой печи, в которой осуществляется нагревание образца.

При монотонном нагревании образца до задаваемой температуры фиксировали через одинаковые промежутки времени числовые значения термоэдс с помощью цифрового вольтметра. Построены графики в координатах, скорость нагрева образца ($\Delta t/\Delta \tau$) - его температура (t), из которых в дальнейшем найдены значения температур солидуса t_s и ликвидуса t_t с погрешностью ±1°C.

При достижении расплавом заданной температуры измерительную ячейку извлекали из нагревательной печи и продолжали снимать показания цифрового вольтметра в ходе охлаждения образца. Следует отметить, что кристаллизация образцов проходила в неравновесных условиях. Методика обработки значений термоэдс и построения дифференциальных кривых описана ниже.

2.2 Обработка экспериментальных данных, полученных в режиме нагрева и охлаждения сплава системы Bi-Pb-Sn-Cd

Перед проведением эксперимента держатель образца помещается в печь и согласно рисунку 2.2 фиксируется опорной крышкой 7. Холодные концы термопары погружаются в сосуд Дьюара, в котором находится равновесная система (тающий лёд и вода), за счет чего и поддерживается температура 0°С.

Для измерения термоэдс (E, mV) применяется цифровой вольтметр Щ 31 с точностью определения ±0,001 мВ.

Порядок проведения экспериментов заключался в следующем. На нагреватель печи подавалось напряжение 60 В, обеспечивающее силу тока 5А. В ходе монотонного повышения температуры образца от 25°C до 150°C или 500°C фиксировали через одинаковые промежутки времени $\Delta \tau = 5$ с числовые значения термоэдс. В связи с тем, что график зависимости в координатах «температура (t,°C) – время (τ , с) характеризуется при фазовых превращениях плавными переходами, определение температур равновесного и неравновесного солидуса сплавов, а также температур, соответствующих выделениям фаз, с минимальной

погрешностью либо затруднено, либо невозможно. Для повышения точности определения этих температур зависимости «термоэдс (E, mV) – время (τ ,c)» численно дифференцировали и строили графики в координатах «скорость нагревания образца ($\Delta E/\Delta \tau$, усл. ед.) – его температура (t,°C)».

В первой серии экспериментов исходные образцы сплава медленно нагревали до 150°С. На рисунке 2.3. представлена типичная термограмма нагрева. При 72°С наблюдается эндотермический пик, обусловленный плавлением эвтектики в системе. Процесс полного плавления заканчивается при 108°С.

Из термограммы охлаждения данного сплава представленной на рисунке 2.4. при 108°С из расплава наблюдается выделение твердой фазы, а при 72°С происходит кристаллизация эвтектики.

Во второй серии экспериментов исходные образцы сравнительно быстро нагревали до 500°С.

На рисунке 2.5. дана термограмма нагрева. Несмотря на то, что скорость нагрева системы к моменту плавления эвтектики в этом случае была примерно в 2 раза больше, чем в экспериментах при нагреве до 150°С, температура плавления эвтектики не изменилась в пределах погрешности её определения. Температура полного плавления образца при нагревании его с большей скоростью понизилась на 4°С и составила 104°С.

На рисунке 2.6. приведен участок термограммы охлаждения сплава после его нагрева до 500°С. На рисунке 2.7 приведен фрагмент участка термограммы охлаждения сплава после его нагрева до 500°С. Наиболее интенсивное выделение кристаллов из жидкой фазы наблюдается в интервале 109-103°С, а при 69°С происходит кристаллизация эвтектики.

Для лучшего понимания структурных изменений происходящих в расплаве в процессе нагрева проведено исследование микроструктуры закристаллизованных образцов в центре коллективного пользования института высокотемпературной электрохимии УрО РАН с помощью сканирующего электронного микроскопа JSM-5900LV с приставкой электронно-зондового микроанализатора.

Рисунок 2.3 – Термограмма нагрев сплава системы Bi-Sn-Pb-Cd до 150°C

Рисунок 2.4 – Термограмма охлаждение сплава системы Bi-Sn-Pb-Cd от 150°C

Рисунок 2.5 – Термограмма нагрева сплава системы Bi-Sn-Pb-Cd до 500°C

Рисунок 2.6 – Участок термограммы охлаждения сплава системы Bi-Sn-Pb-Cd после его нагрева до 500⁰C

Рисунок 2.7 – Фрагмент кривой термограммы охлаждения сплава системы Bi-Sn-Pb-Cd после его нагрева до 500⁰C

Сканирующий электронный микроскоп **JSM-5900** LV с используется энергодисперсионным микроанализатором для выполнения металлографических и фрактографических исследований. С его помощью проводится качественный и количественный локальный анализ химического состава (идентификация неметаллических и иных инородных включений в сталях и сплавах, определение изменения содержания химических элементов по сечению образца). Анализ в точках проводится с локальностью до 1мкм. и точностью 1-2%. Ввиду слабой исследованности критических точек, фазового состава и структуры сплава в данной работе проведено исследование микроструктуры шлифов твердых образцов сплава системы Bi- Pb –Sn- Cd (образец №1 нагревали до 150°C, образец №2 нагревали до 500°C) с целью определения локального химического состава фаз.

Изначально сплав находился В виде гранул, его сплавляли В образом: шлифование термоанализаторе подготавливали следующим И поверхности образцов проводилось на шлифовальной бумаге, последовательно переходя большей степени зернистости меньшей OT К С непрерывно

уменьшающимися размерами абразивных частиц до тех пор, пока поверхность образца, подвергающаяся исследованию, не станет гладкой (без рисок). Переход к обработке на шлифовальной бумаге меньшей степени зернистости производился только после исчезновения рисок от предыдущей шлифовальной бумаги.

Данные микрорентгеноспектрального анализа состава фаз в микроструктуре образцов сплава, подвергнутых нагреву, до 150 и 500°С, представлены на рисунках 2.8-2.17 и в таблице 2.1.

На рисунках 2.8 и 2.16 приведены снимки типичного участка микрошлифа образца сплава в обратно рассеянных электронах (BES). Цифрами обозначены точки, в которых определен химический состав. Данные по составу фаз представлены в таблице 2.1. Можно сделать предположение, что частицы нерастворившихся фаз представляют собой металлиды.

Анализ табличных данных показывает, что в микроструктуре образцов, нагретых до 150 и 500°С, имеются четыре основных состава: состав 1 на основе кадмия, состав 2 на основе олова, состав 3 на основе висмута и свинца и состав 4 на основе висмута, содержащая сравнительно много кадмия и олова.

При нагреве образца до 500°С полностью растворилась фаза, содержащая Рb в больших количествах, которые наблюдались в микроструктуре твердых образцов нагретых до 150°С и изменилась морфология фазовых составляющих. В образце, полученном из нагретого до 150°С расплава, наблюдается неравномерно распределенные фазовые составляющие игольчатой формы. В образцах, полученных из нагретого до 500°С расплава, присутствуют более компактные равномерно распределенные фазы равноосной формы.

Рисунок 2.8 – Микроструктура сплава системы Bi-Sn-Pb-Cd после нагрева до 150⁰C, (цифрами указаны точки в которых определен локальный химический состав)

Рисунок 2.9 – Распределение Cd в сплаве при нагреве его до 150⁰C

Рисунок 2.10 – Распределение Рb в сплаве при нагреве его до 150°C

Рисунок 2.11 – Распределение Sn в сплаве при нагреве его до 150⁰C

Рисунок 2.12 – Распределение Ві в сплаве при нагреве его до 150°C

Рисунок 2.14 – Распределение Cd в сплаве при нагреве его до 500⁰C

Рисунок 2.16 – Распределение Sn в сплаве при нагреве его до 500⁰C

Рисунок 2.13 – Микроструктура сплава системы Bi-Sn-Pb-Cd после нагрева расплава до 500⁰C (цифрами указаны точки, в которых определен локальный химсостав)

Рисунок 2.15 – Распределение Рb в сплаве при нагреве его до 500⁰C

Рисунок 2.17 – Распределение Ві в сплаве при нагреве его до 500⁰C

Таблица 2.1 - Состав микроструктуры образцов сплава системы Pb-Bi-Cd-Sn представленной на рисунке 2.8

№ точки на рис. 2.13	150° C				N⁰	500° C			
	Cd	Sn	Bi	Pb	точки на рис. 2.13	Cd	Sn	Bi	Pb
1-4	97,29	0,55	1,37	0,79	1-4	96,18	0,62	2,15	1,05
5-8	0,97	94,56	0,63	3,84	5-8	1,21	93,34	1,65	3,80
9-13	1,05	4,12	64,32	30,51	9-12	1,18	4,41	61,69	32,72
14-15	1,07	2,70	1,35	94,88	12 16	12 10	21 02	12 02	22 87
16-17	13,31	21,95	43,08	21,66	13-10	12,19	21,02	42,92	23,07

При высокотемпературном нагреве (до 500 °C) расплава в основном изменяются морфология фазовых составляющих и более однородное их распространение в микроструктуре твердых образцов ПО сравнению с 150°C). низкотемпературным нагревом (до Этот эффект обусловлен распределением атомов легирующих элементов в расплаве под воздействием высокотемпературного нагрева [51]. Результаты микрорентгеноспектрального анализа шлифов образцов сплава №1 и №2 свидетельствуют о более однородном составе образца №2.

ВЫВОДЫ К ГЛАВЕ 2

1. В данной главе экспериментальным путем определены температура плавления эвтектики порядка 70[°]C и температура полного плавления 108[°]C (в случае медленного нагрева до 150[°]C), 104[°]C (в случае быстрого нагрева до 500[°]C) при плавлении и кристаллизации сплава системы Bi-Sn-Pb-Cd.

2. С помощью метода микрорентгеноспектрального анализа исследован состав в микроструктуре закристаллизованных образцов. Полученные результаты термического и микрорентгеноспектрального анализа позволяют предположить о существовании в расплаве кроме атомов Bi, Pb, Sn, Cd металлических соединений, которые могут присутствовать в нем в виде кластеров.

ГЛАВА 3. ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Ввиду сложности проведения экспериментов по изучению теплофизических свойств системы 42Bi-40.6Pb-10Sn-7.4Cd (масс %) при высоких температурах, целесообразно использовать метод термодинамического моделирования с учетом образования в расплаве всех возможных металлидов и оксидных соединений.

3.1 Методика термодинамического моделирования, включая модель идеальных растворов и идеальных растворов продуктов взаимодействия

Моделирование – это исследование каких-либо объектов (конкретных или абстрактных) на моделях (искусственно созданных объектах в виде схем, чертежей, логико-математических законов, формул и т.д.), которые отображают и воспроизводят реальный объект с тем или иным приближением [72-75]. Существуют два теоретических метода исследования систем – термодинамический и статистический.

В нашем моделировании будет использована термодинамическая система (это «тело (совокупность тел), способное (способных) обмениваться с другими телами (между собой) энергией и (или) веществом»).

Термодинамическое моделирование (ТДМ) – это сочетание равновесной термодинамики, современных алгоритмических языков ЭВМ, термодинамических функций индивидуальных элементов как компонентов систем, а также методов оптимального использования расчетного инструмента (методов ТДМ) [74-75].

Создание и развитие ТДМ диктуется требованиями практики, такими как:

 необходимость количественного исследования и прогнозирования поведения систем при высоких температурах;

- получение целевых многоэлементных продуктов заданного состава.

Метод ТДМ используют для изучения сплавов в экстремальных условиях. Он незаменим в случае отсутствия возможности изучить объект в естественных условиях или для ускорения процесса исследования. Для выполнения моделирования необходимо сформировать базу данных, содержащую полную информацию о термодинамических свойствах соединений, которые могут образовываться в расплаве Bi-Pb-Sn-Cd в виде кластеров.

Одной из наиболее эффективных программ реализующих расчеты ТДМ системы, является программный комплекс TERRA, являющийся дальнейшим развитием пакета программ ASTRA [72].

При создании алгоритма расчета в данном программном комплексе приняты следующие допущения математической модели:

 – рассматриваются закрытые и изолированные термодинамические системы, в которых границы непроницаемы для обмена веществом, теплом и работой с окружающей средой;

 анализируются системы в состоянии внешнего и внутреннего термодинамического равновесия (полного или локального);

считается, что исследуемая система является гетерогенной, состоящей из нескольких однородных частей (фаз), отделенных видимыми границами;

присутствие паровой фазы в системе обязательно;

 все газообразные индивидуальные вещества (атомы, молекулы, атомарные и молекулярные ионы, электронный газ) входят в состав одной паровой фазы;

газовая фаза описывается уравнением состояния идеального газа;

 поверхностные эффекты на границе раздела фаз не учитываются, растворимость газов в конденсированных (жидких и твердых) фазах отсутствует; конденсированные вещества могут отсутствовать;

 конденсированные вещества образуют однокомпонентные несмешивающиеся фазы либо включаются в состав идеальных конденсированных растворов;

индивидуальные вещества, имеющие одинаковую химическую формулу,
но входящие в различные фазы, считаются разными компонентами;

 вещества с одинаковой химической формулой, находящиеся в различных полиморфных модификациях, кристаллическом или жидком состоянии, рассматриваются как один компонент, у которого изменение свойств происходит скачкообразно при температурах превращений;

– объем конденсированных компонентов пренебрежимо мал.

Программный комплекс TERRA предусматривает следующие возможности:

– условие равновесия термодинамической системы с окружающей средой задается любой парой значений термодинамических параметров из числа следующих шести величин: Р (давление), V (удельный объем), Т (температура), S (энтропия), Н (энтальпия), U(внутренняя энергия);

 проведение расчета равновесного состояния термодинамической системы произвольного элементного состава;

– включение в число ожидаемых компонентов равновесного состава любых индивидуальных веществ за счет изменения только исходных данных;

– система «свободна» от влияния магнитного, электрического и гравитационных полей;

 определение равновесного фазового состава системы без предварительного указания термодинамически допустимых состояний.

Расчет состава фаз И характеристик равновесия проводится С использованием справочной базы данных по свойствам индивидуальных веществ. База данных является составной частью программного комплекса. Основу информации в базе данных составляют термодинамические, теплофизические и термохимические свойства индивидуальных веществ, систематизированные в ИВТАНТЕРМО), Институте высоких температур PAH (база данных национальном бюро стандартов США, опубликованные в справочнике [76], рассчитанные в Московском государственном техническом университете по молекулярным, калориметрическим и спектроскопическим данным. База данных открыта пользователей и допускает расширение и корректировку ДЛЯ информации.
Последовательность ТДМ:

– постановка задачи исследования (определение состава исходной системы, типа процесса, в котором данная задача может быть реализована в реальных условиях, характеристики особенностей процесса с точки зрения достижения равновесного состояния, задание термодинамических параметров, выявление реальной значимости и цели предполагаемых расчетов);

выбор расчетного инструмента – программы полного термического анализа (ПТА);

выяснение всех возможных форм существования веществ – компонентов системы, определение их термодинамических функций (для определения неизвестных свойств целесообразно пользоваться расчетными методами, представленными в [77]);

- введение в банк свойств;

- конкретизация задачи на ЭВМ;

- выполнение расчетов на ЭВМ;

– расшифровка, интерпретация распечаток, получение результатов (первичная информация обычно превышает требуемую, по условию задачи, поэтому требуется расшифровка и отбор необходимых данных, построение таблиц и графиков). Определение аналитических зависимостей и т.д. В программном комплексе TERRA имеется возможность определения общих термодинамических характеристиках, состава газообразных и конденсированных фаз и их массовых соотношениях в системе;

– анализ достоверности результатов ТДМ (сравнение с литературными данными или экспериментально полученными).

Расчетные методы развиты на основе вариационных принципов термодинамики:

1. из всех допустимых значений числа молей n_q индивидуальных веществ в термодинамической системе те из них, которые минимизируют термодинамический потенциал системы, соответствуют равновесным значениям;

2. из всех допустимых значений энергии U_i вносимой каждым независимым компонентом (атомом), те из них, которые максимизируют суммарный вклад энергии отдельных атомов в систему, соответствуют равновесным значениям.

Составными частями системы являются все возможные и существующие вещества в различных агрегатных состояниях, образующиеся из элементов, включенных в состав изучаемой системы. Компонентами термодинамической системы называют вещества, минимально необходимые для составления данной системы. Число компонентов равняется числу веществ, присутствующих в системе, минус число связывающих эти вещества независимых реакций.

При ТДМ конденсированными индивидуальными веществами принимаются соединения с кратным числом образующих их атомов. Вещества с дробными стехиометрическими коэффициентами считаются растворами. В состав конденсированных фаз входят соединения в твердом (кристаллическом или аморфном) И жидком состояниях. Индивидуальные вещества, имеющие одинаковую химическую формулу, но входящие в различные фазы, считаются различающимися составными веществами. Составными частями паровой фазы являются молекулы, радикалы, атомы, ионы и электронный газ.

Экстенсивными термодинамическими параметрами системы, т.е. пропорциональными количеству или массе вещества в системе, являются объем V, энтропия S, внутренняя энергия U, энтальпия H, энергия Гельмгольца F (F = U - TS), энергия Гиббса G (G = H - TS). Интенсивными термодинамическими параметрами, т.е., не зависящими от количества или массы системы, являются давление P, термодинамическая температура T, концентрация, мольные и удельные термодинамические величины.

Для представления в явном виде любой термодинамической системы, следует задать два независимых параметра из числа V, S, U, H, P, T, F, G и полный исходный химический состав системы. При этом каждая пара независимых параметров будет определять характеристическую функцию [78] – «функцию состояния термодинамической системы соответствующих термодинамических параметров, характеризующуюся тем, что посредством этой функции и производных ее по этим параметрам могут быть выражены в явном виде все термодинамические свойства системы».

Критерием системой равновесного достижения состояния является экстремум ее характеристической функции. При независимых параметрах Р и Т характеристической функцией является свободная энергия Гиббса G, а минимум этой энергии системы (G_{min}) является критерием достижения равновесного U состояния; при параметрах И V для изолированной системы характеристической функцией является энтропия S, а максимум энтропии системы S_{max} является критерием достижения равновесного состояния.

При создании алгоритма расчета в данном программном комплексе приняты следующие допущения математической модели:

Равновесие подобных систем в соответствии со вторым законом термодинамики характеризуется максимумом энтропии относительно термодинамических степеней свободы, к числу которых относятся концентрации компонентов равновесной смеси (n, моль/кг), температура Т и давление Р (формула 3.1)

$$S = \sum_{i=1}^{K} [S_i^0(T) - R_0 \ln \frac{R_0 T}{V} n_i] \cdot n_i + \sum_{c=1}^{R} S_c^0(T) n_c + \sum_{N} \sum_{m=1}^{N_m} [S_m^0(T) - R_0 \ln \binom{n_m}{N_{N_m}}] \cdot n_m \Longrightarrow S_{\max}$$
(3.1)

где n_i , n_c , n_m , S_i^0 , S_c^0 , S_m^0 - число молей и стандартная энтропия (при температуре T и давлении 0,1 МПа) в паровой (i), конденсированной (c) фазах и в растворе (m), соответственно; i, c, m -количество газообразных, конденсированных компонентов и растворов в термодинамической системе, соответственно; n_{Nm} – количество вещества в m-ном конденсированном растворе; V – объем; R – универсальная газовая постоянная.

Удельный объем V, как и внутренняя энергия U, при этом остаются независимыми переменными, так как условия равновесия системы относительно окружающей среды могут быть выражены с помощью равенств: dV=0 и dU=0 или V= const и U= const.

На область допустимых значений переменных при установлении химического и фазового равновесия путем достижения максимума энтропии накладываются следующие дополнительные ограничения.

1. Постоянство полной внутренней энергии системы при равновесии отражено в формуле 3.2.

$$U - \sum_{i=1}^{K} U_{i} n_{i} - \sum_{c=1}^{c} U_{c} n_{c} - \sum_{N=1}^{N} \sum_{m=1}^{Nm} U_{Nm} n_{Nm} = 0$$
(3.2)

где U_i, U_c, U_{Nm} - полная внутренняя энергия компонентов паровой фазы, конденсированных веществ и компонентов конденсированных растворов, отнесенная к одному молю и включающая в себя энтальпию образования (формула 3.3):

$$U = \int_{T_0}^{T} C_{V\varepsilon} dT + \Delta H_f^{0}(T_0)$$
 (3.3)

где є=і, с, m; $\Delta H_f(T_0)$ – энтальпия образования при T_0 , C_v – изохорная теплоемкость

2. Сохранение массы всех химических элементов (формула 3.4):

$$-M_{j} + \sum_{i=1}^{K} v_{ji} n_{i} + \sum_{c=1}^{c} v_{jc} n_{c} + \sum_{N=1}^{N} \sum_{m=1}^{Nm} v_{jNm} n_{Mn} = 0$$
(3.4)

где Мј – мольное содержание ј-го химического элемента в системе;

v_{ji}, v_{jc}, v_{jNm} – числа атомов j-го элемента в газообразных, конденсированных компонентах системы и растворе, соответственно.

3. Закон сохранения заряда:
$$\sum_{i=1}^{K} q_{ei} n_i = 0$$

где q_{ei} - кратность ионизации і-го компонента

(для электронного газа $q_{ei} = -1$).

4. Уравнение состояния смеси идеальных газов (формула 3.5)

$$pV - R_0 T \sum_{i=1}^{K} n_i = 0$$
(3.5)

где р - давление.

Параметры равновесия термодинамической системы определяются решением математической задачи о нахождении экстремума с учетом всех ограничений с использованием функции Лагранжа. Для вычислений используют метод последовательных приближений Ньютона, который обеспечивает высокую скорость сходимости результатов на конечных стадиях итерационного процесса.

Для определения конкретных параметров состояния системы необходимо задать две ее характеристики (например: РиТ; VиТ; НиРи т.д.), массовые содержания химических элементов в системе, список потенциально возможных в равновесии индивидуальных веществ с их термодинамическими функциями энтропией и энтальпией.

В программном комплексе TERRA предусмотрена возможность учета некоторых неидеальностей: исключение из числа компонентов равновесия любых индивидуальных веществ; возможность назначать (фиксировать) концентрации одного или нескольких веществ с последующим расчетом равновесия по оставшейся части системы; рассмотрение неидеальных конденсированных растворов путем задания избыточной энергии Гиббса; учет собственного объема, занимаемого конденсированными веществами.

Предполагаем, что расплав Bi-Pb-Sn-Cd представлен моделью идеальных растворов продуктов взаимодействия [79], в состав которого входят конденсированные Bi, Pb, Sn, Cd, BiPb, SnBi, PbSn, CdSn, Sn₃Bi, SnBi₅, Bi₅Pb₃, Bi₇Pb₃, Bi₇Pb, Sn₂Bi₄, Sn₄Bi₂, Sn₅Bi, Bi₂Sn₃, Sn₁₀Bi₃, Pb₃Bi, PbSn₃, Pb₃Bi₄, Cd₃Bi₂, Pb₂Bi₄Sn₄, Pb₉Bi₄Sn₄, PbBi₄Sn₄, Pb₇Bi₄Sn₄, Pb₃Bi₉Sn₄, Pb₂Bi₇Sn₄, PbBi₂Sn₂, Pb₃Bi₄Sn₄, Pb₅Bi₄Sn₄, Pb₃Bi₄Sn₁₅, Pb₃BiSn₄ [табл. 1.1].

Двойные и тройные соединения в расплаве описываются термодинамическими свойствами и функциями соединений A_xB_y и A_xB_yC_Z. Энтропии смешения рассчитываются как для идеальных растворов.

При термодинамическом моделировании концентрации соединений в расплаве определяются равновесным состоянием всей системы, т. е., заданными параметрами (например Р и Т) и исходным соотношением Bi, Pb, Sn, Cd и Ar. Кроме того, при ТМ выявляются также равновесные концентрации всех

газообразных компонентов системы, возникающих в результате комплекса химических и фазовых превращений. Равновесные концентрации конденсированных и газообразных компонентов представляют собой продукты всех возможных реакций между Bi, Pb, Sn, Cd и паровой фазой при достижении системой глобального экстремума термодинамического потенциала (ΔS_{max} системы) [79].

В составе паровой фазы учтены пары Pb, Bi, Sn, Cd, Pb₂, Bi₂, Bi₃, Bi₄, Sn₂, Cd₂ электронный газ (е-газ) и ионизированные пары висмута, свинца, олова и кадмия.

Термодинамические функции индивидуальных веществ взяты из баз данных TERRA, ASTRA, HSC Chemistry.

Результаты термодинамического моделирования для Pb и Bi близки к экспериментальным данным по давлению пара для чистого свинца и висмута [80-83].

Фазовая диаграмма жидкость-пар для системы Pb-Bi при разных давлениях, полученная термодинамическим моделированием при использовании для металлического расплава модели идеального раствора продуктов взаимодействия, близка к экспериментальным данным, приведенным в работе [84]. Это свидетельствует об адекватности термодинамического моделирования.

В программном комплексе TERRA сделан ряд допущений, которые вносят свой вклад в общую погрешность при определении термодинамических свойств, а именно:

1) допущение, что система является равновесной, то есть насколько реальная моделируемая система близка к равновесному состоянию;

2) неточность и несогласованность термодинамических и термохимических свойств компонентов исследуемой системы;

3) неточность и неполнота представленных компонентов в системе.

Для описания сложных многокомпонентных жидких металлических систем в приближении идеального раствора состав был представлен в виде комбинаций реальных кластеров, которые действительно существуют.

Для проведения расчетов нами в программный комплекс TERRA были заложены термодинамические свойства бинарных и тройных металлических соединений. Значения свойств бинарных соединений заимствованы из справочных данных (погрешность определения которых не превышает 10%).

Ввиду отсутствия значений свойств сложных металлических соединений в справочниках они были определены с применением расчетных методов: аддитивных, модели Миедемы, правило Неймана-Коппа. Погрешность данных методов не превышает 20%.

Свойства ряда сложных металлических соединений были обнаружены среди экспериментальных данных. В ходе сравнения значений данных свойств со значениями, полученными расчетными путем расхождение составило не более 15%.

3.2 Проверка модели идеальных растворов и идеальных растворов продуктов взаимодействия на расплаве Pb-Bi

Свойства системы Pb-Bi изучены достаточно подробно, в отличие от сплава системы Pb-Bi-Sn-Cd. Что позволяет провести сравнение расчетных и экспериментальных данных свойств системы Pb-Bi и оценить адекватность используемой модели.

Рассматривались две термодинамические модели.

Первая модель.

Расплав Pb(45%) - Bi(55%) представлен моделью идеального раствора продуктов взаимодействия. В состав расплава входят конденсированные Bi, Pb, Pb₃Bi₄, PbBi, Pb₃Bi₅, Pb₃Bi₇, PbBi₇ [85].

Существование вышеупомянутых металлидов подтверждено литературными источниками [86].

Металлиды описываются термодинамическими свойствами соединений Pb_xBi_x при температуре расплава. Энтропия смешения между [Bi], [Pb] и [Pb_xBi_x] рассчитывается как для идеальных растворов, а теплоты смешения принимаются равными нулю.

Равновесное состояние в системе задается параметрами Т и Р и исходным соотношением Pb, Bi, Ar. Равновесные концентрации конденсированных и газообразных компонентов представляют собой продукты всех возможных реакций между [Pb], [Bi] и [Pb_xBi_x] и паровой фазой при достижении системой глобального экстремума термодинамического потенциала.

Термодинамические параметры металлидов взяты из работы [87].

В состав пар над расплавом входят газообразные Ві, Ві₂, Ві₃, Ві₄, Рb, Pb₂, электронный газ, а также ионизированные пары свинца и висмута [85, 88]. Данные паровые димеры, тримеры и тетрамеры висмута и свинца реально существуют [89]. Их термодинамические параметры взяты из справочника [89].

Вторая модель.

Расплав Pb(45%) – Bi(55%) представлен моделью идеального раствора содержащего Pb и Bi в конденсированной фазе Паровая фаза содержит пары Pb и Bi.

Адекватность модели идеальных растворов продуктов взаимодействия подтверждается близостью результатов, полученных термодинамическим моделированием эвтектики Pb – Bi с экспериментальными данными по теплоемкости, давлению паров и теплопроводности. Результаты, полученные с существенно растворов использованием модели идеальных разняться С экспериментальными данными по давлению пара и теплоемкости.

Методом термодинамического моделирования изучено поведение системы Pb(45%)+Bi(55%) при нагреве до 1100К в атмосфере Ar с учетом образования соединений в присутствующих в виде кластеров (модель идеальных растворов продуктов взаимодействия). Содержание Ar в системе равнялось 1% по массе. Пар, находящийся в термодинамическом равновесии со своей жидкостью считается насыщенным. С помощью программного комплекса TERRA

определены парциальные давления компонентов паровой фазы, теплоемкость, энтропия, энтальпия и теплопроводность для данной системы. Результаты расчетов приведены на рисунках 3.1 – 3.6.

На рисунке 3.1 приведены зависимости давления пара от температуры при атмосферном давлении из литературных источников и результатов термодинамического моделирования по двум моделям. В качестве литературных источников использовались данные приведенные в работах V. P. Sobolev [90 – 91], справочнике по легкоплавкому свинцово-висмутному сплаву [92], и результаты полученные авторами [93 – 96].

Рисунок 3.1 – Зависимость давления пара от температуры при атмосферном давлении: ● - Michelato 2003 [90]; ◇- Tupper 1991 [93]; ■- Orlov 1997 [94]; □- Sh. Ohno 2005 [95]; +- Morita, 2006 [96]; ◆ - модель идеальных растворов продуктов взаимодействия; ■- модель идеальных растворов.

На графике видно, что результаты, полученные при использовании первой модели, наиболее близки к экспериментальным данным, приведенным в работах [94 – 96]. Следует отметить, что в работах авторов [95 – 96] приведены значения давления пара при высоких температурах, которые хорошо согласуются с данными термодинамического моделирования. Результаты, полученные при использовании второй модели, не согласуются с экспериментальными данными.

На рисунке 3.2 представлены зависимости теплоемкости системы от температуры. Следует отметить близость экспериментальных данных (приведенных в работе Koji Morita [96], работах V.P.Sobolev [90, 97], а так же полученных авторами [98 – 101]) с расчетными данными, полученными методом термодинамического моделирования при использовании первой модели. Значения теплоемкости расплава, в случае использовании второй модели, не согласуются с экспериментальными данными.

Рисунок 3.2 – Зависимость теплоемкости системы Pb-Bi от температуры: □- Lyon 1952 [98]; ◇ - Kutateladze 1959 [99]; + - Kyrillov 2002 [97] - Hultgren [100]; ■ -Kopp's law [90]; × - 40 масс % Pb – 60 масс % Bi [101]; ●- 40 масс % Pb – 60 масс % Bi [101]; □- модель идеальных растворов продуктов взаимодействия; ●модель идеальных растворов.

Температурные зависимости парциальных давлений компонентов паровой фазы показаны на рисунке 3.3. Компонентами паровой фазы являются Ar, Pb, Pb₂, Bi, Bi₂, Bi₃, Bi₄, ионизированные пары свинца и электронный газ. Из них наиболее значимы пары Bi, Bi₂ и Pb. Наибольшее давление паров Pb, Bi и Bi₂ наблюдается при температуре 1800-2000К. При 1900К парциальное давление пара Bi₄ - 9.5 Па;

Ві₃, и Рb₂ составляет 309 Па, а давление пара Ві₂ - 9806 Па. При 2000К парциальное давление паров Рb и Ві составляет 30989 Па.

Рисунок 3.3 – Зависимости парциальных давлений от температуры.

На рисунке 3.4 приведена температурная зависимость энтропии системы Pb(45%) – Bi(55%), полученная методом термодинамического моделирования с использованием модели идеальных растворов продуктов взаимодействия. С ростом температуры энтропия увеличивается.

На рисунке 3.5 приведены экспериментальная температурная зависимость энтальпии из работы Sobolev V. [97], а так же расчетная полученная методом термодинамического моделирования с использованием модели идеальных растворов продуктов взаимодействия.

На рисунке 3.6 приведены зависимости теплопроводности от температуры, полученные экспериментальными методами, результаты которых взяты из источников [90, 98, 101 - 104], справочника по легкоплавкому свинцововисмутному сплаву [92], а также методом термодинамического моделирования с использованием модели идеальных растворов продуктов взаимодействия.

Рисунок 3.4 – Зависимость энтропии системы Pb(45%)-Bi(55%) от температуры (модель идеальных растворов продуктов взаимодействия).

Рисунок 3.5 – Зависимость энтальпии от температуры: [97]; • - модель идеальных растворов продуктов взаимодействия.

Как видно из рисунка 3.6 наблюдается хорошее согласие результатов моделирования с экспериментальными данными.

В работе [32] приведено значение величины избыточной энергии Гиббса. С её помощью можно рассчитать коэффициенты активности по известной формуле и (3.6):

$$\ln\gamma = \frac{\Delta \overline{G^{\mu_{35}}}}{RT}$$
(3.6)

где R=8,314 [Дж/моль*К] – универсальная газовая постоянная.

Рисунок 3.6 – Зависимость теплопроводности от температуры: ■- Lyon 1952 [98]; ■- Widemann-Franz law [90]; □ - Kutateladze 1959 [99]; ×- Plevachuk 2008 [102]; • -Iida 1988 [103]; •- Kirillov 2000 [104]; •- модель идеальных растворов продуктов взаимодействия.

Для корректного определения парциальных функций свинца в работе [32] измерены ЭДС концентрационных цепей с твердым электролитом (использовался тигель из диоксида циркония с добавкой оксида иттрия). У такого электролита доля ионной проводимости больше 0,99 [85-86]. Циркониевый тигель с расплавами-электродами помещался в корундовый тигель из Al₂O₃. Температуру измеряли с помощью градуированной платина-платинородиевой термопары. Величина ЭДС измерялась компенсационным методом. В отличие OT концентрационных цепей с жидким электролитом, при использовании твердого электролита можно прямым путем определить парциальные свойства второго металла по величине электронного потенциала.

В работе [32] рассчитано значение $\Delta \overline{G^{и_{3}6}}$ при 873К и концентраций свинца x_{Pb}=0.1 – 0.8 мол. доли по трем разрезам: y₂=(x_{Sn}+x_{Cd})/(x_{Sn}+x_{Cd}+x_{Bi})=0.25; y₃=x_{Sn}/(x_{Sn}+x_{Cd})=0.75; y₂=0.20; y₃=0.80; y₂=0.90; y₃=0.50.

При Т=873К при x_{Pb} =0.4 $\Delta \overline{G_{Pb}^{\mu_{3}6}}$ = -1440 Дж/моль.

Погрешность определения величины $\Delta \overline{G^{^{из6}}}$ составлила 40-60 Дж/моль.

$$\ln\gamma = \frac{\Delta G_{\rm Pb}^{{}_{\rm H36}}}{\rm RT} = -0,198$$

Коэффициент активности в таком случае принимает значение

$$\gamma_{Ph} = e^{-0.198} = 0.82$$

Нами моделировался нагрев системы 42масс.%Bi-40,6масс.%Pb-10масс.%Sn-7.4масс%Cd с учетом возможности образования 29-ти соединений, присутствующих в расплаве в виде кластеров-ассоциатов: PbSn, CdSn, SnBi, BiPb, Cd₃Bi₂, Bi₂Sn₃, Bi₅Pb₃, Bi₇Pb₃, Bi₇Pb, Pb₃Bi₄, Pb₃Bi, PbSn₃, Sn₂Bi₄, Sn₃Bi, Sn₄Bi₂, Sn₅Bi, Sn₁₀Bi₃, SnBi₅, Pb₂Bi₄Sn₄, Pb₂Bi₇Sn₄, Pb₃Bi₄Sn₄, Pb₃Bi₉Sn₄, Pb₃BiSn₄, Pb₅Bi₄Sn₄, Pb₇Bi₄Sn₄, PbBi₂Sn₂, PbBi₄Sn₄, Pb₉Bi₄Sn₄. Pb₃Bi₄Sn₁₅, a также металлы Pb, Bi, Cd, Sn. B составе паровой фазы учтены пары Pb, Bi, Cd, Sn, Pb₂, Bi₂, Bi₃, Bi₄, Sn₂, Cd₂, ионизированные пары свинца, висмута, кадмия и олова.

Массовая доля компонентов в смеси Bi(411)+Pb(398)+Sn(98)+Cd(73) исследуемой нами:

$$x_{Bi} = 0,42$$

 $x_{Pb} = 0,41$
 $x_{Sn} = 0,10$
 $x_{Cd} = 0,07$

Для расчета коэффициента активности используется формула (3.7):

$$\gamma = \frac{x}{v} \tag{3.7}$$

где x – количество вещества; v – исходный состав в молях.

Исходный состав определим путем деления количества грамм на молярную массу:

$$v_{Pb}=1,921; v_{Bi}=1,967; v_{Sn}=0,826; v_{Cd}=0,650.$$

При Т=900К количество вещества составило:

 $x_{Pb}=1,466; x_{Bi}=1,266; x_{Sn}=0,626; x_{Cd}=0,0017.$

Расчетные значения коэффициентов активности для каждого элемента при данной температуре:

$$\gamma_{Pb}=0,76; \gamma_{Bi}=0,64; \gamma_{Sn}=0,76; \gamma_{Cd}=0,0026;$$

Используя расчетные и экспериментальное значение коэффициентов активности построен график (рисунок 3.7), из которого видно, что расхождение результатов ТДМ моделирования с реальным экспериментом составляет 7%.

Аналогичным образом были произведены расчеты значений коэффициента активности для Sn в тройной системе Cd-Sn-Pb и проведено сравнение с экспериментальными данными [34]. Результаты расчетов представлены на графике (рисунок 3.8). Расхождение результатов не превысило 7%.

Рисунок 3.7 – Значения коэффициентов активности Рb в смеси Pb-Bi-Sn-Cd полученные с применением метода ТДМ → и реального эксперимента →[32].

Полученные результаты свидетельствуют о хорошей точности и указывают, что в случае ТДМ заложено либо большее количество кластеров-ассоциатов, чем реально присутствует в натурном эксперименте либо там могут находиться другие кластеры отличные от тех, которые вводили мы.

Рисунок 3.8 – Значения коэффициентов активности Sn в смеси Pb-Sn-Cd полученные с применением метода ТДМ → и реального эксперимента →[34].

3.3 Определение теплофизических свойств металлических соединений и сложных оксидных соединений

С целью проведения процедуры моделирования необходимо произвести расчет теплофизических свойств металлических и сложных оксидных соединений способных образовываться в расплаве, в процессе нагрева, с последующим занесением данных величин в базу данных программного комплекса TERRA.

В число теплофизических характеристик входят: $\Delta_{f}H_{298}^{0}$ – стандартная энтальпия образования (далее СЭО) при 298,15 К; S_{298}^{0} – стандартная энтропия (далее СЭ) при 298,15 К; H_{298}^{0} – H_{0}^{0} - изменение энтальпии при нагреве системы от 0 до 298,15 К; Т – температура плавления сплава; $C_{p}(T)$ – температурная зависимость удельной теплоемкости при постоянном давлении 0,1 МПа.

Для оценки СЭО (1) и других теплофизических свойств использована модель Миедемы [107]. Согласно данной модели, СЭО металлического соединения, состоящего из компонентов А и В, можно рассчитывать из табулированных величин электроотрицательностей ϕ^* , атомных объемов V и электронных плотностей на ячейках Вингере – Зейтца ($n_{ws}^{1/3}$) (формула 3.8):

$$\Delta_{\rm f} {\rm H}_{289}^{0} = f({\rm C}_{\rm A}^{\rm S}, {\rm C}_{\rm B}^{\rm S})g({\rm C}_{\rm A}, {\rm C}_{\rm B}){\rm FP}\left[-(\Delta\phi^{*})^{2} + \frac{{\rm Q}_{\rm 0}}{{\rm P}}(\Delta{\rm n}_{\rm ws}^{1/3})^{2} - \frac{{\rm R}}{{\rm P}}\right]$$
(3.8)

где $f(C_A^S, C_B^S) * g(C_A, C_B) - функция концентрации компонентов;$

F=96484,56 Кл*моль⁻¹ – постоянная Фарадея; C_A – атомная концентрация компонента A соединения; C_B – атомная концентрация компонента B соединения; C_A^S – поверхностная концентрация компонента A соединения; C_B^S – поверхностная концентрация компонента B соединения; P, Q₀/P, R/P- эмпирические константы для различны групп сплавов.

Основной вклад в тепловой эффект сплавообразования вносит отрицательный член $-(\Delta \phi^*)^2$, где ϕ^* – параметр электроотрицательности, близкий по значению к работе выхода электрона. Положительный член $\frac{Q_0}{P}(\Delta n_{ws}^{1/3})^2$ учитывает влияние разности электронной плотности на границах ячеек Вигнера - Зейтца у чистых металлов. Для металлического соединения с d-элементами дополнительный отрицательный вклад (–R/P) связан с p-d гибридизацией валентных электронов поверхностная концентрация компонента A металлического соединения.

В [108] представлены теплофизические свойства некоторых металлических соединений. Значения констант Р, Q/P, R/P, входящих в формулу для расчета СЭО, были подобраны эмпирическим путем, исходя из наиболее лучшего согласия с литературными данными [108]. Расхождения в значениях R/P не превышает 0,60 (B)².

В таблице 3.1 представлены параметры, входящие в формулу(3.8), необходимые для расчета СЭО металлических соединений, образующихся в системе Pb-Bi-Sn-Cd [109 – 112].

Поверхностные концентрации компонентов А и В металлического соединения [107] рассчитывались по формулам (3.9 и 3.10)

$$C_{\rm A}^{\rm S} = C_{\rm A} V_{\rm A}^{2/3} / (C_{\rm A} V_{\rm A}^{2/3} + C_{\rm B} V_{\rm B}^{2/3})$$
(3.9)

$$C_{\rm B}^{\rm S} = C_{\rm B} V_{\rm B}^{2/3} / (C_{\rm A} V_{\rm A}^{2/3} + C_{\rm B} V_{\rm B}^{2/3})$$
(3.10)

где $V_{A,B}^{2/3}$ - молярный объем компонента A, B металлического соединения;

С _{А,В} -атомная концентрация компонента А и В металлического соединения.
Таблица 3.1 – Параметры чистых металлов для расчета СЭО металлического
соединения по методу Миедемы.

Параметры	Bi	Sn	Pb	Cd
φ*, B	4,15	4,15	4,10	4,05
$\Delta n^{1/3}$ ws, (ед.эл.пл.) ^{1/3}	1,16	1,24	1,15	1,24
$V^{2\backslash3}$, cm ²	7,20	6,40	6,90	5,50
Q/P,				
(B) ² /(ед.эл.*пл.) ^{2∖3}	1,00	1,00	1,00	1,00

Поверхностные концентрации тройных металлических соединений найдены путем использования правила аддитивности и формул (3.11-3.13)

$$C_{\rm A}^{\rm S} = C_{\rm A} V_{\rm A}^{2/3} / (C_{\rm A} V_{\rm A}^{2/3} + C_{\rm B} V_{\rm B}^{2/3} + C_{\rm C} V_{\rm C}^{2/3})$$
(3.11)

$$C_{\rm B}^{\rm S} = C_{\rm B} V_{\rm B}^{2/3} / (C_{\rm A} V_{\rm A}^{2/3} + C_{\rm B} V_{\rm B}^{2/3} + C_{\rm C} V_{\rm C}^{2/3})$$
(3.12)

$$C_{\rm C}^{\rm S} = C_{\rm C} V_{\rm C}^{2/3} / (C_{\rm A} V_{\rm A}^{2/3} + C_{\rm B} V_{\rm B}^{2/3} + C_{\rm C} V_{\rm C}^{2/3})$$
(3.13)

где V_c^{2/3} – молярный объем компонента С металлического соединения; C_c – атомная концентрация компонента С металлического соединения. Данные расчета занесены в таблице 1 (Приложение 1).

Функции концентрации компонентов [107]определяются по формулам (3.14 и 3.15):

$$f(C_A^s, C_B^s) = C_A^s * C_B^s (1 + 8(C_A^s * C_B^s)^2)$$
(3.14)

$$g(C_A, C_B) = 2(C_A * V_A^{2/3} + C_B * V_B^{2/3}) / (V_A^{2/3} + V_B^{2/3})$$
(3.15)

В таблице 2 (Приложение 1) приведены данные для расчета СЭО металлических соединений. Значения Р, Q/P, R/P получены путем подбора согласно работе [112], а параметры $(\phi^*)^2$ и $(n^{1/3})^2$ для каждого соединения рассчитаны аддитивным методом используя данных таблице 2 (Приложение 1).

Для расчета СЭ при 298,15 К (S⁰₂₉₈) большого числа соединений, согласно [77], можно использовать аддитивные методы, т.е. представлять энтропию соединения как аддитивную сумму энтропий его составляющих по формуле (3.16)

$$S_{298}^0 = \sum n_i * S_{298}^0(i)$$
(3.16)

где n_i-число молей простого i-го элемента в сложном соединении; S⁰₂₉₈(i)-CЭ i-го элемента в сложном соединении. Данные для расчета представлены в таблице 3.2 [113].

Для определения температурных зависимостей удельных теплоемкостей пользовались правилом Неймана – Коппа (теплоемкость сложного вещества равна сумме теплоемкостей образующих соединение простых веществ). Табличные значения мольных теплоемкостей чистых металлов складывали в соответствии с формулой металлического соединения, получая данные по теплоемкости при заданной температуре. Зависимости С_р(Т) представляли в виде стандартного полинома по формуле:

$$C_{\rm p}(T) = A + By + Cy^2 + Dy^3 + ET^{-2} * 10^5$$
 (3.17)

где $y = 10^{-3}$ (T). Коэффициенты полиномов теплоемкостей для чистых металлов, входящих в систему Pb-Bi-Sn-Cd, в температурных интервалах от 298,15 К до T_{пл} металла приведены в таблице 3.2.

Расчет $H_{298}^0 - H_0^0$ (при нагреве вещества от 0 до 298,15 К) основан на использовании уравнения (3.18):

$$H_{298}^0 - H_0^0 = 0.5C_{p298}^0 * 298,15$$
(3.18)

где C_{p298}^0 - удельная теплоемкость при постоянном давлении и стандартной температуре 298,15 К. Рассчитанные коэффициенты полиномов теплоемкостей C_{p298} , $H_{298}^0 - H_0^0$, S_{298}^0 и $\Delta_f H_{298}^0$ для металлических соединений приведены в таблице 3. (Приложения 1).

В таблице 3.3 представлены данные о величине стандартной энтальпии образования (далее СЭО) ряда соединений, обнаруженных в [108] и рассчитанных в настоящей работе.

Сравнив расчетные значения СЭО с данными из [108], можно сделать вывод, что они согласуются в следующих пределах: SnBi \approx 15%; SnBi₅ \approx 7%, Sn₂Bi₄ \approx 3%, Sn₄Bi₂ \approx 8% CdSn \approx 1% PbSn \approx 12%.

	А	В	Е	С	${\bf S}^{0}_{298}$		
Вещество	Дж/(моль*К)			Дж/(моль*К)	Т1, К	Т2, К	
Pb s	24,221	8,711	-	-	64,785	298,15	600,6
1	32,489	-3,088	-	-		600,6	1200
Bi s	11,849	30,468	4,105	-	56,735	298,15	545
1	19,016	10,372	20,74	-3,979		545	1200
Sn s	21,594	18,096	-	-	51,195	298,15	505
1	21,539	6,146	12,883	-		505	800
Cd s	22,305	12,152	0,001	0,01	51,798	298,15	594
1	29,706	-	-	-		594	1040

Таблица 3.2. – Коэффициенты полиномов теплоемкостей и СЭ для чистых металлов [113]

Примечание: *T*₁, *T*₂- начальный и конечный температурные диапазоны, для которых рассчитаны значения полиномов в твердом и жидком состоянии.

Теплофизические свойства простых соединений: Pb_3O_4 , Pb_2O_3 , PbO_2 , PbO_3 , SnO_2 , SnO_3 , Bi_2O_3 , BiO_3 , CdO хорошо изучены [113]. Теплофизические свойства 23х сложных оксидных соединений: $PbBi_{12}O_{19}$, $Pb_2Bi_6O_{11}$, $Pb_5Bi_8O_{17}$, $Pb_3Bi_2O_6$, Bi_2PbO_4 , Bi_4PbO_7 , $Bi_{12}PbO_{20}$, $Pb_7Bi_6O_{16}$, $PbBi_8O_{13}$, $Pb_2Bi_2O_5$, $PbSnO_3$, $PbSnO_4$, $Bi_{12}CdO_{19}$, Bi_4CdO_7 , $Cd_3Bi_{10}O_{18}$, Bi_2CdO_4 , $Bi_2Sn_2O_7$, $CdPbO_3$, Cd_2PbO_4 , $CdPb_2O_5$, $CdSnO_3$, Cd_2SnO_4 , $CdSnO_2$ рассчитаны ввиду их недостаточной изученности.

Имеются отдельные данные по теплофизическим свойствам сложных оксидных соединений: PbBi₁₂O₁₉ и Pb₅Bi₈O₁₇ [68 – 69].

Расчет теплофизических свойств сложных оксидов:

1) Стандартная энтальпия образования (СЭО), ΔH[°]₂₉₈

Таблица 3.3 – Сводная таблица литературных и расчетных данных стандартной энтальпии образования металлидов (кДж/ моль)

Параметры	SnBi	SnBi ₅	Sn ₂ Bi ₄	Sn ₄ Bi ₂	CdSn	PbSn
$\Delta_{\rm f} {\rm H}^{\rm o}{}_{298,}$ (расч.)	1,84	0,77	1,47	1,61	-3,65	-1,28
$\Delta_{\rm f} {\rm H}^{0}_{298}$, [108]	1,55	0,72	1,42	1,76	-3,64	-1,13

СЭО рассчитана по формуле (3.19), применяемой для оценки теплоты соединений, которые можно представить как псевдобинарные или псевдотройные [77]:

$$\Delta H_{298}^{0}(j) = \sum_{i=2}^{n} n_{i} \Delta H_{298}^{0}(i) + \Delta H_{298}^{0}(ox)$$
(3.19)

где ΔH^{o}_{298} (i) – стандартная теплота образования и число молей i-го соединения в j-м сложном;

ΔH^o₂₉₈ (ox) – СЭО сложного соединения из более простых, её величина определяется с применением различных расчетных методов.

В данном случае в соответствии с формулой (3.19) можно записать:

$$\Delta H_{298}^{0}(Pb_{5}Bi_{8}O_{17}) = 5 * \Delta H_{298}^{0}(PbO) + 4 * \Delta H_{298}^{0}(Bi_{2}O_{3}) + \Delta H_{298}^{0}(ox)$$
(3.20)

Для оценки величины ΔH^{o}_{298} (ох) сложных оксидов была использована эмпирическая зависимость [77] (формула 3.21):

$$\Delta H_{298}^0(\text{ox}) \approx (-16,0485 \pm 5,145) * m_0, кДж/моль$$
 (3.21)

где m₀ – число кислородных атомов в молекуле сложного оксида.

Данное уравнение можно использовать лишь для предварительных оценок СЭО.

В результате получили $\Delta H^0_{298}(ox) = 272,82 \pm 87,47 \frac{\kappa Д \pi}{MOJE}$ и

$$\Delta H_{298}^{0}(Pb_{5}Bi_{8}O_{17}) = -3658,66 \pm 87,47 \frac{\kappa \Delta \pi}{MOJL}$$

2) Стандартная энтропия, S^{0}_{298}

Стандартная энтропия рассчитана аддитивно (уравнение 3.22) по правилу Неймана-Коппа с использованием данных по простым оксидам [114]. Аддитивный метод вычисления S^{0}_{298} основан на сложении S^{0}_{298} простых оксидов, входящих в состав соединения в мольном соотношении:

$$S_{298}^{0}(Pb_{5}Bi_{8}O_{17}) = \sum (5 * S_{298(PbO)}^{0} + 4 * S_{298(Bi_{2}O_{3})}^{0}) = 949.48 \frac{\pi}{MOR}$$
(3.22)

Стандартная теплоемкость C⁰_{p298}(T) рассчитана по правилу Нейман–
 Коппа [114] (уравнение 3.23) с использованием данных по простым оксидам:

$$C_{p298}^{0}(T)(Pb_{5}Bi_{8}O_{17}) = (5 * a_{PbO} + 4 * a_{Bi_{2}O_{3}}) + (5 * b_{PbO} + 4 * b_{Bi_{2}O_{3}})$$

* T + (5 * C_{PbO} + 4 * C_{Bi_{2}O_{3}}) * T⁻²
Получено C_p(T)=639,94+198,32*10⁻³*T-14,44*10⁵*T⁻² (3.23)

Все рассчитанные свойства двойных оксидов представлены в таблице 4 (Приложение 1).

Результаты, полученные для четырех соединений $PbBi_{12}O_{19}$, $Pb_5Bi_8O_{17}$, $Pb_2Bi_6O_{11}$, $Pb_3Bi_2O_6$, были сравнены с данными работ [69, 115] (таблица 3.4). Расхождение составило 10%, что позволяет использовать полученные значения для дальнейших расчетов.

Проведенные исследования показали удовлетворительную сходимость расчетных значений с данными, полученными в работах [68, 69]. Это позволяет использовать расчетные методы для оценки свойств двойных оксидов.

После дополнения ранее сформированной нами базы данных термохимическими свойствам оксидов в программном комплексе TERRA была проведена процедура моделирования окисления (горения) и испарения системы Bi-Pb-Sn-Cd в атмосфере воздуха.

Полученные результаты термодинамического моделирования в дальнейшем были использованы для построения зависимостей равновесного содержания компонентов в паровой и конденсированных фазах от температуры, в программе Microsoft Excel.

Полученные теплофизические свойства металлидов и сложных оксидов были включены в базу данных программного комплекса TERRA.

Таблица 3.4– Сравнительная таблица теплофизических свойств ряда сложных оксидов

соединение	PbBi ₁₂ O ₁₉	Pb ₅ Bi ₈ O ₁₇	$Pb_2Bi_6O_{11}$	$Pb_3Bi_2O_6$
С _р ⁰ _{298,} Дж/моль*К	734,79	682,79	431.99	250.79
С _р ⁰ _{298,} Дж/моль*К [69]	672.19	603.47	-	-
С _{р 298,} Дж/моль*К [115]	730.95	693.67	439.71	258.50
ΔН [°] _{298,} Дж/моль*К	-3966.30	-3658.69	-2334,32	-1324,37
ΔН ^о _{298,} Дж/моль*К [115]	-3966.28	-3658.66	-2334.30	-1324.36

ВЫВОДЫ К ГЛАВЕ 3

Проведено сравнение рассчитанной стандартной энтальпии образования с имеющимися в литературе данными для металлидов: SnBi, SnBi₅, Sn₂Bi₄, Sn₄Bi₂, CdSn и PbSn (таблица 3.3) и сложных оксидных соединений PbBi₁₂O₁₉, Pb₅Bi₈O₁₇,

 $Pb_2Bi_6O_{11}$, $Pb_3Bi_2O_6$ (таблица 3.4). Расхождение полученных данных не превышает 15%.

Произведен расчет теплофизических свойств (стандартная энтропия, стандартная энтальпия, температура плавления, теплоемкость) ряда металлических и оксидных соединений ввиду отсутствия экспериментальных данных.

ГЛАВА 4. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

4.1 Термодинамическое моделирование расплава системы Bi-Pb-Sn-Cd

Ввиду сложности проведения экспериментов по изучению теплофизических свойств расплава системы Bi-Pb-Sn-Cd при высоких температурах выполнено две серии компьютерных экспериментов посвященных термодинамическому моделированию нагрева сплава в атмосфере Ar и воздуха.

Объектом исследования является система 42масс.%Ві-40,6масс.%Рь-10масс.%Sn-7.4масс%Cd. В настоящее время нет описания поведения «полной» системы, включающей и конденсированную и паровую фазы.

В первой серии экспериментов проведено моделирование нагрева системы в Ar-42мacc.%Bi-40,6мacc.%Pb-10мacc.%Sn-7.4мacc%Cd при общих давлениях 10², 10³, 10⁴, 10⁵, 10⁶, 10⁷ Па в интервале температур 300-3000 К с учетом возможности образования 29-ти соединений, присутствующих в расплаве в виде кластеров: PbSn, CdSn, SnBi, BiPb, Cd₃Bi₂, Bi₂Sn₃, Bi₅Pb₃, Bi₇Pb₃, Bi₇Pb, Pb₃Bi₄, Pb₃Bi, PbSn₃, Sn₂Bi₄, Sn₃Bi, Sn₄Bi₂, Sn₅Bi, Sn₁₀Bi₃, SnBi₅, Pb₂Bi₄Sn₄, Pb₂Bi₇Sn₄, Pb₃Bi₄Sn₄, Pb₃Bi₉Sn₄, Pb₃BiSn₄, Pb₅Bi₄Sn₄, Pb₇Bi₄Sn₄, PbBi₂Sn₂, PbBi₄Sn₄, Pb₉Bi₄Sn₄. Pb₃Bi₄Sn₁₅, a также металлы Pb, Bi, Cd, Sn. B составе паровой фазы учтены пары Pb, Bi, Cd, Sn, Pb₂, Bi₂, Bi₃, Bi₄, Sn₂, Cd₂, ионизированные пары свинца, висмута, кадмия и олова.

Во второй серии экспериментов проведено моделирование нагрева Ar-42масс.%Bi-40,6масс.%Pb-10масс.%Sn-7.4масс%Cd-23,1масс%O₂ и дополнительно учтена возможность образования в процессе нагрева 32 оксидных соединений: PbBi₁₂O₁₉, Pb₂Bi₆O₁₁, Pb₅Bi₈O₁₇, Pb₃Bi₂O₆, Bi₂PbO₄, Bi₄PbO₇, Bi₁₂PbO₂₀, Pb₇Bi₆O₁₆, PbBi₈O₁₃, Pb₂Bi₂O₅, PbSnO₃, PbSnO₄, Bi₁₂CdO₁₉, Bi₄CdO₇, Cd₃Bi₁₀O₁₈, Bi₂CdO₄, Bi₂Sn₂O₇, CdPbO₃, Cd₂PbO₄, CdPb₂O₅, CdSnO₃, Cd₂SnO₄, CdSnO₂, Pb₃O₄, Pb₂O₃, PbO₂, PbO, SnO₂, SnO, Bi₂O₃, BiO, CdO.

После выполнения расчетов программа TERRA выдает характеристики равновесного состояния и содержания компонентов в паровой и

конденсированной фазе в заданных интервалах температуры при определенном давлении.

Полученные результаты термодинамического моделирования в дальнейшем использованы для построения зависимостей равновесного содержания компонентов в паровой и конденсированной фазе от температуры при различных давлениях в программном приложении Microsoft Excel.

На рисунках 4.1 приведен результат моделирования нагрева системы Ar-42масс.%Bi-40,6масс.%Pb-10масс.%Sn-7.4масс% Cd, при давлении 10⁵ Па в интервале температур 300-3000 К. Содержание Ar в системе составляло 2 масс %.

При общем давлении 10^5 Па (рисунок 4.1) в металлическом расплаве, кроме Bi, Pb, Sn, Cd, присутствуют соединения BiPb, Sn₃Bi, Pb₅Bi₄Sn₄, PbSn, SnBi, PbSn₃, Sn₃Bi, Pb₃Bi₄ и другие, но в незначительных количествах.

Рисунок 4.1 – Равновесный состав конденсированной фазы

для системы Ar-42масс.%Bi-40,6масс.%Pb-10масс.%Sn-7.4масс% Cd при P=10⁵ Па

Температурные зависимости содержание компонентов системы сложны и не линейны. Повышение температуры от 500 до 1500К ведет к небольшому увеличению концентрации Bi, Pb, Sn, Cd вследствие термической диссоциации соединений. При 1500К содержание соединений Cd_3Bi_2 , Pb_3Bi_4 , Bi_2Sn_3 , Sn_2Bi_4 , Bi_7Pb , Sn_4Bi_2 , Bi_7Pb_3 , Sn_5Bi вследствие их термической диссоциации составляет менее 10^{-5} мольных долей.

Соединения Cd_3Bi_2 , BiPb, PbSn, Pb₃Bi, SnBi, PbSn₃, CdSn, Sn₃Bi, PbBi₂Sn₂ присутствуют в металлическом расплаве в виде кластеров. Их содержание уменьшается вследствие термической диссоциации. Наибольшее содержание приходится на следующие соединения: BiPb, Cd_3Bi_2 , CdSn и SnBi.

В температурном интервале 800-1900К происходит образование тройного соединения $Pb_5Bi_4Sn_4$, его содержание увеличивается, соответственно, от $4,197*10^{-5}$ до $2,824*10^{-2}$ мольных долей.

Повышение внешнего давления ведет к возрастанию температуры испарения и, как следствие увеличению температурного интервала термической стабильности соединений в расплаве.

В результате моделирования в металлическом расплаве Bi-Pb-Sn-Cd в атмосфере Ar присутствуют: a) 15 соединений: BiPb, PbSn, SnBi, Pb₃Bi, Pb₅Bi₄Sn₄, PbSn₃, Bi₂Sn₃, Bi₇Pb, CdSn, Sn₃Bi, PbBi₂Sn₂, Pb₃Bi₄, Cd₃Bi₂, Bi₇Pb₃, Sn₄Bi₂; б) металлы: Pb, Bi, Sn, Cd.

Из температурной зависимости состава расплава (рисунок 4.1) следует, что при низких температурах металлический расплав содержит значительное количество соединений, содержание которых резко уменьшается при повышении температуры.

Определены константы равновесия реакций термической диссоциации для 15 соединений, присутствующих в металлическом расплаве в результате моделирования (4.1 – 4.15):

2Bi ₂ Sn ₃ =Bi+Sn+2SnBi+Sn ₃ Bi	(4.1)
BiPb=Bi+Pb	(4.2)
2Bi ₇ Pb ₃ =5Bi+Pb+BiPb+Pb ₃ Bi+Bi ₇ Pb	(4.3)
2Bi ₇ Pb=13Bi+Pb+BiPb	(4.4)

$2Pb_{3}Bi_{4}=5Bi+Pb+2BiPb+Pb_{3}Bi$	(4.5)
2Pb ₃ Bi=Bi+5Pb+BiPb	(4.6)
$2PbSn_3=5Sn+Pb+PbSn$	(4.7)
PbSn=Pb+Bi	(4.8)
2Sn ₃ Bi=5Sn+Bi+SnBi	(4.9)
$2Sn_4Bi_2=3Sn+Bi+2SnBi+Sn_3Bi$	(4.10)
SnBi=Sn+Bi	(4.11)
CdSn=Cd+Sn	(4.12)
$Cd_3Bi_2=3Cd+2Bi$	(4.13)
Pb5Bi4Sn4=2Bi+2Sn+3Pb+BiPb+SnBi+PbSn	(4.14)
3PbBi ₂ Sn ₂ =4Bi+4Sn+Pb+BiPb+SnBi+PbSn	(4.15)
Зависимость констант равновесия реакций термической диссоциации	(4.1)-

(4.15) от температуры описывается уравнением (4.16):

LnK=A/T+В (4.16) где А и В – индивидуальные постоянные коэффициенты, характерные для данной реакции представленные в таблице 1 (Приложение 2).

Значения коэффициентов уравнения (4.16) для металлических соединений (4.1 - 4.15) приведены в таблице 1 (Приложение 2). На рисунке 4.2 представлены сводные графики значений LnK для двойных и тройных металлических соединений, присутствующих в виде кластеров (далее кластеров) в расплаве системы Bi-Pb-Sn-Cd в атмосфере Ar при давлении 10^5 Па. Температурные интервалы диссоциации исследуемых кластеров можно разделить на три типа: низкотемпературные (100-500К), высокотемпературные и термически устойчивые. С увеличением давления все большее количество кластеров становятся термоустойчивыми, а при р= 10^7 Па все рассмотренные нами кластеры переходят в термически устойчивое состояние.

В области пониженных давлений 10^2 и 10^3 Па можно выделить: 1) соединение, термическая диссоциация которого происходит в низкотемпературной области - Bi₇Pb₃, при дальнейшем повышении давления это соединение становится термически устойчивым; 2) соединение, термическая диссоциация которого происходит в высокотемпературной области Sn₄Bi₂ – при давлении 10^4 Па проявляет термическую устойчивость в низкотемпературной области, при дальнейшем повышении давления давления термически устойчивость в низкотемпературной области.

63

При пониженных давлениях до $10^2 - 10^4$ Па можно выделить соединение, термическая диссоциация которого происходит в низкотемпературной области – Bi₂Sn₃. При нормальном и повышенном давлении порядка $10^6 - 10^7$ Па данное соединение переходят в термически устойчивое состояние.

Соединение Pb₃Bi термически диссоциирует в высокотемпературной области в интервале давлений порядка $10^2 - 10^5$ Па. При более высоких давлениях переходит в термически устойчивое состояние.

В более широком интервале давлений порядка 10^2 - 10^6 Па происходит термическая диссоциация в высокотемпературной области у Pb₃Bi₄. При 10^7 Па данное соединение переходит в термоустойчивое состояние.

В области пониженного давления порядка 10² Па термическая диссоциация соединения Bi₇Pb происходит в низкотемпературной области. При более высоких давлениях порядка 10³ -10⁷ Па данное соединение становятся термоустойчивыми.

Рисунок 4.2 – Сводные графики значений LnK для двойных и тройных соединений в инертной атмосфере Ar при давлении 10⁵ Па в расплаве 42,0 Bi+40,6 Pb+10,0 Sn+7,4Cd (в масс %)

Независимо от давления, следующий ряд соединений термически диссоциирует на всем температурном интервале не переходя в термически устойчивое состояние: PbSn₃, Sn₃Bi, Pb₅Bi₄Sn₄, PbBi₂Sn₂.

Увеличение равновесного давления приводит к сдвигу температурного интервала (ΔT) существования исследуемых кластеров в область более высоких температур. При повышении температуры концентрация соединений уменьшается.

На рядах устойчивости при различных давлениях видны области наибольшего скопления соединений по величине LnK.

Для ряда соединений: Sn_4Bi_2 , Bi_2Sn_3 , $Pb_5Bi_4Sn_4$ равновесие сдвинуто в сторону образования исходных веществ металлов и соединений: Sn, Bi, SnBi, Sn_3Bi, BiPb, PbSn.

Повышение давления приводит к сдвигу LnK в сторону более низких температур, а также ведет к уменьшению интервала значений LnK рассмотренных реакций.

Во второй серии компьютерных экспериментов проведено термодинамическое моделирование окисления системы 42Bi+40.6Pb+10Sn+7.4Cd (в масс. %) в атмосфере воздуха (O₂ = 23,1масс. %) при общем давлении 10^2 , 10^3 , 10^4 , 10^5 , 10^6 Па соответственно.

Ha puc. 4.3a, 4.3б, 4.3в изображены температурные зависимости равновесных составов металлической, оксидной и паровой фаз, соответственно. Компоненты металлической и оксидной фаз, следуя обозначениям в программном комплексе TERRA, обозначаются на кривых (s1) и (s2) соответственно. В составе оксидной фазы учтены возможности образования 32 оксидных соединений: PbBi₁₂O₁₉, Pb₂Bi₆O₁₁, Pb₅Bi₈O₁₇, Pb₃Bi₂O₆, Bi₂PbO₄, Bi₄PbO₇, Bi₁₂PbO₂₀, Pb₇Bi₆O₁₆, PbBi₈O₁₃, Pb₂Bi₂O₅, PbSnO₃, PbSnO₄, Bi₁₂CdO₁₉, Bi₄CdO₇, Cd₃Bi₁₀O₁₈, Bi₂CdO₄, Bi₂Sn₂O₇, CdPbO₃, Cd₂PbO₄, CdPb₂O₅, CdSnO₃, Cd₂SnO₄, CdSnO₂, Pb₃O₄, Pb₂O₃, PbO₂, PbO, SnO₂, SnO, Bi₂O₃, BiO, CdO.

а – равновесный состав конденсированной фазы при давлении 10⁵ Па

б – равновесный состав оксидной фазы при давлении 10⁵ Па Рисунок 4.3 – Температурные зависимости содержания в системе 15Ar+42Bi+40.6Pb+10Sn+7.4Cd+23,1O₂ (масс. %) при P=10⁵ Па в атмосфере воздуха: а) металлической фазы; б) оксидной фазы;

в – равновесный состав паровой фазы при давлении 10⁵ Па
Рисунок 4.3 – Температурные зависимости содержания в системе 15Ar+42Bi+40.6Pb+10Sn+7.4Cd+23,1O₂ (масс. %) при P=10⁵ Па в атмосфере воздуха: а) металлической фазы; б) оксидной фазы; в) паровой фазы.

По достижению 500К с увеличением температуры происходит рост содержания металлического Sn(k) и соединения $Cd_3Bi_2(k)$. Для ряда соединений $(Bi_7Pb_3(k), Bi_7Pb(k), Bi_5Pb_3(k))$ наблюдается снижение содержания во всем исследуемом интервале температур. Для соединений BiPb(k), Pb₃Bi(k), Pb(k) снижение содержания наблюдается до 1100К, при дальнейшем повышении температуры происходит рост содержания. С 1200-1300К происходит рост содержания PbSn(k) и SnBi(k). Для ряда соединений CdSn(k), Sn₃Bi(k), PbBi₂Sn₂(k) и Bi₂Sn₃(k) рост содержания наблюдается по достижению 1500 К.

Распределение Ві по фазам для системы 42Ві+40.6Рb+10Sn+7.4Cd (в масс. %) в кислородосодержащей атмосфере представлены на рисунке 4.4.

Начиная с 400К происходит термическая диссоциация соединения Bi₄PbO₇ (s2). При 500К и вплоть до 700К процентное содержание металлического Bi (s1) вновь уменьшается. В интервале температур 700-800К происходит скачек в сторону увеличения концентрации Bi (s1) в расплаве. Данное явление

обусловлено термической диссоциацией BiPb (s1) и Bi₇Pb (s1). В момент распада этих двух соединений образуется Cd₃Bi₂ (s1). Во всем интервале температур 300-1800К в расплаве присутствует оксид BiO (s2). При 1000К процентное содержание данного оксида начинает снижаться, что приводит к образованию Pb₂Bi₂O₅ (s2). А при 1400К образуются пары Bi и Bi₂, что связано с испарением оксида BiO (s2), а так же металлического Bi (s1). Начало термической диссоциации Cd₃Bi₂ (s1) и интенсивное испарение металлического Bi приводит к резкому увеличению процентного отношения паров Bi к Bi₂. При 2100К этот резкий рост прекращается в связи с окончательным испарением металлического Bi (s1) и Cd₃Bi₂ (s1). Дальнейшее повышение температуры приводит к интенсивному выделению Bi₂ и испарению Pb₂Bi₂O₅ (s2), что способствует дальнейшему росту концентрации паров Bi.

Рисунок 4.4 – Распределение Ві по фазам в системе 42Ві+40.6Рb+10Sn+7.4Cd (в масс. %) в атмосфере воздуха при давлении 10⁵ Па

Распределение Sn (s1) по фазам представлено на рисунке 4.5. При 300К наблюдается увеличение концентрации сложного оксида PbSnO₃ (s2) с 40% до 85% по достижению 1200К. В этом же температурном интервале наблюдается уменьшение концентрации сложного оксида CdSnO₃ (s2) с 60 до 8%. Дальнейшее повышение температуры приводит к образованию SnO (s2) и SnO₂ (s2)

вызванному термической диссоциацией сложных оксидов $PbSnO_3$ (s2) и CdSnO₃ (s2)

Рисунок 4.5 – Распределение Sn по фазам в системе 42Bi+40.6Pb+10Sn+7.4Cd (в масс. %) в атмосфере воздуха при давлении 10⁵ Па

При 1800К и выше в расплаве наблюдается образование металлического Sn (s1) и PbSn (s1), в паровой фазе паров SnO и Sn_2O_2 образованию которых способствует распад простых оксидных соединений SnO (s2) и Sn_2O_2 (s2).

На рисунке 4.6 представлено распределение Pb по фазам. Начиная с 300К, происходит испарение металлического Pb (s1) и оксида $Pb_3Bi_2O_6$ (s2), сопровождающееся образованием оксидов $PbSnO_3$ (s2), PbO (s2) и BiPb (s1). При 600К происходит распад соединения BiPb (s1), что влечет за собой усиленный рост содержания PbSnO₃ (s2) и PbO (s2), а также начиная с 700К, незначительно увеличивается содержание в расплаве металлического Pb (s1) за счет термической диссоциации BiPb (s1).

При 800К, когда концентрация BiPb (s1) в расплаве становится менее 10%, содержание металлического Pb (s1) уменьшается. Во всем интервале температур от 300—1100К происходит постепенное уменьшение процентного содержания $Pb_3Bi_2O_6$ (s2). Данное соединение термически диссоциирует на более простое $Pb_2Bi_2O_5$ (s2). Следует отметить, что при 1000К оксидное соединение PbO (s2) начинает распадаться, этот распад сопровождается образованием сложного оксида $Pb_2Bi_2O_5$ (s2). В свою очередь, при 1000К вновь происходит рост

процентного содержания металлического Pb (s1), это связано с начавшейся термической диссоциацией оксидов $PbSnO_3$ (s2), PbO (s2) и металлического BiPb (s1) из которого высвобождается Pb (s1).

Рисунок 4.6 – Распределение Рb по фазам в системе 42Bi+40.6Pb+10Sn+7.4Cd (в масс. %) в атмосфере воздуха при давлении 10⁵ Па

При 1400К в расплаве образуются пары Pb. Это явление происходит, благодаря распаду нескольких оксидных соединений, а именно PbSnO₃ (s2), PbO (s2) и распаду BiPb (s1). Значительный рост содержания паров Bi наблюдается в интервале температур 1700-2100К в момент более интенсивного испарения металлического Pb (s1). При 2100К уменьшается содержание паров Pb и оксида Pb₂Bi₂O₅ (s2), и увеличивается процентное содержания оксида PbO (s2). При 2700 К оксид PbO (s2) начинает распадаться, тем самым увеличивая содержание паров Pb.

На рисунке 4.7 представлено распределение Cd по фазам. При 300К в расплаве присутствует 80% CdSnO₃ (s2) и 20% CdO (s2). В интервале 300-1800К термически диссоциирует оксидное соединение CdSnO₃ (s2).

Рисунок 4.7 – Распределение Cd по фазам в системе 42Bi+40.6Pb+10Sn+7.4Cd (в масс. %) в атмосфере воздуха при давлении 10⁵ Па

Содержание оксида CdO (s2) возрастает почти на 10% в интервале температур 300-500К за счет распада CdSnO₃ (s2). Затем наблюдается рост содержания CdO (s2) останавливается в связи с образованием в расплаве металла Cd₃Bi₂ (s2). С 600К концентрация CdSnO₃ (s2) и оксида CdO (s2) в расплаве резко начинает уменьшаться. Каждый из этих двух оксидов вносит свой вклад в соединение Cd₃Bi₂ (s1), которое, в свою очередь, интенсивно увеличивается в процентном отношении до 1300К. При данной температуре из расплава выделяется паровая составляющая Cd и уже при 1500К интенсивно увеличивает свое процентное содержание за счет испарения Cd (s1) из соединения Cd₃Bi₂ (s1).

4.1.1 Термодинамическое моделирование паровой фазы при испарении расплава системы Bi-Pb-Sn-Cd при различных давлениях

Давление пара над расплавом Bi(42,0%)+Pb(41,0%)+Sn(10,0%)+Cd(7,0%)изучали в атмосфере Ar при общих давлениях 10^2 , 10^3 , 10^4 , 10^5 , 10^6 , 10^7 Па в интервале температур 300-3000 К. Содержание аргона в системах равнялось 2 масс %.

Температурная зависимость равновесных парциальных давлений компонентов паровой фазы при давлении 10⁵ Па приведена на рисунке 4.8. Основным компонентом паровой фазы является Ar. Его парциальное давление

составляет 10⁵ Па в интервале температур от 400-1400К, при дальнейшем повышении температуры до 2200К парциальное давление уменьшается до 10⁴ Па, а при 3000К составляет 7,943*10³ Па. Данный ход кривых вызван увеличением парциального давления паров металлов. При 800К парциальное давление паров Сd составляет 1,584 Па, повышение температуры до 1900К ведет к увеличению парциального давления до 1,995*10⁴ Па которое практически не меняется до 3000К. При 1000К парциальное давление паров Pb составляет 1 Па, повышение температуры до 2200К ведет к увеличению парциального давления до 3,162*10⁴ Па, которое практически не меняется до 3000К. При 1030К парциальное давление паров Ві составляет 1 Па, повышение температуры до 2200К ведет к увеличению парциального давления до 3,162*10⁴ Па и практически не меняется до 3000К. При 1700К парциальное давление паров Sn составляет 3,162 Па, повышение температуры до 2500К ведет к увеличению парциального давления до 1,258*10⁴ Па, которое практически не меняется до 3000К. При 1100К парциальное давление Ві₂ составляет 1 Па, достигает максимума в 5,011*10³ Па при 1900К и при дальнейшем повышении температуры до 3000К уменьшается до 10² Па вследствие термической диссоциации. При 1400 К парциальное давление Віз составляет 1,584 Па, достигая максимума 1,995*10² Па при 1900К и понижается до 1 Па при 2600К вследствие термической диссоциации. При 1700К парциальное давление Ві₄ составляет 1,778 Па, достигая максимума 3,162 Па при 1900К и понижается до 1Па при 2000К вследствие термической диссоциации. При 1450К парциальное давление Pb₂ составляет 1 Па, достигая максимума 1,995*10² Па при 2000К и уменьшаясь до 2,818*10 Па при 3000К вследствие термической диссоциации. При 2000К парциальное давление Sn₂ составляет 1 Па, достигая максимума при 3,162*10² Па при 2500К и уменьшаясь до 5,011*10 Па при 3000К вследствие термической диссоциации. При 1600К парциальное давление Cd₂ составляет 1 Па, достигая максимума 6,309 Па при 1900К и уменьшаясь до 1,995 Па при 3000К вследствие термической диссоциации.

Рисунок 4.8 – Температурные зависимости давления компонентов в системе Bi(42,0%)+Pb(40,6%)+Sn(10,0%)+Cd(7,4%) (в масс. %) в атмосфере Ar при p=10⁵ Па

Увеличение общего давления ведет к изменениям в значениях парциальных давлений паров металлов. Для паров Cd, Pb, Sn, Bi наблюдаются следующие закономерности:

– температура достижения (начала) постоянного парциального давления смещается в сторону более высоких температур с увеличением общего давления;

уменьшается наклон восходящей части кривой парциального давления,
 т.е. растягивается по оси температур с увеличением общего давления;

 постоянное парциальное давление увеличивается с возрастанием общего давления.

Для паров Bi₂, Bi₃, Bi₄, Pb₂, Sn₂, Cd₂ наблюдаются следующие закономерности при повышении давления:

 температура максимума парциального давления смещается в сторону более высоких температур;

уменьшается наклон восходящей и нисходящей частей кривой параллельного давления, область прохождения кривых становится более широкой, растянутой по оси температур;

- максимум парциального давления увеличивается;

- понижение давления способствует термической диссоциации

Увеличение внешнего давления ведет к смещению кривых парциальных давлений в область более высоких температур.

Парциальные давления металлических паров Pb, Bi, Sn, Cd, Pb₂, Cd₂, Sn₂'Bi₂, Bi₃,Bi₄ над расплавом Bi(42,0%)+Pb(40,6%)+Sn(10%)+Cd(7,4%) в зависимости от температуры описывается уравнением (4.17):

$$\ln P = a/T + b \tag{4.17}$$

a, b – индивидуальные постоянные коэффициенты, характерные для данной реакции представленные в таблице 2 (Приложение 2).

Табулированные значения коэффициентов уравнения (4.17) для давлений 10^2 , 10^3 , 10^4 , 10^5 , 10^6 Па приведены в таблице 2 (Приложение 2). Зависимости рассчитаны методом наименьших квадратов, используя программное приложение Microsoft Exele. В паровой фазе протекают термические реакции (4.18 – 4.23)

$$Bi_2 = 2Bi \tag{4.18}$$

$$Bi_3 = 3Bi$$
 (4.19)

$$Bi_4 = 4Bi \tag{4.20}$$

$$\mathbf{Sn}_2 = 2\mathbf{Sn} \tag{4.21}$$

$$Pb_2 = 2Pb \tag{4.22}$$

$$Cd_2 = 2Cd \tag{4.23}$$

Зависимость констант равновесия реакций термической диссоциации (4.18 – 4.23) от температуры описывается уравнением (4.16):

Зависимость рассчитана методом наименьших квадратов по значениям констант равновесия, соответствующих определенным температурным точкам (с интервалом 100 К) используя программное приложение Microsoft Excel. Значения коэффициентов уравнения (4.16) для давлений 10^2 , 10^3 , 10^4 , 10^5 , 10^6 Па приведены в таблице 3 (Приложение 2).

На рисунке 4.9 приведено распределения Ві по соединениям и фазам при давлении 10⁵ Па.

Рисунок 4.9 – Баланс Ві при давлении 10⁵ Па

В металлической фазе основное количество Ві находится в виде металла Ві, и в составе соединений Cd₃Bi₂, BiPb, SnBi, Pb₃Bi. В паровой фазе основное количество висмута приходится на металлический пар и паровой димер Bi₂.

На рисунке 4.10 приведено распределение Sn по соединениям и фазам при давлении 10^5 Па. В металлической фазе основное количество олова находится в виде металла, и в значительных количествах присутствует в составе соединений PbSn, SnBi, Pb₅Bi₄Sn₄. В паровой фазе основное количество олова находится в виде металлического пара Sn и парового димера Sn₂.

На рисунке 4.11 приведено распределение Pb по соединениям и фазам при давлении 10^5 Па. В металлической фазе основное количество свинца находится в виде металла и в значимых количествах присутствует в составе соединений BiPb, PbSn, Pb₃Bi. В паровой фазе основное количество свинца находится в виде пара Pb.

Повышение общего давления ведет к образованию в металлической фазе соединения $Pb_5Bi_4Sn_4$, к уменьшению доли димера Bi_2 , повышению доли Pb_2 в паровой фазе и дальнейшему разложению металлического висмута и олова при повышении температуры.

При 10⁷ Па свинец и висмут в основном находится в конденсированной фазе.

На рисунке 4.12 приведено распределение Cd по соединениям и фазам при давлениях 10^5 Па. В металлической фазе основное количество кадмия находится в виде соединения Cd₃Bi₂. В паровой фазе основное количество кадмия находится в виде металлического пара Cd.

Рисунок 4.12 – Баланс Сd при давлении 10⁵ Па

Повышение общего давления ведет к увеличению температурного интервала существования соединения Cd₃Bi₂ и увеличению температуры появления металлического пара Cd.

При 10^7 Па кадмий в основном находится в виде соединения Cd_3Bi_2 и небольшого количества металлического Cd и пара Cd.

С помощью графиков балансов Bi, Pb, Sn, Cd при различных давлениях определены температуры полного испарения и начала испарения металлов из расплава в зависимости от давления (таблице 4.1).

На графиках балансов Bi, Pb, Sn, Cd отмечено наличие газовых составляющих: Bi, Bi₂, Cd, Pb, Sn, Sn₂. Газ содержащий Cd₂, Pb₂, Bi₃, Bi₄ судя по графикам равновесного содержания газовых компонентов в системе Bi-Pb-Sn-Cd присутствует, но в ничтожно малых количествах. Из 15 соединений выявленных на графиках равновесного состава металлической фазы, на графиках балансов отразились лишь 6: BiPb, SnBi, Pb₃Bi, Pb₅Bi₄Sn₄, PbSn, Cd₃Bi₂. Остальные 9 соединений в расплаве присутствуют, но в очень малом количестве.

Повышение общего давления приводит к следующим изменениям:

1. возрастает температура полного испарения, на 100 и 1000°С;

2. увеличивается температура начала испарения;

3. расширяется температурный интервал испарения.

Таблица 4.1 – Зависимость температуры полного испарения (Тпи), температуры начала испарения (Тни) и температуры интервала испарения (Тпи-Тни) металлов из расплава от общего давления

Элемент		Т _{пи} , К	Т _{ни} , К	Т _{пи} -Т _{ни} , К
Bi	la	1500	1000	500
Pb) ² []	1600	1000	600
Cd	=1(1200	700	500
Sn	ä	1800	1350	450
Bi	Ia	1800	1100	700
Pb) ³ [1800	1100	700
Cd	=10	1400	900	600
Sn	$\mathbf{P}_{\mathbf{r}}$	1900	1500	400
Bi	Ia	2100	1300	800
Pb) ⁴ [2100	1300	800
Cd	=1(1700	1000	700
Sn	Ë	2200	1700	500
Bi	Ia	2510	1550	960
Pb) ⁵ [2510	1450	1060
Cd	=1(2200	1200	1000
Sn	Ŀ	2510	1950	560
Bi	Ia	3000	1900	1050
Pb) ₆ [3000	1700	1300
Cd	=1(2900	1600	1300
Sn	Ŀ	3000	2350	660
Bi	Ia	-	2450	-
Pb	7 I	-	2500	-
Cd	=1(-	2400	-
Sn	- L	-	-	_

4.1.2 Теплофизические характеристики системы «расплав (Bi-Pb-Sn-Cd) – пар» при различных давлениях

С применением программного комплекса TERRA рассчитаны теплофизические характеристики системы 42Bi + 40,6Pb + 10Sn + 7,4Cd (в масс %) в атмосфере Ar и воздуха при давлениях 10^2 , 10^3 , 10^4 , 10^5 , 10^6 , 10^7 Па в температурном интервале 300 - 3000 К. Теплофизические характеристики данной системы в атмосфере Ar при 300 - 3000К и P= 10^5 Па представлены в таблице 4

(Приложение 2). Проведен анализ теплофизических свойств в ходе, которого было выявлено 3 области:

1. Конденсированное состояние. Основной вклад в теплофизические свойства вносит металлический расплав. Температурные интервалы наблюдаемых значений теплофизических характеристик для данной области в атмосфере Ar приведены в таблице 5 (Приложение 2), а в атмосфере воздуха в таблице 6 (Приложение 2).

2. Область фазового перехода:

- область фазового перехода (испарение расплава и образование новых соединений). В данной области можно выделить два перехода: при первом преимущественно происходит первостепенное испарение Cd, Pb, Bi (в атмосфере Ar) и Pb, Bi (в атмосфере воздуха), при втором испарение Sn. Температурные интервалы наблюдаемых значений теплофизических характеристик для данной области в атмосфере Ar приведены в таблице 5 (Приложение 2), а в атмосфере воздуха в таблице 6 (Приложение 2);

3. Паровая фаза. Основной вклад в теплофизические свойства вносит металлический газ. Температурные интервалы наблюдаемых значений теплофизических характеристик для данной области в атмосфере Ar приведены в таблице 5 (Приложение 2), а в атмосфере воздуха в таблице 6 (Приложение 2)

Теплофизические характеристики можно разделить на две основные группы:

1. Объемно-массовые: V (удельный объем), М (число молей), MMg (молярная масса паровой фазы), Z (массовая доля конденсированной фазы);

2. Энергетические: U (полная внутренняя энергия), I (полная энтальпия), S (энтропия), Cp (равновесная удельная теплоемкость), Cpg (равновесная теплоемкость паровой фазы).

Отдельно следует выделить свойство переноса λ (коэффициент теплопроводности)

Рассмотрим более подробно поведение объемно массовых характеристик (V, M, MMg, Z) в выделенных ранее областях:

- в атмосфере Ar: в первой области для объемно-массовых теплофизических свойств характерно увеличение температурного интервала с ростом давления. Исключение составляет М (чисто молей). Это объясняется отсутствием в этой области испарения.

- в атмосфере воздуха: в первой области для всех характеристик наблюдается увеличение температурного интервала с россом давления, за исключением С_р, (равновесная удельная теплоемкость) которая остается неизменной. Это связано с отсутствием изменений в конденсированной фазе. Поскольку парциальное давление паров металлов мало, изменение внешнего давления практически не сказывается на равновесной удельной теплоемкости.

В атмосфере Ar: во второй области для характеристики М происходит увеличение температурного интервала с ростом давления. Это связано с увеличением термической устойчивости соединений, содержащихся в расплаве. Объемно - массовые свойства претерпевают смещение температурного интервала в область более высоких температур.

В атмосфере воздуха: во второй области у таких характеристик как: U (полная внутренняя энергия), I (полная энтальпия), S (энтропия) при повышении давления происходит смещение температурного интервала в область более высоких температур за исключением C_p у которой происходит только увеличение температурного интервала (это связано с увеличением термической устойчивости соединений входящих в состав расплава. У Rg (газовая постоянная) и Cpg (равновесная теплоемкость паровой фазы) помимо смещения в область более высоких температур наблюдается также увеличение температурного интервала. Данное явление вызвано затруднением процесса испарения с повышением давления.

В атмосфере Ar: для третей области у таких характеристик, как: U (полная внутренняя энергия), I (полная энтальпия), S (энтропия) с ростом давления происходит смещение температурного интервала в область более высоких температур, а при 10^4 Па и выше происходит увеличение его на 100К. Это связано с затруднением испарения с повышением давления. Температурный интервал Ср

80

(равновесная удельная теплоемкость) смещается в область более высоких температур. Поведение Rg (газовая постоянная) и Cpg (равновесная теплоемкость паровой фазы) остается таким же, как и во второй области.

В атмосфере воздуха: в третьей области для всех объемно-массовых теплофизических характеристик характерно смещение температурного интервала в область более высоких температур с ростом давления.

Для четвертой области абсолютно для всех теплофизических характеристик при увеличении давления температура образования металлического пара смещается в область более высоких температур.

На рисунке 4.13 представлена зависимость удельного объема от температуры при давлении 10⁵ Па в атмосфере Ar. В темпероатурной области 300-1800 К основная фаза конденсированная.

Первый переход 1800-2100К обусловлен испарением Bi(s1), Pb(s1), Cd(s1) с обогащением конденсированной фазы оловом. Второй переход 2100-2500К обусловлен испарением Sn(s1). По достижению 2600К все компоненты переходят в газовую фазу.

Рисунок 4.13 – Изменение удельного объема системы в процессе нагрева при давлении 10⁵ Па в атмосфере Ar.

На рисунке 4.14 приведена зависимость изменения удельного объема системы в процессе нагрева при давлении 10⁵ Па в атмосфере воздуха.

C 300-1800К основная фаза конденсированная. Первый переход 1800-2100К обусловлен испарением Bi(s1), Pb(s1) и распадом $Cd_3Bi_2(s2)$, $SnO_2(s2)$, $PbSnO_3(s2)$, SnO(s2), а так же образованием $Pb_2Bi_2O_5(s2)$, PbO(s2) и паров Bi, Bi_2 , SnO, Sn_2O_2 , Pb, $Cd_{.}$ Второй переход лежит за пределами исследуемого нами температурного интервала.

При увеличении давления оба перехода смещаются в область более высоких температур, а второй переход становится менее заметным. Как следствие при p=10⁷ Па оба перехода смещаются за область исследуемых нами температур.

Рисунок 4.14 – Зависимость изменения удельного объема системы в процессе нагрева при давлении 10⁵ Па в атмосфере воздуха.

На рисунке 4.15 представлено изменение числа молей системы расплав – газ при нагреве для различных давлений в атмосфере Ar.

При давлении 10⁵ Па в температурном интервале 300-500К происходит преимущественно образование соединений. При 500—700К распадаются

распадаются отдельные соединения: Sn₄Bi₂(s1), CdSn(s1), PbSn(s1) и испаряется Bi(s1), Cd(s1). На кривой можно отметить два перехода, первый при 700-1800К и второй 1800-2200К. Начиная с 700K происходит массовый распад соединений вплоть ДО 2100К.

Спад на кривой наблюдается в диапазоне 1200 – 1800К. Затем интенсивный рост до 2100К. В основном, в диапазоне 1200-1800К не происходит резких изменений, подобных началу распада, полному распаду или образованию какихлибо соединений. Происходит лишь монотонное поддержание того состояния

82

которое наблюдалось ранее. При 1800-2100К происходит интенсивный рост кривой, обусловленный распадом: $Cd_3Bi_2(s1)$, $Pb_3Bi(s1)$, BiPb(s1), а также испарением Pb(1), Bi(s1) и образованием $Cd_3Bi_2(s1)$, $PbSn_3(s1)$, SnBi(s1), $Pb_5Bi_4Sn_4(s1)$ и испаряется Sn(s1). По достижении температуры 2100К происходит массовый распад всех соединений и образованием паров олова.

На рисунке 4.16 приведена зависимость изменения числа молей системы в процессе нагрева при различных давлениях в атмосфере воздуха.

Для давления 10^5 Па в температурном интервале 300-1900К происходит преимущественно образование ряда соединений. Первый переход 1800-2100К обусловлен испарением Bi(s1), Pb(s1) и распадом Cd₃Bi₂(s1), SnO₂(s2), PbSnO₃(s2),

SnO(s2), а так же образованием $Pb_2Bi_2O_5(s2)$, PbO(s2) и паров Bi, Bi₂, SnO, Pb, Sn_2O_2 , Cd₂

Понижение давления приводит к смещению кривой в сторону меньших температур, а так же к общему росту значений числа молей.

Рисунок 4.16 – Зависимость изменения числа молей системы в процессе нагрева при различных давлениях в атмосфере воздуха

При повышении давления кривая смещается в область более высоких температур и происходит незначительное расширение диапазона значений. При понижении давления данный вид кривой смещается в область более низких температур с сокращением интервала значений числа молей системы.

На рисунке 4.17 представлено изменение молярной массы паровой фазы при нагреве для различных давлений в атмосфере Ar.

В диапазоне температур 300-1200К не выявлены изменения хода кривой, что свидетельствует об отсутствии каких-либо составляющих паровой фазы. Первый переход выражен резким ростом кривой при 1400-2100К, связанный с интенсивным испарением Bi(s1), Pb(s1) и распадом $Cd_3Bi_2(s1)$, BiPb(s1), PbSn(s1), с высвобождением Sn(s1) и образованием паров Bi, Bi₂, Pb, Cd. Затем наблюдается второй переход, выраженный плавным спадом, вызванный испарением Sn(s1) с образованием паров Sn при 2100-2600К. Выше 2200К наблюдается стабильное состояние MMg = 170 г/моль, все компоненты переходят в паровую фазу.

температур И происходит незначительное сужение значений. При диапазона понижении давления кривая в область более смещается низких температур, С незначительным расширением интервала значений, молярной массы паровой фазы системы.

Рисунок 4.17 – Изменение молярной массы паровой фазы системы при нагреве для различных давлений в атмосфере Ar.

Ha 4.18 рисунке приведена зависимость молярной массы паровой фазы в процессе нагрева при различных давлениях в атмосфере Ar.

Рисунок 4.18 – Зависимость молярной массы паровой фазы от температуры при различных давлениях в атмосфере воздуха.

Для 10^5 Па в диапазоне температур 300-1600К не выявлены, какие либо изменения хода кривой, что свидетельствует об отсутствии каких-либо газовых составляющих. Первый переход выражен резким ростом кривой при 1600-2100К и обусловлен испарением Bi(s1), Pb(s1) и распадом Cd₃Bi₂(s1), SnO₂(s2), PbSnO₃(s2), SnO(s2), а так же образованием Pb₂Bi₂O₅(s2), PbO(s2), BiPb(s1) и паров Bi, Bi₂, SnO, Sn₂O₂, Pb, PbO, Cd.

При повышении давления диапазон значений молярной массы паровой фазы уменьшается и смещается в область более высоких температур. При понижении давления диапазон значении молярной массы паровой фазы в процессе нагрева увеличивается, и кривая смещается в область более низких температур.

зависимость массовой доли конденсированной фазы от температуры при различных давлениях в атмосфере Ar.

Практически линейный участок кривой наблюдается в температурном интервале 300-1400 К, где основная фаза – конденсированная.

Рисунок 4.19 – Изменение массовой доли конденсированной фазы системы при нагреве для различных давлений в атмосфере Ar

В интервале 1400-1700К происходит плавный спад кривой, обусловленный распадом $Cd_3Bi_2(s1)$, а так же интенсивным испарением Bi(s1), Pb(s1), с образованием паров Pb, Cd, Bi, Bi₂ и высвобождением Sn(s1). Происходит резкий спад значений Z при 1700-2100К обусловленный фазовым переходом. В интервале 2100-2500К происходит плавный спад кривой, обусловленный интенсивным испарением Sn(s1) с образованием паров Sn. При 2500К и выше все компоненты переходят в паровую фазу. При повышении давлении кривая

смещается в область более высоких температур, а при понижении давления в область более низких температур.

На рисунке 4.20 приведена зависимость массовой доли конденсированной фазы от температуры при различных давлениях в атмосфере воздуха.

При давлении 10^5 Па практически прямой участок кривой наблюдается в температурном интервале 300-1500К, где основная фаза конденсированная. В интервале 1500-2100К происходит спад кривой. Этот спад обусловлен испарением Bi(s1), Pb(s1) и распадом Cd₃Bi₂(s2), SnO₂(s2), PbSnO₃(s2), SnO(s2), a так же образованием Pb₂Bi₂O₅(s2), PbO(s2), BiPb(s1) и паров Bi, Bi₂, SnO, Sn₂O₂, Pb, PbO,

Cd. Затем вновь происходит спад значений Z начинающийся при 2100К. Конечную температуру нет возможности назвать, так как она лежит за пределами исследуемого нами температурного интервала.

Рисунок 4.20 – Зависимость массовой доли конденсированной фазы от температуры при различных давлениях в атмосфере воздуха

При повышении давления диапазон значений массовой доли конденсированной фазы уменьшается и смещается в область более высоких температур. При понижении давления кривая смещается в область более низких температур, а диапазон значений увеличивается.

На рисунке 4.21 представлены зависимости полной энтальпии от температуры при нагреве для различных давлений в атмосфере Ar.

В интервале 300-1800К основная фаза – конденсированная. На данной кривой наблюдается два изгиба соответствующие фазовому переходу. Первый изгиб наблюдается при температуре 1800-2000К. В данном интервале происходит распад соединений $Cd_3Bi_2(s1)$, BiPb(s1), SnBi(s1), (в малых количествах Pb₃B(s1), PbSn(s1)) и испарение Cd(s1), Pb(s1), Bi(s1) с образованием Pb₅Bi₄Sn₄(s1) (при

1900-2000К происходит интенсивный распад соединения) и высвобождением паров Cd, Pb, Bi, Bi₂. Второй изгиб наблюдается при 2000-2500К обусловлен интенсивным испарением Sn с образованием паров Sn. По достижению 2600К все компоненты переходят в паровую фазу.

При повышении давлении кривая смещается в область более высоких температур и происходит смещение диапазона значений полной энтальпии в область более высоких значений. При понижении давления наблюдается обратная картина.

Рисунок 4.21 – Изменение полной энтальпии

системы при нагреве для различных давлений в атмосфере Ar

На рисунке 4.22 приведена зависимость полной энтальпии системы в процессе нагрева при различных давлениях в атмосфере воздуха.

Для давления 10⁵ Па в температурном интервале 300-1600К происходит

преимущественно образование ряда соединений. Фазовый переход 1600-2100К обусловлен испарением Bi(s1), Pb(s1) и распадом Cd₃Bi₂(s1), SnO₂(s2), PbSnO₃(s2), SnO(s2), а так же образованием Pb₂Bi₂O₅(s2), PbO(s2), BiPb(s1) и паров Bi, Bi₂, SnO, Sn₂O₂, Pb, PbO, Cd.

Рисунок 4.22 – Зависимость полной энтальпии системы

в процессе нагрева при различных давлениях в атмосфере воздуха.

Повышение давления приводит к смещению кривой в область более высоких температур, а фазовые переходы становятся менее выраженными.

Понижение давления, смещает кривую зависимости полной энтальпии от температуры в область более низких температур, а фазовый переход становится ярко выраженными.

На рисунке 4.23 представлены зависимости полной внутренней энергии от температуры при нагреве для различных давлений в атмосфере Ar.

В температурном интервале 300-1800К основная фаза конденсированная. На данной кривой наблюдается два изгиба соответствующие фазовому переходу. Первый изгиб наблюдается при температуре 1800-2000К. В данном температурном интервале происходит массовый распад соединений: Cd₃Bi₂(s1), BiPb(s1), PbSn(s1); испарение Sn(s1), Pb(s1) с образованием паров Bi, Pb, Cd и Bi₂.

В данном интервале температур происходит образование $Pb_5Bi_4Sn_4(s1)$ вызванное распадом SnBi(s1), PbSn(s1) и испарением Sn(s1). В 1900-2000К интервале происходит распад соединения $Pb_5Bi_4Sn_4(s1)$ образованием С металлического Sn(s1).

Рисунок 4.23 – Изменение полной внутренней энергии

системы при нагреве для различных давлений в атмосфере Ar

Второй изгиб 2000-2500К обусловлен распадом CdSn(s1), $Sn_3Bi(s1)$, $PbSn_3(s1)$, SnBi(s1), PbSn(s1) испарением Sn. И по достижению 2600К все компоненты переходят в газовую фазу.

При повышении давления кривые смещаются в область более высоких температур, происходит смещение диапазона значений полной внутренней энергии в область более высоких значений. При понижении давления наблюдается обратная картина.

На рисунке 4.24 приведена зависимость полной внутренней энергии системы в процессе нагрева при различных давлениях в атмосфере воздуха.

Для давления 10⁵ Па в температурном интервале 300-1700К основная фаза конденсированная. Фазовый переход 1700-2100К обусловлен испарением Bi(s1), Pb(s1) и распадом $Cd_3Bi_2(s1)$, $SnO_2(s2)$, $PbSnO_3(s2)$, SnO(s2), а так же образованием Pb₂Bi₂O₅(s2), PbO(s2) и паров Bi, Bi₂, SnO, Sn₂O₂, Pb, Cd.

высоких температур, а фазовый переход становятся менее выраженными. Понижение давления, смещает кривую зависимости полной энтальпии от температуры в область более низких температур, а фазовый переход становится ярко выраженными.

Рисунок 4.24 – Зависимость полной внутренней энергии

системы в процессе нагрева при различных давлениях в атмосфере воздуха.

На рисунке 4.25 представлены зависимости энтропии от температуры при нагреве для различных давлений в атмосфере Ar.

В диапазоне температур 300-1800К наблюдается плавное возрастание значений энтропии, обусловленное началом распада некоторых соединений И испарением металлов. В интервале 1800-2000К наблюдается фазовый переход.

Рисунок 4.25 – Изменение энтропии

системы при нагреве для различных давлений в атмосфере Ar

Значения энтропии претерпевают резкий рост. Это вызвано массовым распадом соединений: $Cd_3Bi_2(s1)$, BiPb(s1), PbSn(s1); испарение Sn(s1), Pb(s1) с образованием паров Bi, Pb, Cd и Bi₂. В данном интервале температур происходит образование $Pb_5Bi_4Sn_4(s1)$ вызванное распадом SnBi(s1), PbSn(s1) и испарением Sn(s1). В интервале 1900-2000К происходит распад соединения $Pb_5Bi_4Sn_4(s1)$ с образованием металлического Sn(s1). Далее в интервале 2000-2500К происходит распад CdSn(s1), $Sn_3Bi(s1)$, $PbSn_3(s1)$, SnBi(s1), PbSn(s1) и испарением Sn(s1). Начиная с 2500К все компоненты переходят в паровую фазу.

При повышении давлении кривая смещается в область более высоких температур и происходит сужение диапазона значений в сторону уменьшения. При понижении давления данный вид кривой смещается в область более низких температур и расширяется интервал значений энтропии системы.

На рисунке 4.26 приведена зависимость энтропии системы в процессе нагрева при различных давлениях в атмосфере воздуха.

Для 10^5 Па в температурном интервале 300-1700К наблюдается плавное возрастание значений энтропии, обусловленное началом распада некоторых соединений и испарением металлов. В интервале 1700-2100К наблюдается фазовый переход обусловленный испарением Bi(s1), Pb(s1) и распадом Cd₃Bi₂(s1),

SnO₂(s2), PbSnO₃(s2), SnO(s2), а так же образованием Pb₂Bi₂O₅(s2), PbO(s2) и паров.

При повышении давления кривая смещается в область более высоких значений энтропии, а при понижении давления наблюдается обратная тенденция.

в процессе нагрева при различных давлениях в атмосфере воздуха.

рисунке 4.27 Ha представлена зависимость равновесной удельной теплоемкости от температуры при нагреве для различных давлений в атмосфере Ar.

Для давления 10⁵Па первый скачек в сторону уменьшения значений наблюдается в интервале 500-900К. В данном температурном интервале происходит распад BiPb(s1), SnBi(s1), PbSn(s1) с высвобождением Bi(s1), Sn(s1), 1700-2100К наблюдается интенсивный При спад значений Pb(s1). Cp. обусловленный распадом $Cd_3Bi_2(s1)$ и испарением Bi(s1), Sn(s1), Pb(s1) с образованием паров Bi, Bi₂, Sn, Pb, Cd. Отмечается рост кривой при 800-1700К, который обусловлен преимущественно образованием соединений.

температур, происходит смещение диапазона значений равновесной удельной теплоемкости в область более значений. При высоких понижении давления наблюдается обратная картина.

Рисунок 4.27 Зависимость равновесной удельной теплоемкости системы в процессе нагрева при различных давлениях в атмосфере Ar

Ha 4.28 рисунке приведена зависимость равновесной удельной теплоемкости системы в процессе нагрева при различных давлениях в атмосфере воздуха.

Для давления 10⁵ Па первый скачек в сторону уменьшения значений наблюдается при 800-900К. В данном температурном интервале происходит испарение Bi(s1) и распад CdSnO₃(s2), CdO(s2), BiPb(s2), PbO(s2), PbSnO₃(s2), $Cd_3Bi_2(s1)$ с образованием $Pb_2Bi_2O_5(s2)$ и высвобождением паров Bi, SnO, Sn₂O₂, Рь. Второй интенсивный спад значений Ср, наблюдается при 1900-2100К,

обусловленный испарением Bi(s1) и распадом $Cd_3Bi_2(s1)$, SnO(s2) с образованием паров Bi, SnO и Sn_2O_2 .

 $\begin{array}{c} 0,09\\ 0,08\\ 0,07\\ 0,07\\ 0,06\\ 0,06\\ 0,05\\ 0,04\\ 0,03\\ 0,02\\ 300 \ 600 \ 900 \ 1200 \ 1500 \ 1800 \ 2100 \ 2400 \ 2700 \ 3000\\ T,K \end{array}$

системы. Понижение давления смещением сопровождается область кривых более В низких значений сопровождающимся колебанием незначительным равновесной удельной теплоемкости системы В районе 0,03-0,04 Дж/моль*К.

Рисунок 4.28 – Зависимость равновесной удельной теплоемкости системы в процессе нагрева при различных давлениях в атмосфере воздуха.

На рисунке 4.29 представлены зависимости значений газовой постоянной от

температуры при нагреве для различных давлений в атмосфере Ar.

В диапазоне температур 300-1100К отмечается стабильность значений Rg, что свидетельствует об отсутствии в данном температурном интервале какихлибо газовых составляющих.

Рисунок 4.29 – Изменение значений газовой постоянной при нагреве для различных давлений в атмосфере Ar

При 1100-1900К наблюдается фазовый переход на кривой в сторону уменьшения значений газовой постоянной связанный с испарением Sn(s1), Pb(s1), Bi(s1) с образованием паров Bi, Bi₂, Pb, Cd. Выше 1900К следует отметить

стабильность, вызванную полным переходом всех компонентов в паровое состояние

При повышении давления кривая смещается в область более высоких температур. При понижении давления наблюдается обратная картина.

На рисунке 4.30 приведена зависимость газовой постоянной от температуры при различных давлениях в атмосфере воздуха.

При давлении 10⁵ Па в температурном интервале 300-1500К отмечается стабильность значений Rg, что свидетельствует об отсутствии в данном температурном интервале каких-либо газовых составляющих. При 1500-2100К

наблюдается скачек на кривой в сторону уменьшения значений газовой постоянной. Это обусловлено испарением Bi(s1), Pb(s1) и распадом $Cd_3Bi_2(s1)$, $SnO_2(s2)$, $PbSnO_3(s2)$, SnO(s2), а так же образованием $Pb_2Bi_2O_5(s2)$, PbO(s2), BiPb(s1) и паров Bi, Bi₂, SnO, Sn_2O_2 , Pb, PbO, Cd.

Рисунок 4.30 – Зависимость газовой постоянной от температуры при различных давлениях в атмосфере воздуха.

При повышении давления диапазон значений газовой постоянной уменьшается и смещается в область более высоких температур. При понижении давления кривая смещается в область более низких температур.

На рисунке 4.31 представлена зависимость равновесной теплоемкости паровой фазы от температуры при нагреве для различных давлений в атмосфере Ar. В температурном интервале 300-1100К не происходит изменений показаний Срg, что связано с отсутствием при данных температурах газовых составляющих.

При 1100-1900К наблюдается резкий спад кривой связанный с испарением Sn(s1), Pb(s1), Bi(s1) с образованием паров Bi, Bi_2 , Pb, Cd. Выше 2000К все компоненты переходят в паровую фазу.

При повышении давлении кривая смещается в область более высоких температур. При понижении давления наблюдается обратная картина.

Рисунок 4.31 – Изменение равновесной теплоемкости паровой

фазы при нагреве для различных давлений в атмосфере Ar

	Ha	a	рис	унке	4.	.32
приве	еден	a		завис	симос	сть
равнс	вес	ной		теплое	емкос	ти
паров	юй	фазы	OT	темпе	ератуј	ры
при	pa	вличны	IX	давлен	иях	В
атмос	сфер	е возд	уха	•		

Рисунок 4.32 – Зависимость равновесной теплоемкости паровой фазы от температуры при различных давлениях в атмосфере воздуха.

При давлении 10^5 Па в температурном интервале 300-1300К не происходит изменений показаний Срg, что связано с отсутствием при данных температурах газовых составляющих. При 1300-2100К наблюдается резкий спад кривой, обусловленный испарением Bi(s1), Pb(s1), Cd(s1) и распадом Cd₃Bi₂(s1), PbSnO₃(s2), CdSnO₃(s2) с образованием паров Bi, Bi₂, SnO, Sn₂O₂, Pb, PbO и Cd, а

так же образованием таких оксидных соединений как $Pb_2Bi_2O_6(s2)$, SnO(s2), SnO₂(s2), CdSnO₃(s2).

При повышении давления диапазон значений равновесной теплоемкости уменьшается и смещается в область более высоких температур. При давлении 10⁷ Па в диапазоне температур 1600-2200К наблюдается незначительный рост значений равновесной теплоемкости паровой фазы. При понижении давления кривая смещается в область более низких температур.

На рисунке 4.33 представлены зависимости коэффициента теплопроводности от температуры при нагреве для различных давлений в атмосфере Ar.

На кривой в интервале температур 300-1400К отмечается плавный рост значений коэффициента теплопроводности, затем следует резкий спад при 1500-

2000К. В данном интервале температур происходит распад $Cd_3Bi_2(s1)$, PbSn(s1) и SnBi(s1), а так же интенсивное испарение Bi(s1), Pb(s1), Sn(s1)с образованием паров Pb, Cd, Bi, Bi₂. Выше 2000К вновь наблюдается плавный рост кривой.

При повышении давления кривые смещаются в область более высоких температур, и диапазона значений коэффициента теплопроводности принимает более высоких значений. При понижении давления наблюдается обратная картина.

На рисунке 4.34 приведена зависимость коэффициента теплопроводности от температуры при различных давлениях в атмосфере воздуха.

При давлении 10⁵ Па в диапазоне температур 300-1800К отмечается плавный рост значений коэффициента теплопроводности.

В интервале температур 1800-2100К. наблюдается резкий спад обусловленный испарением Bi(s1), Pb(s1) и распадом $Cd_3Bi_2(s1)$, $SnO_2(s2)$, $PbSnO_3(s2)$, SnO(s2), а так же образованием $Pb_2Bi_2O_5(s2)$, PbO(s2) и паров Bi, Bi₂, Sn_2O_2 , SnO, Pb, Cd. Второй переход лежит за пределами исследуемого нами

температурного интервала.

При повышении давления происходит смещение значений коэффициента теплопроводности в область более высоких значений и температур. При понижении давления наблюдается обратная картина.

Рисунок 4.34 – Зависимость коэффициента теплопроводности от температуры при различных давлениях в атмосфере воздуха.

Значения энтальпии испарения соответствующие фазовому переходу были определены графическим методом [78, 116], который позволяет определять температуру фазового перехода всей системы в целом. С использованием программного комплекса TERRA произведено моделирование с шагом 1К и взяты приближенные значения к энтальпии, полученной в графическо-расчетном методе. В области фазового перехода температурные зависимости полной энтальпии системы I=f(T) (кДж/кг), испытывает скачкообразное изменение [78, 116]. Это позволяет определить температуру Т_{фп}, близкую к температуре фазового перехода (температуру испарения) (представленную в таблице 4.2 для атмосферы Аг и 4.3 для атмосферы воздуха) и изменение энтальпии $\Delta H_{\phi n}$ в области этой температуры. При каждом расчетном цикле число молей изучаемого *j*-го вещества в системе m_j известно до и после $T_{\phi n}$. Это позволяет рассчитать изменение энтальпии: $\Delta H_{\phi n} \approx \Delta I_{\phi n}/m_j$

Таблица 4.2 – Температура фазового перехода в системе Ar-42масс.%Ві-40,6масс.%Рb-10масс.%Sn-7.4масс% Сd при различных давлениях

Р, Па	TER	RA	Расчетные*		
	I, кДж/кг	Тф.п., К	I, кДж/кг		
10^{2}	872,42	1410	877,24		
10^{3}	919,14	1599	920,21		
10^{4}	893,05	1819	894,03		
10 ⁵	875,37	2087	876,08		
10^{6}	894,12	2569	893,99		

*-рассчитано путем применения графического метода использованного в [116]

Таблица 4.3 – Температура фазового перехода в системе Ar-42масс.%Ві-40,6масс.%Pb-10масс.%Sn-7.4масс% Cd-23,1масс%O₂ при различных давлениях

Р, Па	TER	RA	расчетные*		
	I, кДж/кг	Тф.п., К	I, кДж/кг		
10^{2}	-4,75	1279	-5,29		
10^{3}	26,24	1453	25,7		
10^{4}	25,10	1701	25,4		
10^{5}	22,34	1852	22,03		

*-рассчитано путем применения графического метода использованного в [116]

I – значения энтальпии системы в области фазового превращения.

Известные значения температуры фазового перехода и изменение энтальпии позволяют рассчитать энтропию фазового перехода [79]: $\Delta S_{\phi n} \approx \Delta H_{\phi n} / T_{\phi n}$

Результаты расчета представлены в таблице 4.4

Температура испарения растет с уменьшением внешнего давления. Энтальпия испарения уменьшается с уменьшением внешнего давления. Энтропия фазового перехода увеличивается с уменьшением внешнего давления. Таблица 4.4 – Температуры, энтальпии и энтропии фазового перехода расплав-газ в системе Ar-42масс.%Bi-40,6масс.%Pb-10масс.%Sn-7.4масс% Сd при давлениях 10²-10⁷ Па Дж/(моль*К)

Р, Па	Τ _{фп} , К	$\Delta { m H}_{ m \phi n}$, кДж/моль	$\Delta S_{\phi \pi},$ Дж/(моль $*K$)
10 ²	1410	185,14	13,13
10^{3}	1599	173,42	10,84
10^{4}	1819	161,95	8,90
10^{5}	2087	159,17	7,63
10^{6}	2569	154,59	6,02

4.1.3 Пример инженерных расчетов для системы Bi-Pb-Sn-Cd при давлении 10⁵ Па

Методом термодинамического моделирования изучено поведение расплава 42масс.%Ві-40,6масс.%Рb-10масс.%Sn-7.4масс%Cd при нагреве до 3000К в двух средах: инертной атмосфере (содержание Ar в системе равнялось 2% по массе, при этих условиях пар можно считать насыщенным) и в кислородосодержащей атмосфере (содержание $O_2 = 23.1$ масс %, что приближено к содержанию кислорода в воздухе).

Значения теплоемкости и теплопроводности рассчитывались с применением программного комплекса TERRA. Температуропроводность рассчитывалась по известной формуле 4.24:

$$a = \frac{\lambda}{c_{p}\rho} \tag{4.24}$$

где λ – коэффициент теплопроводности, кВт/(м * K);

Ср – равновесная удельная теплоемкость, кДж/(кг*К);

 ρ – плотность, кг/м³.

Расчет плотности расплава произведен с использованием метода аддитивности. Его применение подразумевает знание состава расплава в процессе нагрева. Программный комплекс TERRA позволяет увидеть не только состав системы, но и рассчитать процентное содержание каждого составного соединения

как металлического, так и оксидного, образующихся в системе в процессе нагрева.

Смесь представляет собой идеальный раствор:

$$\rho_{\rm CM=\sum n_i \rho_i} \tag{4.25}$$

n_i – мольная доля і компонента в сложном соединении;

ρ_i – плотность і компонента в сложном соединении.

Расчет плотности металлических соединений на примере Pb₃Bi: Pb₃Bi = 3*Pb(атомный вес)+ Bi (атомный вес)= 3*207+209=621+209=830 $\rho_{Pb3Bi} = \frac{621}{830} * \rho_{Pb} + \frac{209}{830} * \rho_{Bi}$ (плотность чистых металлов при исследуемой температуре заимствовалась из справочника В.Е. Зиновьева [117]).

Аналогичным образом рассчитывались оксидные соединения

$$Pb_5Bi_8O_{17} = 5*207+8*209+17*16=1032+1672+272=2979$$

 $Pb_5Bi_8O_{17} = 5*PbO+4*Bi_2O_3 = 5 (207+16)+4*(2*209+3*16)=5*223+4*466=2979$
 $\rho_{Pb5Bi8O17} = \frac{5*223}{2979}*\rho_{PbO} + \frac{4*466}{2979}*\rho_{Bi2O3}$ (плотность простых оксидных
соединений заимствовалась из справочника Г.В. Самсонова[118]).
Далее производился расчет плотности расплава по формуле 4.26:

$$\rho_{\text{расплава}} = X_{\text{мет расплав}} * \rho_{\text{мет расплав+}} X_{\text{окс расплав}} * \rho_{\text{окс расплав}}$$
(4.26)
где $\rho_{\text{металлического расплава}} = X_{\text{мет расплав}} \rho_{i}; \qquad \rho_{\text{оксидный расплава}} = X_{\text{окс расплав}} \rho_{i}$

$$X_{\text{мет расплав}} = rac{M_{\text{мет}}}{M}$$
 $X_{\text{окс расплав}} = rac{M_{\text{окс}}}{M}$

М_{оксида} + М_{металла} = М, где М - молярная масса

В таблицах 4.5 и 4.6 представлены значения теплоемкости, теплопроводности и температуропроводности расплава от температуры в атмосфере Ar и воздуха соответственно при давлении10⁵ Па.

В случае нагрева расплава в атмосфере воздуха значения теплоемкости и теплопроводности практически в два раза превышают значения данных величин в инертной атмосфере. Температуропроводность в кислородосодержащей атмосфере наоборот значительно падает. Все это вызвано тем, что в процессе

нагрева расплава в воздушной атмосфере образуется ряд оксидных соединений, содержание которых в системе достигает 25-30%, что вносит существенный вклад в теплофизические характеристики.

Таблица 4.5 – Значения теплоемкости, теплопроводности и температуропроводности расплава системы Bi-Pb-Sn-Cd от температуры в атмосфере Ar при P=10⁵ Па

Т, К	Ср, кДж / (кг * K)	λ, кВт/(м * К)	ρ, кг / м ³	а, 10 ⁻⁶ м ² /с
300	0.152	0.009	9720	6,09
400	0.17	0.011	9610	6,73
500	0.169	0.013	9480	8,11
600	0.17	0.015	9260	9,52
700	0.173	0.016	9140	10,11
800	0.168	0.018	9020	11,88
900	0.17	0.019	8900	12,56
1000	0.171	0.020	8770	13,34
1100	0.173	0.022	8650	14,70
1200	0.175	0.023	8510	15,44
1300	0.177	0.024	8390	16,16
1400	0.179	0.025	8270	16,89
1500	0.181	0.025	8140	16,97

Таблица 4.6 – Значения теплоемкости, теплопроводности и температуропроводности расплава системы Bi-Pb-Sn-Cd от температуры в атмосфере воздуха при P=10⁵ Па

T,K	ρ, кг/м ³	λ, кВт/м*К	Ср, кДж/кг*К	а, 10 ⁻⁶ м ² /с
400	6830	0,022	0,297	0,95
500	6300	0,025	0,307	1,23
600	6420	0,029	0,315	1,43
700	6200	0,032	0,322	1,64
800	6183	0,035	0,322	1,83

Достоверность полученных данных подтверждается апробированием на хорошо изученной системе Pb-Bi [119]. Расхождение полученных результатов со значениями, представленными в справочнике теплофизических свойств материалов Чиркина С.В [23] не превышает 10-15% для теплоносителей схожего состава: Bi-Pb, Bi-Pb-Sn и Bi-Pb-Sn-Cd.

4.2 Исследование термической стабильности соединений системы Bi-Pb-Sn-Cd при различных давлениях

Провели компьютерный эксперимент нагрева индивидуальных систем в программном комплексе TERRA: Bi₂Sn₃, SnBi, Bi₇Pb₃, Bi₇Pb, Pb₃Bi₄, Pb₃Bi, PbSn₃, PbSn, Sn₃Bi, Sn₄Bi₂, BiPb, CdSn, Cd₃Bi₂, Pb₅Bi₄Sn₄, PbBi₂Sn₂ в атмосфере Ar и Bi₂Sn₃, Bi₅Pb₃, Bi₇Pb₃, Bi₇Pb, BiPb, Cd₃Bi₂, CdSn, Pb₃Bi, PbBi₂Sn₂, PbSn, Sn₃Bi, SnBi в атмосфере воздуха.

Определены константы равновесия реакции термической диссоциации интерметаллидов в атмосфере Ar (реакции 4.1-4.15).

Возможные реакции окисления интерметаллидов приведены в таблице 7 (Приложение 2).

В процессе моделирования выявлено, что константу реакции можно рассчитать только для 6 интерметаллических соединений (4.28, 4.29, 4.30, 4.31, 4.33, 4.35 таблица 8 (Приложение 2)), для остальных расчет не предоставляется возможным, ввиду их полного окисления.

Зависимость констант равновесия реакций термической диссоциации (4.1)– (4.15) и окисления (4.24)–(4.35) от температуры описывается уравнением (4.16):

Значения коэффициентов уравнения (4.16) для индивидуальных систем (4.1)–(4.15) приведены в таблице 9 (Приложение 2) Температурные интервалы термического распада исследуемых индивидуальных систем можно разделить на 3 типа: низкотемпературные, высокотемпературные и устойчивые.

В области пониженных давлений 10² – 10⁴ Па термический распад Sn₃Bi происходит в высокотемпературной области. При дальнейшем повышении давления данное соединение переходит в термически устойчивое состояние.

В области давлений 10² – 10⁶ Па, можно выделить: 1) термический распад интерметаллидов происходит в низкотемпературной области: Pb₃Bi₄, Bi₇Pb, Pb₃Bi; 2) термический распад интерметаллидов Sn₄Bi₂ происходит в высокотемпературной области. Дальнейшее повышение давления приводит к переходу данных интерметаллидов в термически устойчивое состояние.

Для Bi_2Sn_3 , Bi_7Pb_3 на всем интервале исследуемых давлений наблюдается термический распад в высокотемпературной области без перехода в термически устойчивое состояние.

Независимо от давления следующий ряд интерметаллидов является устойчивым к изменению температуры: PbSn₃ и Pb₅Bi₄Sn₄. С ростом давления только увеличивается температурный интервал существования интерметаллидов.

Увеличение давления приводит к сдвигу температурного интервала (ΔT) существования индивидуальных систем в область более высоких температур. При повышении температуры концентрация индивидуальных систем уменьшается. На рядах устойчивости индивидуальных систем при различных давлениях видны области наибольшего скопления индивидуальных систем по величине LnK. На рисунке 4.35 представлены значения LnK для индивидуальных двойных и тройных ИМС в атмосфере Ar при давлении 10⁵ Па.

Повышение давления приводит к сдвигу LnK в сторону более низких температурных интервалов, а также ведет к уменьшению интервала значений LnK рассмотренных нами реакций.

Значения коэффициентов уравнения (4.16) для реакций окисления (4.29-4.31, 4.32, 4.34, 4.36 таблица 7 (Приложение 2) приведены в таблице 8 (Приложение 2).

В температурном интервале 1/T = [0:0,0005] константы равновесия реакции окисления ИМС располагаются в ряд в порядке убывания - для 10^6 Па: CdSn, PbSn; для 10^7 Па: BiPb, PbSn, CdSn, Cd₃Bi₂, Pb₃Bi, для более низких давлений констант реакций в данном диапазоне не выявляются.

В температурном интервале 1/T = [0,0005:0,001] константы равновесия реакции окисления ИМС располагаются в ряд в порядке убывания – для 10^2 Па: SnBi, PbSn, BiPb; для 10^3 Па: Cd₃Bi₂, SnBi, PbSn, BiPb; для 10^4 Па: Cd₃Bi₂, SnBi, PbSn, BiPb; для 10^4 Па: Cd₃Bi₂, SnBi, PbSn, BiPb; для 10^5 Па: Cd₃Bi₂, CdSn, PbSn, BiPb, SnBi, Pb₃Bi; для 10^6 Па: PbSn, SnBi, CdSn, PbSn, Cd₃Bi₂, BiPb, Pb₃Bi; для 10^7 Па: PbSn, Pb₃Bi, BiPb, PbSn, CdSn, Cd₃Bi₂, SnBi, CdSn, Pb₃Bi.

Рисунок 4.35 – Значения Lnk для индивидуальных двойных и тройных ИМС в инертной атмосфере при давлении 10⁵ Па в атмосфере Ar

В температурном интервале 1/T = [0,001:0,0015] константы равновесия реакции окисления ИМС располагаются в ряд в порядке убывания – для 10^2 Па: BiPb, PbSn, SnBi, PbSn, BiPb; для 10^3 Па: BiPb, PbSn, Cd₃Bi₂, SnBi, PbSn, BiPb; для 10^4 Па: BiPb, PbSn, Cd₃Bi₂, SnBi, PbSn, BiPb; для 10^4 Па: BiPb, PbSn, Cd₃Bi₂, SnBi, PbSn, BiPb; для 10^5 Па: BiPb, PbSn, Cd₃Bi₂, BiPb, Pb₃Bi; для 10^6 Па: PbSn, BiPb; для 10^7 Па: PbSn, Pb₃Bi, BiPb.

В температурном интервале 1/T = [0,0015:0,002] константы реакции окисления ИМС располагаются в ряд в порядке убывания – для 10^2 Па: BiPb, PbSn, SnBi; для 10^3 Па: BiPb, PbSn, Cd₃Bi₂, SnBi; для 10^4 Па: BiPb, PbSn, Cd₃Bi₂, SnBi; для 10^5 Па: BiPb, PbSn, Cd₃Bi₂; для 10^6 Па: PbSn; для 10^7 Па: PbSn.

В температурном интервале 1/T = [0,002:0,0025] константы реакции окисления ИМС располагаются в ряд в порядке убывания – для 10^2 Па: BiPb, PbSn, SnBi; для 10^3 Па: BiPb, PbSn, Cd₃Bi₂, SnBi; для 10^4 Па: BiPb, PbSn, Cd₃Bi₂, SnBi; для 10^5 Па: BiPb, PbSn, Cd₃Bi₂; для 10^6 Па: PbSn; для 10^7 Па: PbSn.

4.2.1 Теплофизические характеристики системы интерметаллическое соединение - пар при различных давлениях

Рассчитаны теплофизические характеристики двойных и тройных индивидуальных соединений используя модель идеальных растворов продуктов

103

взаимодействия с применением программного комплекса TERRA при давлении от 10^2 до 10^5 Па в атмосфере Ar и воздуха. Результаты расчетов представлены в таблице 10 и 11 (Приложение 2).

Удельный объем (v) исследуемых ИМС увеличивается с ростом температуры по линейному закону. С ростом давления диапазон значений уменьшается практически в 10 раз.

При увеличении числа атомов общее удельное число молей (М) уменьшается и колеблется при более низких значениях.

Для всех ИМС в атмосфере Ar с повышением давления температурный интервал смещается в область более высоких температур.

Полная внутренняя энергия (U) равновесной системы увеличивается с ростом температуры, в области испарения ИМС происходит скачкообразное изменение. В атмосфере Ar понижение давления приводит к образованию на кривой более выраженного скачка, в области же высоких давлений он практически отсутствует.

В атмосфере воздуха для всех ИМС с повышением давления температурный интервал смещается в область более высоких температур, а при увеличении числа атомов значения внутренней энергии системы (U) большинства ИМС уменьшается и колеблется при более низких значениях.

Энтропия (S) системы увеличивается с ростом температуры для всех исследуемых ИМС при всех исследуемых давлениях. Для ряда ИМС, имеющих наибольшее количество атомов, таких как, Bi_7Pb_3 , Bi_7Pb , и Pb_3Bi_4 , $Pb_5Bi_4Sn_4$ наблюдается небольшой скачек в области испарения расплава, который сдвигается в область более высоких температур с повышением давления.

Чем выше давление, тем шире наблюдаемый температурный интервал испарения исследуемых ИМС, тем выше он располагается на оси температур. Положение интервала испарения на оси температуры зависит от количества атомов в расплаве.

Снижение значений удельной теплоемкости с ростом температуры.

104

Для равновесной удельной теплоемкости (C_p), газовой постоянной (R_g) и равновесной теплоемкости паровой фазы (C_{pg}) можно выделить следующие закономерности, чем выше равновесное давление в системе, тем шире наблюдаемый температурный интервал испарения исследуемых ИМС, тем выше он располагается на оси температур. Положение интервала испарения, на оси температуры зависит от количества атомов в исходном сплаве. ИМС с большим исходным содержанием атомов испаряются при более высоких температурах.

Молярная масса паровой фазы (MM_g) растет с повышением температуры, испытывая скачкообразное изменение, что связано с интенсивным испарением ИМС. Выше температуры испарения, молярная масса паровой фазы незначительно снижается с увеличением температуры.

Коэффициент теплопроводности (λ) линейно увеличивается с повышением температуры на всем исследуемом температурном интервале. Скачки на графике обусловлены фазовым переходом. Чем выше давление, тем больше смещение скачка в область более высоких температур.

Массовая доля конденсированной фазы (Z) снижается до нуля с увеличением температуры.

Полная энтальпия (I) системы увеличивается с ростом температуры, в области испарения расплава происходит скачкообразное ее изменение. Чем выше давление, тем больше смещение скачка в область более высоких температур. Наиболее выражен скачек у ИМС с большим содержанием атомов: Bi₇Pb₃, Pb₃Bi₄, Bi₇Pb, Sn₄Bi₂

При анализе теплофизических характеристик, можно выделить три области. Первая область связана с конденсированным состоянием, основной вклад в теплофизические характеристики вносит ИМС. Вторая область связана с фазовым превращением - испарением ИМС. Третья область связана с парогазовой фазой, основной вклад в теплофизические свойства вносит металлический пар.

В газовой фазе с повышением температуры происходит термическая диссоциация молекулярных паров и ионизация. С повышением температуры происходит термическое разложение исследуемых ИМС. В паровой фазе с повышением температуры происходит термическая диссоциация молекулярных паров. При повышении давления все процессы, протекающие в ИМС, смещаются в область более высоких температур, не изменяя при этом общий вид кривых. Незамечено влияние большего или меньшего содержания того или иного металла в ИМС на какие-либо процессы происходящие в нем при нагреве.

В атмосфере Ar при увеличении давления температура испарения повышается. Чем меньше атомов в ИМС, тем меньше диапазон изменения исследуемого параметра в зависимости от температуры (данное утверждение не относится к энтропии S).

Количество атомов в ИМС существенно влияет на диапазон в котором наблюдается та или иная исследуемая характеристика, чем меньше количество атомов, тем уже диапазон;

В области фазового перехода температурные зависимости полной энтальпии системы I=f(T) (кДж/кг), испытывают скачкообразные изменения [120]. Это позволяет определить температуру, близкую к температуре фазового превращения (температуру испарения) и изменение энтальпии в области интенсивного перехода ИМС в газовую фазу.

Поскольку шаг по температуре может быть задан любым, величины $T_{\phi n}$ и $\Delta H_{\phi n}$ определяются достаточно достоверно [116], а так как при каждом расчетном цикле число молей изучаемого *j*-го вещества в системе m_j известно до и после $T_{\phi n}$, то $\Delta H_{\phi n} \approx \Delta I_{\phi n}/m_{j}$. При известной температуре фазового перехода [116] $\Delta S_{\phi n} \approx \Delta H_{\phi n}/T_{\phi n}$.

Результаты расчета этих величин представлены в таблице 4.7.

Таблица 4.7 – Характеристики испарения двойных и тройных индивидуальных ИМС

	Р=10 ² Па				Р=10 ³ Па			
ИМС	Тф.п,	I,	ΔНф.п.,	ΔSф.п.,	Тф.п,	I,	ΔНф.п.,	ΔЅф.п., Дж
	К	Дж/моль	Дж/моль	Дж/(моль*К)	К	Дж/моль	Дж/моль	/(моль*К)
BiPb	950	1436	14362,42	15,12	1050	1644	16442,77	15,66
Pb ₃ Bi	950	1526	15260,92	16,06	1050	1734	17341,04	16,52
Bi ₇ Pb ₃	1000	1936	19363,99	19,36	1100	2162	21624,46	19,66
Pb ₃ Bi ₄	1000	1782	17819,88	17,82	1100	1986	19859,86	18,05
Bi ₇ Pb	1000	1825	18250,55	18,25	1100	2057	20570,62	18,70
Bi_2Sn_3	1450	2763	27631,07	19,06	1600	3108	31081,20	19,43
PbSn ₃	1450	2668	26692,32	18,41	1600	3010	30113,90	18,82
Sn ₃ Bi	1450	2666	26657,64	18,389	1600	2998	29977,35	18,74
Sn ₄ Bi ₂	1500	2987	29867,32	19,91	1600	3182	31817,15	19,88
PbBi ₂ Sn ₂	1200	2081	11828,17	9,86	1300	2271	12908,11	9,93
Pb5Bi4Sn4	1250	2762	27623,88	22,10	1400	3166	31664,45	22,62
		Р	=10 ⁴ Па		$P=10^5 \Pi a$			
ИМС	Тф.п,	I,	ΔНф.п.,	ΔЅф.п., Дж		I,	ΔНф.п.,	ΔSф.п.,
	К	Дж/моль	Дж/моль	/(моль*К)	Тф.п., К	Дж/моль	Дж/моль	Дж/(моль*К)
BiPb	1150	1851	18513,11	16,10	1300	2156	21563,63	16,59
Pb ₃ Bi	1200	2050	20501,23	17,08	1400	2505	25051,51	17,89
Bi ₇ Pb ₃	1200	2327	23274,80	19,40	1400	2800	28005,78	20,00
Pb ₃ Bi ₄	1200	2185	21849,85	18,21	1400	2735	27349,81	19,54
Bi ₇ Pb	1250	2320	23200,69	18,56	1400	2698	26980,81	19,27
Bi ₂ Sn ₃	1800	3536	35361,37	19,65	2000	3917	39171,52	19,59
PbSn ₃	1800	3410	34115,75	18,95	2000	3794	37957,52	18,98
Sn ₃ Bi	1800	3399	33986,99	18,88	2000	3800	37996,64	18,99
Sn ₄ Bi ₂	1800	3578	35776,79	19,88	2100	4274	42736,17	20,35
PbBi ₂ Sn ₂	1350	2599	14772,42	10,94	1700	3126	17767,83	10,45
Pb ₅ Bi ₄ Sn ₄	1550	3371	33714,74	21,75	1800	3952	39525,56	21,96

ВЫВОДЫ К ГЛАВЕ 4

Произведено термодинамическое моделирование нагрева системы 42масс.%Ві-40,6масс.%Pb-10масс.%Sn-7.4масс% Cdв атмосфере Ar и воздуха с учетом возможности образования 29-ти соединений: PbSn, CdSn, SnBi, BiPb, Cd₃Bi₂, Bi₂Sn₃, Bi₅Pb₃, Bi₇Pb₃, Bi₇Pb, Pb₃Bi₄, Pb₃Bi, PbSn₃, Sn₂Bi₄, Sn₃Bi, Sn₄Bi₂, Sn₅Bi, Sn₁₀Bi₃, SnBi₅, Pb₂Bi₄Sn₄, Pb₂Bi₇Sn₄, Pb₃Bi₄Sn₄, Pb₃Bi₉Sn₄, Pb₃BiSn₄, Pb₅Bi₄Sn₄, Pb₇Bi₄Sn₄, PbBi₂Sn₂, PbBi₄Sn₄, Pb₉Bi₄Sn₄, Pb₃Bi₄Sn₁₅, в интервале температур 300-3000 К, при давлениях 10^2 , 10^3 , 10^4 , 10^5 , 10^6 , 10^7 Па.

По результатам моделирования в расплаве в атмосфере Ar присутствуют 15 соединений: PbSn, CdSn, SnBi, BiPb, Cd₃Bi₂, Bi₂Sn₃, Bi₇Pb₃, Bi₇Pb, Pb₃Bi₄, Pb₃Bi, PbSn₃, Sn₃Bi, Sn₄Bi₂, Pb₅Bi₄Sn₄, PbBi₂Sn₂. Содержание соединений уменьшаются с повышением температуры в расплаве. Наибольшее содержание приходится на BiPb, PbSn, SnBi, Pb₃Bi и металлы Pb, Bi, Sn. Проведено моделирование испарения системы Bi-Pb-Sn-Cd при различных равновесных давлениях в атмосфере Ar. Увеличение равновесного давления приводит к изменениям в парциальных давлениях паров металлов. В результате моделирования установлено присутствие в паровой фазе паров: Bi, Bi₂, Bi₃, Bi₄, Pb, Pb₂, Sn, Sn₂, Cd, Cd₂. В значительном количестве присутствуют Bi, Bi₂, Pb, Pb₂, Sn, Sn₂, Cd.

По результатам моделирования в расплаве в атмосфере воздуха присутствуют:

a) в конденсированной фазе: Bi, Pb, Sn, Cd, BiPb, SnBi, PbSn, Cd₃Bi₂, Pb₃Bi, Bi₇Pb, Bi₇Pb₃, Bi₅Pb₃, CdSn, Sn₃Bi, Bi₂Sn₃, PbBi₂Sn₂;

б) в оксидной фазе: PbSnO₃, SnO, PbO, BiO, SnO₂, Pb₂Bi₂O₅, Pb₃Bi₂O₆,
 Bi₄PbO₇, Bi₂CdO₄, CdO, CdSnO₃, Bi₂PbO₄, Bi₂Sn₂O₇, Bi₄CdO, Cd₂PbO₄, Bi₂O₃;

в) в паровой фазе: Pb, Bi, Cd, Bi₂, SnO, PbO, Sn₂O₂, O₂, BiO, Pb₂, O, Sn, Cd₂, Bi₄, Pb₂O₂, SnO₂, CdO, PbO₂, Bi₃, Sn₂.

В атмосфере Ar повышение внешнего давления ведет к возрастанию температуры испарения, и как следствие, увеличению температурного интервала термической стабильности соединений в расплаве.
В ходе ТДМ оценены температурные зависимости констант равновесия термических реакций, а также равновесных парциальных давлений паров и составлены таблицы табулированных данных, которые могут быть использованы при анализе равновесных термических реакций.

В атмосфере Ar при повышении давления наблюдаются следующие закономерности для паров Cd, Pb, Sn, Bi:

 температура достижения (начала) постоянного парциального давления смещается в сторону более высоких температур;

 уменьшается наклон восходящей части кривой парциального давления, происходит растяжение его по оси температур;

Для паров Bi₂, Bi₃, Bi₄, Pb₂, Sn₂, Cd₂ наблюдаются следующие закономерности при повышении давления:

 температура максимума парциального давления смещается в сторону более высоких температур;

– уменьшается наклон восходящей и нисходящей частей кривой, область прохождения кривых становится более широкой, растянутой по оси температур;

- максимум парциального давления увеличивается;

- понижение давления способствует термической диссоциации.

Определены температуры начала испарения и полного испарения металлов из расплава в зависимости от давления (таблица 4.1). Повышение общего давления ведет к смещению температурного интервала испарения Bi, Pb, Cd, Sn из расплава:

 возрастает температура полного испарения, это возрастание достигает сотен и тысяч градусов;

- увеличивается температура начала испарения;

– расширяется температурный интервал испарения.

Определены температуры, энтальпии и энтропии фазового перехода расплав-газ в системе Ar-42масс.%Bi-40,6масс.%Pb-10масс.%Sn-7.4масс% Cd при давлениях 10² – 10⁷ Па.

В случае использования расплава Bi-Pb-Sn-Cd В качестве жидкометаллического теплоносителя при выборе параметров эксплуатации следует учитывать, что увеличение давления приводит повышению К температуры испарения расплава и к расширению области сосуществования жидкой и паровой фаз.

Построены графики балансов, проанализировав которые можно сделать вывод о наличии в расплаве в атмосфере воздуха в значительных количествах следующих соединений: Bi(s1), Pb(s1), Sn(s1), BiPb(s1), Cd₃Bi₂(s1), Bi₇Pb(s1), PbSn(s1) PbSnO₃(s2), SnO(s2), PbO(s2), SnO₂(s2), BiO(s2), Pb₂Bi₂O₅(s2), Pb₃Bi₂O₆(s2), Bi₄PbO₇(s2), CdO(s2), CdSnO₃(s2) и пары: Pb, Bi, Sn, Cd, Bi₂, SnO, PbO, BiO, Sn₂O₂. Все остальные соединения, выявленные в результате моделирования, присутствуют в расплаве, но в ничтожно малых количествах.

При атмосферном давлении в инертной атмосфере присутствует ряд металлических соединений, содержание которых в расплаве превышает 3%: Cd₃Bi₂, BiPb, PbSn, SnBi, Pb₃Bi, Pb₅Bi₄Sn₄. В кислородосодержащей атмосфере их количество заметно уменьшается (остаются лишь Cd₃Bi₂, BiPb, PbSn, Bi₇Pb) ввиду образования простых и сложных оксидных соединений: Pb₂Bi₂O₅, Bi₄PbO₇, CdSnO₃, PbSnO₃, Pb₃Bi₂O₆, BiO, SnO₂, SnO, PbO и CdO.

Поскольку было установлено, что в расплаве присутствуют металлические соединения, а они могут оказывать влияние на теплофизические свойства, то были изучены свойства индивидуальных металлических соединений методом ТДМ.

Проведено термодинамическое моделирование нагрева пятнадцати индивидуальных систем в атмосфере Ar и двенадцати индивидуальных систем Bi_2Sn_3 , Bi_5Pb_3 , Bi_7Pb_3 , Bi_7Pb , BiPb, Cd_3Bi_2 , CdSn, Pb_3Bi , $PbBi_2Sn_2$, SnBi, PbSn, BiPb в атмосфере воздуха.

Произведен расчет теплофизических свойств интерметаллических соединений при внешнем давлении $10^2 - 10^5$ Па с использованием программного комплекса TERRA в атмосфере Ar и воздуха. Результаты расчетов приведены в таблицах 10 и 11 (Приложение 2).

ЗАКЛЮЧЕНИЕ

Проведены исследования состава фазовых составляющих в микроструктуре закристаллизованных образцов системы 42.0масс.% Ві - 40.6масс.% Рb - 10.0масс% Sn - 7.4масс% Cd подверженных нагреву до 150°C и перегреву до 500°C. Результаты термического и микрорентгеноспектрального анализа позволяют предположить о существовании в расплаве помимо атомов Bi, Pb, Sn, Cd металлических соединений, которые могут присутствовать в нем в виде кластеров.

1. а) Проведено термодинамическое моделирование термических процессов происходящих в расплаве системы Bi-Pb-Sn-Cd (с учетом возможностей образования металлических соединений) в инертной атмосфере при различных внешних условиях в диапазоне температур 300-3000К. Впервые констатировано наличие в расплаве Bi-Pb-Sn-Cd в инертной атмосфере 15 металлических соединений: Pb₃Bi, PbSn₃, Pb₃Bi₄, PbSn, CdSn, Cd₃Bi₂, Sn₃Bi, SnBi, BiPb, Bi₇Pb, Bi₂Sn₃, Sn₄Bi₂, PbBi₂Sn₂, Pb₅Bi₄Sn₄. Оценены их теплофизические характеристики и проведена верификация с имеющимися в литературе экспериментальными данными. б) Проведено термодинамическое моделирование термических процессов происходящих в индивидуальных двойных и тройных ИМС в инертной атмосфере и атмосфере воздуха, с учетом возможности образования более простых соединений. В инертной атмосфере большей термической устойчивостью обладают соединения: Sn₃Bi, CdSn, PbSn₃ и Pb₅Bi₄Sn₄.

2. Оценены константы равновесий реакций термической диссоциации протекающих в инертной атмосфере для расплава системы Bi-Pb-Sn-Cd и индивидуальных 2-х и тройных интерметаллических соединений.

Установлено, что для ряда соединений равновесие сдвинуто в сторону образования исходных веществ: Sn₄Bi₂, Bi₂Sn₃, Cd₃Bi₂, Pb₅Bi₄Sn₄.

Проведено термодинамическое моделирование окисления расплава системы Ar - 42.0масс.% Bi - 40.6масс.% Pb - 10.0масс% Sn - 7.4масс% Cd-23,1масс.%O₂ для P=10²-10⁷Па с учетом возможности образования простых и сложных оксидных соединений. Оценены константы равновесия реакций. В присутствии кислорода реакции протекают более сложным образом. На процесс протекания реакций существенным образом оказывает влияние внешнее давление.

3. Рассчитаны теплофизические свойства и температуры фазовых переходов Bi-Pb-Sn-Cd – инертная систем: атмосфера; Bi-Pb-Sn-Cd – следующих окислительная атмосфера; интерметаллическое соединение – инертная атмосфера; интерметаллическое соединение – окислительная атмосфера. При низких давлениях в атмосфере воздуха наблюдается смещение температуры фазовых переходов в область более низких температур. В области более высокого давления (от 10⁴ Па.) температуры фазовых переходов в атмосфере кислорода значительно превышают (на 200К) значения температур фазовых переходов в инертной атмосфере. При 10⁵ Па. Наличие воздуха в системе не оказывает существенного влияния на значение температуры фазового перехода. Повышение температуры фазового давления ведет к смещению перехода В высокотемпературную область.

Впервые констатировано наличие в расплаве в кислородосодержащей атмосфере:

a) в конденсированной фазе: Bi, Pb, Sn, Cd, BiPb, SnBi, PbSn, Cd₃Bi₂, Pb₃Bi, Bi₇Pb, Bi₇Pb₃, Bi₅Pb₃, CdSn, Sn₃Bi, Bi₂Sn₃, PbBi₂Sn₂;

б) в оксидной фазе: PbSnO₃, SnO, PbO, BiO, SnO₂, Pb₂Bi₂O₅, Pb₃Bi₂O₆, Bi₄PbO₇,Bi₂CdO₄, CdO, CdSnO₃, Bi₂PbO₄, Bi₂Sn₂O₇, Bi₄CdO, Cd₂PbO₄, Bi₂O₃;

в) в паровой фазе: Pb, Bi, Cd, Bi₂, SnO, PbO, Sn₂O₂, O₂, BiO, Pb₂, O, Sn, Cd₂, Bi₄, Pb₂O₂, SnO₂, CdO, PbO₂, Bi₃, Sn₂.Теплофизические свойства простых оксидов заимствованы из справочных данных, теплофизические свойства сложных оксидных соединений рассчитаны и хорошо согласуются с имеющимися экспериментальными данными.

Перспективы дальнейшей разработки темы: исследование перспективных жидкометаллических теплоносителей методом термодинамического моделирования с целью определения теплофизических свойств необходимых для проведения инженерных расчетов.

СПИСОК ЛИТЕРАТУРЫ

 Боришанский В.М. Жидкометаллические теплоносители 3-е изд-е. /
 В.М. Боришанский, С.С. Кутателадзе, И.И. Новиков, О.С. Федынский. – М.: Атомиздат, 1976. – 328 с.

 Кириллов П.Л. Жидкие металлы в ядерной энергетике (взгляд инженера в прошлое и будущее) / П.Л. Кириллов // Атомная энергия. – 2018. – Т.124. – Вып. 3 – С. 132-138.

 Хорасанов Г.Л., Свинцовый реактор малой мощности с металлическим топливом / Г.Л. Хорасанов, Д.С. Самохин, А.С. Зевякин, Е.А.
 Земсков, А.И. Блохин // Известия высших учебных заведений. Ядерная энергетика. – 2018. – № 1. – С. 33-40.

Боришанский В.М. Жидкометаллические теплоносители 2-е изд-е.
 перераб. / В.М. Боришанский, С.С. Кутателадзе, И.И. Новиков, О.С. Федынский. –
 М.: Атомиздат, 1967. – 301 с.

5. Сорокин А.П. Актуальные проблемы теплофизики реакторов на быстрых нейтронах/ А.П.Сорокин, Ю.А. Кузин, А.А. Труфанов, А.А. Камаев, Ю.И. Орлов, В.В. Алексеев, В.А. Грабежная, Ю.И. Загорулько // Теплоэнергетика. – 2018. – № 10. – С. 60-69.

6. Сорокин А.П. Моделирование теплофизических процессов В обоснование проектов быстрых реакторов нового поколения С жидкометаллическими теплоносителями / А.П.Сорокин, Ю.А. Кузин, Ю.И. Орлов // Вопросы атомной науки и техники. Серия: Ядерно-реакторные константы. 2018. - Выпуск 3. - C. 240-265.

7. Легких А.Ю. Анализ подходов к моделированию физико-химических процессов в контурах ядерных реакторов с ТЖМТ / А.Ю. Легких, О.В. Лаврова // Вопросы атомной науки и техники. Серия: Ядерно-реакторные константы. 2018. – Выпуск 4. – С. 112-123.

8. Рачков В.И. Теплогидравлические исследования жидкометаллических теплоносителей в ядерных энергетических установках / В.И. Рачков.

А.П.Сорокин, А.В. Жуков // Теплофизика высоких температур. – 2018. – Т. 56. – № 1. – С. 121-136.

9. Ильиных Н.И. Термодинамическое моделирование сплавов систем Al-P3M, Al-O и Al-P3M-O / В.Е.Сидоров, Т.В.Куликова // Строение и свойства металлических и шлаковых расплавов: труды XIII Российской конференции. Секция физико-химических основ металлургических процессов. Научный совет по металлургии и металловедению РАН. Институт металлургии Уральского отделения РАН, Южно-Уральский государственный Университет. Физикохимический институт Уральского отделения РАН, 2011. – С. 181-183.

10. Ильиных Н.И. Термодинамическое моделирование сплавов системы cofebsin B – Zr / Сидоров В.Е. // Компьютерное моделирование физикохимических свойств стекол и расплавов: труды XIII Российского семинара. Министерство образования и науки РФ. Курган: ФГБОУ ВО Курганский государственный университет, 2016. – С. 26-27.

 Абдулаев Р.Н. Термические свойства жидких сплавов литий-свинец околоэвтектического состава / Р.Н. Абдулаев, С.В. Станкус, А.Ш. Агажанов, Р.А. Хайрулин // Теплофизика и аэромеханика. – 2016. – Т. 23 – № 2(98) – С. 257-263.

Савватимский А.И., Теплофизические свойства многокомпонентного никель-хромового сплава ВСДП – 3 при плавлении и в жидкой фазе / А.И.Савватимский, С.В. Онуфриев // Теплофизика высоких температур. – 2017. – Т. 55 - № 5 – С. 846-849.

13. Хайрулин Р.А. Термические свойства жидких сплавов системы К-Рb /
Р.А. Хайрулин, С.В. Станкус, Р.Н. Абдулаев // Теплофизика и аэромеханика. –
2015. – Т. 22 – № 3 – С. 359-364.

14. Талуц С.Г. Теплофизические свойства сплава на основе металлов подгруппы железа при высоких температурах / С.Г. Талуц, А.Л. Смирнов, Ю.В. Глагольева, И.Г. Коршунов, В.И. Горбатов, В.Ф. Полев, А.Д. Ивлиев // научная монография. – Екатеринбург: Изд-во УГТУ, 2013. – 108 с.

15. Савченко И.В. Исследование теплопроводности и температуропроводности жидкого висмута в интервале температур 545-970 К /

И.В.Савченко, С.В. Станкус, А.Ш. Агаджанов // Теплофизика высоких температур. – 2013. – Т. 51 – № 5 – С.314.

16. Хайрулин Р.А. Плотность и тепловое расширение жидких сплавов системы Na-Pb с малым содержанием свинца / Р.А. Хайрулин, С.В. Станкус, Р.Н. Абдулаев // Теплофизика и аэромеханика. – 2013. – Т. 20 – № 2 – С. 225-228.

Смирнов А.Л. Температуропроводность сплавов цирконий – ниобий при высоких температурах / А.Л. Смирнов, С.Г. Талуц, А.Д. Ивлиев, В.И. Горбатов, В.Ф. Полев, И.Г. Коршунов // Теплофизика высоких температур. – 2017. – Т. 55 – № 3 – С. 396-401.

 Савватимский А.И. Теплоемкость жидкого железа от точки плавления до точки кипения / А.И. Савватимский, С.В. Онуфриев // Теплофизика высоких температур. – 2018. – Т. 56 – № 4 – С. 1019-1022.

19. Зборщик А.М. Теория металлургических процессов / А.М. Зборщик-Донецк: ДонНУТ, 2008. – 101 с.

20. Петрунин В.Г. Справочник по пайке: 3-е изд-е. / В.Г. Петрунин. – М.: Машиностроение, 2003. – 480 с.

21. Синилов В.Г. Системы охранной, пожарной и охранно-пожарной сигнализации: Учеб. 3-е. изд-е. / В.Г. Синилов - М: Академия, 2006. – 174 с.

22. Parravano N. Le leghe quaternarie di piombo-cadmio-bismuto-stagno / N. Parravano, G. Sirovich // Gazz. chim. ital. – 1912. Vol. 42(1), №6 – p. 630.

23. Чиркин С.В. Теплофизические свойства материалов ядерной техники. Справочник. / С.В. Чиркин – М.: Атомиздат, 1968. – 485 с

24. Безносов Л.В. Тяжелые жидкометаллические теплоносители в атомной энергетике / Л.В. Безносов, Ю.Г. Драгунов, В.И. Рачков – М.: ИздАт, 2007. – 434 с.

25. Захаров А.М. Исследование разреза тетраэдра Pb-Bi-Sn-Cd при 40% Bi. / А.М. Захаров // Металлы. – 1987. – № 1. – С. 219-223.

26. Ho The-Hsuan. Hofmann W., Hanemann H.Die Dreistoffsysteme Blei-Kadmium-Zinn und Blei – Zinn-Wismut // Z.Metallkunde. – 1953. – V. 44. – № 4. P. 127. 27. Гершман Р.Б. Тепловые эффекты при плавлении в системе Pb-Sn-Bi.
Диаграмма равновесия тройной системы Pb-Sn-Bi / Р.Б Гершман, Р.Г. Гершман // Ж. физич. химии. – 1958. – Т. 32 – № 1. – 12 с.

28. Hoffman W. Blei und Bleilegierungen// Metallkunde und Technologie. Berlin: Springer, 1941. – P. 131.

29. Захаров.А.М. Диаграммы состояний четверных систем / А.М. Захаров.
 – М.: Металлургия, 1964. – С. 140-142.

30. Mozer Z. / Z.Mozer, L. Zabdyr // Arch. Hutn – 1977. – V. 22, № 4. –
 P. 509.

31. Thompson W.T. / W.T. Thompson, A.Geung, D.G. Hurcot. // Can. Metall. Quart – 1973. – V. 12, №4 – P. 421.

Мамедов А.Н. Термодинамическое исследование жидких сплавов системы Cd-Pb-Sn-Bi с использованием твердого электролита / А.Н.Мамедов, И.Г. Мехдиев Ш.Д. Джахандаров, С.А. Агаева // Ж. физич. химии. – 1995. – Т. 69 – №4. – С. 742-744.

Elliott J.F., / J.F.Elliott, Chipman J. // Journal American Chemical Society –
 1951 Vol. 73 – P.2682.

34. Мамедов А.Н. Исследование термодинамических свойств жидких сплавов Cd-Sn-Pb с использованием твердого электролита / А.Н.Мамедов, И.Г. Мехдиев, С.А. Агаева, З.Б. Багиров // Ж. физич. химии. – 1996. – Т. 70 – № 10. – С. 1753-1757.

35. Вилсон Д.Р. Структура жидких металлов и сплавов / Д.Р. Вилсон. – М.: Металлургия, 1972. – 247 с.

36. Злобинский Б.М., Воспламеняемость и токсичность металлов и сплавов / Б.М.Злобинский, В.Г.Иоффе, В.Б.Злобинский. – М.: Металлургия, 1972. – 264 с.

Демидов П.Г. Горение и свойства горючих веществ / П.Г.Демидов, В.А.
 Шандыба, П.П.Щеглов. – М.: Химия, 1981. – 272 с.

38. Безносов Т.А., Экспериментальное исследование истечения свинецвисмутового теплоносителя через трещину в атмосферу / Т.А.Безносов, А.В. Бокова // Тепломассоперенос и свойства жидких металлов: сборник трудов межведомственного семинара – Обнинск, 2007. – С. 149-156.

39. Кащеев М.В. Расчетный анализ удержания расплава в корпусе БН-800 при тяжелой аварии / М.В. Кащеев, И.А. Кузнецов // Тепломассоперенос и свойства жидких металлов: сборник трудов межведомственного семинара, – Обнинск, 2007. – С. 162-169.

40. Thompson J. G., Bur. Stand. Jour. Research, 1930. – Vol. 5. – P.1085.

41. Strickler H.S. and Seltz H., J. Amer. Chem. Soc., 1936. – Vol. 58, №11 – P. 2084.

42. Курнаков Н.С. Исследование двойных сплавов системы Pb-Bi / H.C. Курнаков, В.А. Агеева – Изд. АН СССР, 1937. – С. 735-741.

43. Solomon D. The crystal structure of Pb-Sn, Bi-Sn / D. Solomon, W.Morris-Jones. – Philos. Mag, 1931 – Vol.11 – p.1090

44. Хансен М. Структуры двойных сплавов. Т.1 / М.Хансен, К. Андерко. – М.: Металлургиздат, 1962. – 349 с.

45. Вол А.Е. Строение и свойства двойных металлических систем. Т.2. / А.Е Вол. - М.: Физматгиз, 1962. – 198 с.

46. Диаграммы состояния двойных металлических систем / под ред. академика РАН: Н.П.Лякишева. – М.: Машиностроение, 2001. Т. 2.

47. Villars P. Pearson's Handbook of Crystallographic Date for Intermetallic Phases / P.Villars, L.D. Calvert. – Ohio: Metals Park, 1985 – p.1 - 3.

48. Taylor N.W., Journal American Chemical Society, 1923. Vol. 45 – C. 2875

49. J.Elliot a. J. Chipman, Transactions Faraday Society, 1951. Vol. 47 – P. 138.

50. Никольская А.В. Исследования термодинамических свойств двойных металлических систем методом Э.Д.С. Система кадмий-висмут / А.В. Никольская, Я.И. Герасимова // Ж. физич. химии. – 1954. – Т. 28, № 4. – С. 712.

51. Lumsden J., Thermodynamics of Alloys / J.Lumsden // Institute of Metals, 1952. – P.188-235.

52. Taylor N.W. The activities of zinc, cadmium, tin, lead and bismuth in their binary liquid mixtures. / T N.W.aylor, bu Nelson. - Contribution from the Chemical Laboratory of the University of California, 1923 – P. 2865-2890.

 Швидковский Е.Г. Вязкость сплавов висмут-олово / Г.И. Горяга // Вестн. Моск. ун-та. – 1953. – №10 – С.125-129.

54. Bridgman P.W. Bull. Microgravity of Sn-Bi alloys. / P.W. Bridgman // Soc.
Chim. Belges – 1953 – Vol. 62, № ½ - p. 26.

55. LeBlanc M. The thermal analysis of Sn-Rich Cd-Sn alloys- sachs.Ges.Wiss /
M.LeBlanc, Naumann M., Tschesno D., Ber. Verhandl. K. // Math.-phys. – 1927 – Vol.
79 – p.72-106.

56. Karl Bux, Uber kristallographische Umwandlungen usw. -Eingegangen am 29 Januar 1923., p. 316-327.

57. Бордовский Г.А. Новые полупроводниковые материалы с позиционной неупорядоченностью кристаллической решетки / Г.А. Бордовский // Соросовский образовательный журнал. – 1996. – №4. – С. 106.

58. Biefeld R.M. Temperature/ Composition phase diagram of the system Bi_2O_3 -PbO / R.M. Biefeld, White S.S. //J.Am.Ceram. Soc. – 1981. – Vol.64, No. – P. 182.

59. Шиманский А.Ф. Разупорядочение и ионный перенос в двойных оксидах висмута – кадмия / А.Ф. Шиманский, Е.В. Попельницкий, Ю.С. Лизунова // Физическая химия Вестник КрасГУ – 2003. – № 2. – С. 54-58.

60. Шиманский А.Ф. Уточнение фазовой диаграммы системы Bi₂O₂ – CdO, структура и электропроводность Bi₂CdO₄ / А.Ф.Шиманский, Т.И. Корягина, С.Д. Кирик // Изве. Высш. Учебн. Заведений. Материалы электронной техники – 1998 – №2. – С. 21-25.

61. Сачков В.И. Фотокаталитическое разделение изотопов на поверхности нанополупроводников / В.И. Сачков, О.С. Андриенко, М.А.Казарян, С.Т.Кабаев, А.С.Князев, Т.Д. Малиновская, В.С. Мальков, С.В. Турубаров // International Scientific Journal for Alternative Energy and Ecology. Scientific Technical Centre «TATA» – 2007 – Vol 50, №6 – р. 76-84.

62. Зырянов В.В. Структура и термическое поведение нестабильных силленитов полученных механохимическим синтезом / В.В. Зырянов // Журнал структурной химии. – 2004. Т. 45. Вып. 3 – С. 480 – 490.

63. Лебедев В.Н. Пространственная группа станната кадмия / В.Н. Лебедев Р.В. Колесова, Е.Г. Фесенко // Кристаллизация и свойства кристаллов: Межвуз. Сб./ НПИ. – Новочеркасск, 1977. – 96 с.

64. Myasnikov E.N. Study of Spectra of CdSnO₃ Monocrystal / E.N. Myasnikov, Spinko R.I., Shalaeva E.A., Myasnikova N.R. // Ferroelectrics – 1998 – Vol. 214. C. 177- 180.

65. Пруцкова Н.В. Полярность в Cd-содержащих двойных оксидах / Н.В. Пруцкова, Ю.В. Кабиров // Ростовский государственный университет, физический факультет электронный журнал «Исследовано в России» http://zhurnalape.relarn.ru/articles/2004/226.pdf (h/ 2402-2409).

66. Сидорак А.В. Синтез станнатов кадмия термолизом совместноосажденных солей / А.В. Сидорак // Материалы международного молодежного научного форума Ломоносов – 2011 – М.: МАКС Пресс.

67. Шустова Н.Г. Закономерности электрохимического наноструктурирования при катодном внедрении бария и кальция в матричные электроды на основе сплавов системы Bi(Ti) – Pb – Cd: дисс. канд. тех.наук: 02.00.05 / Шустова Наталья Григорьевна. – Саратов, 2010. – 154 с.

68. Ganesan R. Standart molar Gibbs energy of formation of $Pb_5Bi_8O_{17}$ and $PbBi_{12}O_{19}$ and phase diagram of the Pb-Bi-O system / R.Ganesan, T.Ghanasekaran, R.S. Srinivasa // J. Nucl. Mater. – 2008. – No 375. – P. 229.

69. Ganesan R. Venkatakrishnan Heat capacities of $PbBi_{12}O_{19}$ (s) and $Pb_5Bi_8O_{17}$ (s) / R.Ganesan, R. Asuvathraman, K.Nagarajan, T.Gnanasekaran, R.S.Srinivasa // J. Thermochimica Acta. – 2005. – Nº 439. – P. 27.

70. Смирнов В.Л. Термический анализ алюминиевых сплавов системы Al-Mg-Mn / В.Л. Смирнов, В.М. Замятин, Б.В. Овсянников, В.С. Мушников // Расплавы. – 2009. – №4. – С. 64-67. 71. Замятин В.М. Неравновестность металлического расплава и другие факторы, определяющие качество металлопродукции / В.М. Замятин, Б.А. Баум // Расплавы. – 2010. – №3. – С. 12-20.

72. Моисеев Г.К. Термодинамическое моделирование: предмет,
 применение и проблемы / Моисеев Г.К., Н.А. Ватолин // Расплавы. – 1990. – Т. 4,
 № 5. – С. 27-45.

73. Синярев Г.Б. Применение ЭВМ для термодинамических расчетов металлургических процессов / Г.Б. Синярев, Н.А. Ватолин, Б.Г. Трусов, Г.К. Моисеев– М.: Наука, 1983. – 263 с.

74. Ватолин Н.А. Термодинамическое моделирование в высокотемпературных неорганических системах / Н.А. Ватолин, Г.К. Моисеев, Б.Г. Трусов– М.: Металлургия, 1994. – 353 с.

75. Моисеев Г.К., Определение равновесных характеристик расплавов Fe-Si с использованием модели идеальных растворов продуктов взаимодействия методами термодинамического моделирования / Г.К.Моисеев , Н.А. Ватолин, Н.И. Ильиных, С.И. Зайцева // Докл. РАН, 1994. – Т. 337, №6. – С. 775-778.

76. Алемасов В.Е. Термодинамические и теплофизические свойства продуктов сгорания. / Справочник в 5 томах / В.Е. Алемасов, А.Ф. Дрегалин, А.П. Тишин. – М.: ВИНИТИ, 1971.

77. Моисеев Г.К. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ (альтернативный банк данных ACTPA.OWN) / Г.К. Моисеев, Н.А. Ватолин, Л.А. Маршук, Н.И. Ильиных. – Екатеринбург: УрО РАН, 1997. – 231 с.

78. Моисеев Г.К. Термодинамическое моделирование в неорганических системах / Г.К.Моисеев, Г.П. Вяткин – Челябинск. Изд-во ЮУрГУ. 1999. – 256 с.

79. Ильиных Н.И. Состав и равновесные характеристики металлических расплавов бинарных систем на основе железа, никеля и алюминия / Н.И. Ильиных Т.В.Куликова, Г.К. Моисеев – Екатеринбург. УрО РАН. 2006. – 236 с.

 Казенас Е.К. К вопросу о давлении паров металлов / Г.К. Астахова // Металлы. – 1997. – №2. – С. 18-33. Клазов В.М. Фазовые диаграммы простых веществ / В.М.Глазов, В.Б.
 Лазарев, В.В. Жаров. – М.:Наука. 1980. – 272 с.

82. Михайлов В.В. Давление паров металлов / В.В.Михайлов // В кн.
"Итоги науки и техники". Сер. Химическая термодинамика и равновесия. – М:
ВИНИТИ. 1972. – Т.2. – С. 366-407.

83. Несмеянов А.Н. Давление пара химических элементо / А.Н.Несмеянов.
– М.: Изд-во АН СССР. 1961. – 396 с.

84. Володин В.Н. Фазовый переход жидкость-пар при понижении давления
в системе свинец-висмут / В.Н. Володин // Журнал физической химии. – 2009. – №11. – С. 2187-2189.

85. Терентьев Д.И. Состав и теплофизические свойства системы расплав
(Pb+Bi) – пар при различных условиях / Д.И. Терентьев, Н.М. Барбин, А.В.
Борисенко, С.Г. Алексеев // Прикладная физика. – 2012. – № 3. – С. 32.

86. Диаграммы состояния двойных металлических систем / под ред. Лякишева Н.П. М.: Машиностроение, 2001. Т.1.

87. Овчинникова И.В. Расчет термодинамических свойств интерметаллидов системы Bi-Pb-Sn-Cd / И.В. Овчинникова, Д.И. Терентьев, С.Г. Алексеев, Н.М. Барбин // Расплавы. – 2011. – № 5. – С. 83.

88. Терентьев Д.С. Термодинамическое моделирование испарения расплавов Pb+Bi при различных давлениях / Д.С.Терентьев, Н.М. Барбин, А.В. Борисенко, С.Г. Алексеев, П.С. Попель // Химическая физика и мезоскопия. – 2011. – Т. 13. – № 3. – С. 350.

89. Гурвич Л.В. Термодинамические свойства индивидуальных веществ. Справочное издание в 4-х томах / Л.В.Гурвич, И.В. Вейц, В.Л. Медведев. – М.: Наука, 1982.

90. Sobolev V. Thermophysical properties of lead and lead-bismuth eutectic / V. Sobolev // Journal of Nuclear Materials. – 2007. – Vol. 362. – P. 235.

91. Sobolev V. (2011). Database of Thermophysical Properties of Liquid Metal Coolants for GEN-IV, SCK·CEN report BLG-1069, Mol, Belgium, December 2010 (rev. December 2011).

92. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermalhydraulics and Technologies. 2015.

93. Tupper R.B. The physical properties of the eutectic / R.B. Tupper, Minushkin B., Peters F.E., Kardos Z.L.// Proceedings of the International Conference on Fast Reactors and Related Fuel Cycles, V. 4., Kyoto, Japan, October 28 – November 1, 1991.

94. Orlov Y.I. Thermophysics alloy / Y.I. Orlov //Seminar on The Concept of Lead-Cooled Fast Reactor, Cadarache, France, September 22-23, 1997.

95. Ohno S. Experimental Investigation of Lead-Bismuth / S.Ohno, S.Miyahara,
Y. Kurata // Evaporation Behaviour J.Nucl.Sci. Technol. – 2005. – T. 42. - P. 593.

96. Koji Morita. Thermophysical properties of lead-bismuth eutectic alloy in reactor safety analyses / Morita Koji, Maschek Werner, Flad Michael, Hidemasa Yamano & Yoshiharu Tobita.// Journal of Nuclear Science and Technology. – 2006. – Vol. 43. – P. 526.

97. Sobolev V.P. Thermodynamic properties and equation of state of liquid lead and lead-bismuth eutectic / V.P.Sobolev, P.Schuurmans, G.Benamati // Journal of Nuclear Materials. – 2008. – Vol. 376. – P. 358.

98. Liquid Metals Handbook // Washington: Atomic Energy Commission and Department of the Navy, 1952 (rev. 1954). –P. 733.

99. Kutateladze S.S. Liquid – Metal Heat Transfer Media / S.S. Kutateladze,
V.M.Borishanskii, I.I.Novikov, O.S. Fedinskii // Soviet J. At. Energy – 1958. – Vol. 4,
№ 5 – p. 555-571.

100. Hultgren R. Selected Values of the Thermodynamic Properties of Binary Alloys / R.Hultgren, P.D.Desai, D.T.Hawkins, M.Gleiser, K.K. Kelly // Metals Park: ASM, 1973. – P. 1435.

101. Flinn J.M. Mechanism of volume viscosity in the liquid metal system leadbismuth / J.M. Flinn, P.K.Gupta, T.A. Litovitz // Journal Chemical Physics. – 1974. – Vol. 60. – P. 4390. 102. Plevachuk Yu., Some physical data of the near eutectic Liquid lead-bismuth
/ Yu.Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth // Journal of Nuclear Materials. –
2008. – Vol. 373. – P. 335.

103. Iida T. The Physical Properties of Liguid Metals Clarendon / T.Iida, GuthrieR.I.L: Oxford University UK, 1988. – P. 288.

104. Kyrillov P.L. Heat Transfer in Nuclear Installations / P.L.Kyrillov, G.P. Bogoslovskaya Moscow (in Russian): Energoatomizdat, 2000. – P. 300.

105. Zheng M. / M. Zheng, Z.Kozuka // J. Jap. Inst. Metals. – 1987. – Vol. 51. № 7. – P. 666.

106. Asalage T.L. / T.L.Asalage, T.L. Asalage, T.J. Anderson // High. Temp. Sci. – 1985. – Vol. 20. – № 3. – P. 207.

107. Miedema A.R. On the heat of formation of solid alloys / A.R. Miedema // J.Less - Common Met. – 1976. – Vol 41, № 4. – p. 283-298.

108. Термические константы веществ. IV, часть 2. / под ред. академика Глушко В.П. – М: Академия наук СССР. Всесоюзный ин-т научной и технической информации. Институт высоких температур, 1973, табл. 29, 30, 37.

109. Miedema A.R., The electronegativity parameter for transition metals: heat of formation and charge transfer in allous / A.R. Miedema // J.Less: Common Metals – 1973. – Vol 32 – p. 117-136.

110. Miedema A.R. On the heat off ormation of solid alloys / A.R. Miedema, R.Boom, F.R. De Boer //J. Less: Common Metals – 1975. – Vol 41. – p. 283-298.

111. Miedema A.R. On the heat of formation of solid alloys / A.R. Miedema, N.V.Philips // J.Less Common Metals. – 1976 – Vol 46. – p. 67-83.

112. Шубин А.Б. Оценка теплот образования редкоземельных и актиноидных элементов / А.Б. Шубин, Л.Ф. Ямщиков, С.П. Распопин //Изв. вузов, Цветная металлургия. – 1986. – №4. – с. 73-76.

113. HSC CHEMISTRY Ver 4.0 Copyright (c) Outokumpu Researh Oy. Pori, Finland, A. Roine (www. Outokumpu. com/ hsc) ISBN 952-9507-05-4 114. Моисеев Г.К. Некоторые закономерности изменения и методы расчета термохимических свойств неорганических соединений / Г.К. Моисеев, Н.А. Ватолин. – Екатеринбург: УрО РАН, 2001. – 135 с.

115. Белоусова Н.В. Расчет термодинамических свойств висмутатов свинца
/ Н.В. Белоусова, Е.О. Архипова // Journal of Siberian Federal University. Chemistry
3. – 2009. – Vol. 2 – p. 254-258.

116. Моисеев Г.К. Некоторые расчётные методы определения
 термодинамических и термохимических свойств неорганических соединений /
 Моисеев Г.К. – М: Деп. в ВИНТИ, 1992. – №2845-В92. – С. 180.

117. Зиновьев В.Е. Справочник. Теплофизические свойства металлов при высоких температурах / В.Е. Зиновьев. – М.: Металлургия, 1989. – С. 384.

118. Физико-химические свойства окислов. Справочник / под ред. чл.корр. АН УССР: Г.В. Самсонова. – М.: Металлургия, 1969. – с. 41.

119. Барбин Н.М. Определение теплофизических свойств сплава 45% Pb – 55% Ві. Термодинамическое моделирование / Н.М.Барбин, И.В.Тикина, Д.И.Терентьев, С.Г.Алексеев, М.Ю.Порхачев // ТВТ. – 2017. – Т. 55. – № 4. – С. 518-522.

120. Моисеев Г.К. Применение термодинамического моделирования для изучения взаимодействий с участием ионных расплавов / Г.К. Моисеев, Г.П. Вяткин, Н.М. Барбин – Челябинск.: Изд-во ЮУрГУ, 2002. – 166 с.

ВЕЛИЧИНЫ НЕОБХОДИМЫЕ ДЛЯ ПРОВЕДЕНИЯ РАСЧЕТОВ. ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА МЕТАЛЛИЧЕСКИХ И ОКСИДНЫХ СОЕДИНЕНИЙ

соединение	C _A	CB	C _C	$C_A{}^s$	$C_B{}^s$	C_C^{s}	$V_{A}^{2/3}$, cm ²	$V_{\rm B}^{2/3}$, cm ²	$V_{\rm C}^{2/3},{\rm cm}^2$
Pb ₃ Bi	0,75	0,25		0,74	0,26		6,9	7,2	
PbSn ₃	0,25	0,75		0,26	0,74		6,9	6,4	
Pb ₃ Bi ₄	0,43	0,57		0,42	0,58		6,9	7,2	
PbSn	0,50	0,50		0,52	0,48		6,9	6,4	
CdSn	0,50	0,50		0,46	0,54		5,5	6,4	
Cd ₃ Bi ₂	0,60	0,40		0,53	0,47		5,5	7,2	
Sn ₁₀ Bi ₃	0,77	0,23		0,75	0,25		6,4	7,2	
SnBi ₅	0,17	0,83		0,15	0,85		6,4	7,2	
Sn ₃ Bi	0,75	0,25		0,73	0,27		6,4	7,2	
SnBi	0,50	0,50		0,47	0,53		6,4	7,2	
BiPb	0,50	0,50		0,51	0,49		7,2	6,9	
Bi ₅ Pb ₃	0,63	0,37		0,64	0,36		7,2	6,9	
Bi ₇ Pb ₃	0,70	0,30		0,71	0,29		7,2	6,9	
Bi ₇ Pb	0,88	0,13		0,88	0,12		7,2	6,9	
Bi ₂ Sn ₃	0,40	0,60		0,43	0,57		7,2	6,4	
Sn ₂ Bi ₄	0,33	0,67		0,30	0,70		6,4	7,2	
Sn ₄ Bi ₂	0,67	0,33		0,64	0,36		6,4	7,2	
Sn ₅ Bi	0,83	0,17		0,81	0,19		6,4	7,2	
Pb ₂ Bi ₇ Sn ₄	0,15	0,54	0,31	0,15	0,56	0,29	6,9	7,2	6,4
PbBi ₂ Sn ₂	0,20	0,40	0,40	0,20	0,42	0,38	6,9	7,2	6,4
$Pb_2Bi_4Sn_4$	0,20	0,40	0,40	0,20	0,42	0,38	6,9	7,2	6,4
$Pb_9Bi_4Sn_4$	0,53	0,24	0,24	0,53	0,25	0,22	6,9	7,2	6,4
PbBi ₄ Sn ₄	0,11	0,44	0,45	0,11	0,47	0,42	6,9	7,2	6,4
Pb ₃ Bi ₄ Sn ₄	0,27	0,36	0,37	0,27	0,38	0,35	6,9	7,2	6,4
Pb ₅ Bi ₄ Sn ₄	0,38	0,31	0,31	0,38	0,33	0,29	6,9	7,2	6,4
$Pb_3Bi_4Sn_{15}$	0,14	0,18	0,68	0,15	0,20	0,66	6,9	7,2	6,4
Pb ₃ BiSn ₄	0,38	0,12	0,50	0,39	0,13	0,48	6,9	7,2	6,4
Pb ₇ Bi ₄ Sn ₄	0,47	0,27	0,26	0,47	0,28	0,24	6,9	7,2	6,4
Pb ₃ Bi ₉ Sn ₄	0,19	0,56	0,25	0,19	0,58	0,23	6,9	7,2	6,4

Таблица 1 – Значения атомных и поверхностных концентраций атомов

	$(\Delta \varphi^*)^2$,	$(\Delta n_{ws})^2$				
соединение	В	(ед.эл.пл.) ^{2\3}	$R/P, B^2$	$P, (B)^{-1} * cm^{-1}$	$f(C_A^s, C_B^s)$	$g(C_A^s, C_B^s)$
Pb ₃ Bi	0,0025	0,0001	-0,20	0,25	0,25	0,99
PbSn ₃	0,0025	0,0081	0,15	0,25	0,25	0,98
Pb ₃ Bi ₄	0,0025	0,0001	-0,20	0,25	0,36	1,00
PbSn	0,0025	0,0081	0,15	0,25	0,37	1,00
CdSn	0,0100	0	0,40	0,25	0,37	1,00
Cd ₃ Bi ₂	0,0100	0,0064	-0,20	0,25	0,37	0,97
Sn ₁₀ Bi ₃	0	0,0064	-0,20	0,25	0,24	0,97
SnBi ₅	0	0,0064	-0,20	0,25	0,15	1,04
Sn ₃ Bi	0	0,0064	-0,20	0,25	0,26	0,97
SnBi	0	0,0064	-0,20	0,25	0,37	1,00
BiPb	0,0025	0,0001	-0,20	0,25	0,37	1,00
Bi ₅ Pb ₃	0,0025	0,0001	-0,20	0,25	0,33	1,01
Bi ₇ Pb ₃	0,0025	0,0001	-0,20	0,25	0,28	1,01
Bi ₇ Pb	0,0025	0,0001	-0,20	0,25	0,12	1,02
Bi ₂ Sn ₃	0	0,0064	-0,20	0,25	0,36	0,99
Sn ₂ Bi ₄	0	0,0064	-0,20	0,25	0,29	1,02
Sn ₄ Bi ₂	0	0,0064	-0,20	0,25	0,33	0,98
Sn ₅ Bi	0	0,0064	-0,20	0,25	0,18	0,96
Pb ₂ Bi ₇ Sn ₄	0,0009	0,0081	-0,20	0,25	0,29	1,14
PbBi ₂ Sn ₂	0,0009	0,0081	-0,20	0,25	0,35	1,08
Pb ₂ Bi ₄ Sn ₄	0,0009	0,0081	-0,20	0,25	0,35	1,07
Pb ₉ Bi ₄ Sn ₄	0,0009	0,0081	-0,20	0,25	0,24	1,21
PbBi ₄ Sn ₄	0,0009	0,0081	-0,20	0,25	0,37	1,04
Pb ₃ Bi ₄ Sn ₄	0,0009	0,0081	-0,20	0,25	0,33	1,10
Pb ₅ Bi ₄ Sn ₄	0,0009	0,0081	-0,20	0,25	0,29	1,14
Pb ₃ Bi ₄ Sn ₁₅	0,0009	0,0081	-0,20	0,25	0,30	0,86
Pb ₃ BiSn ₄	0,0009	0,0081	-0,20	0,25	0,37	1,00
Pb ₇ Bi ₄ Sn ₄	0,0009	0,0081	-0,20	0,25	0,25	1,18
Pb ₃ Bi ₉ Sn ₄	0,0009	0,0081	-0,20	0,25	0,24	1,19

Таблица 2 – Расчет параметров входящих в формулу (3.8) для металлических соединений

	A	В	E	C	С _{р298} , Дж/	$\Delta_{\rm f} {\rm H}^0{}_{298},$	S ₂₉₈ ⁰ , Дж/	$H_{298}^{0}-H_{0}$
Соединение	C	' _р (Т), Дж/	(моль*К	.)	(моль*К)	Дж/моль	(моль*К)	Дж/моль
Pb ₃ Bi	84,51	56,60	4,11	0,00	105,49	1179,67	251,09	15726,31
PbSn ₃	89,00	63,00	0,00	0,00	107,79	-853,36	218,37	16068,22
Pb ₃ Bi ₄	120,06	148,01	16,42	0,00	180,61	1715,88	421,30	26923,94
PbSn	45,82	26,81	0,00	0,00	53,81	-1288,74	115,98	8021,35
CdSn	43,90	30,25	0,00	0,01	52,92	-3659,18	102,99	7888,82
Cd ₃ Bi ₂	90,61	97,39	8,21	0,03	127,86	1700,25	469,44	19061,24
Sn ₁₀ Bi ₃	251,49	272,36	12,32	0,00	345,01	1159,02	682,16	51431,97
SnBi ₅	80,84	170,44	20,53	0,00	152,18	776,66	334,87	22686,16
Sn ₃ Bi	76,63	84,76	4,11	0,00	106,01	1255,60	210,32	15802,84
SnBi	33,44	48,56	4,11	0,00	52,03	1842,08	107,93	7755,98
BiPb	36,07	39,18	4,11	0,00	51,86	1763,54	121,52	7730,47
Bi ₅ Pb ₃	131,91	178,47	20,53	0,00	205,64	1588,62	478,03	30656,49
Bi ₇ Pb ₃	155,61	239,41	28,74	0,00	255,72	1347,92	591,50	38121,58
Bi ₇ Pb	107,16	221,99	28,74	0,00	202,08	583,40	461,93	30125,74
Bi ₂ Sn ₃	88,48	115,22	8,21	0,00	131,04	1774,37	267,06	19535,39
Sn ₂ Bi ₄	90,58	158,06	16,42	0,00	154,13	1472,67	329,33	22977,05
Sn ₄ Bi ₂	110,07	133,32	8,21	0,00	158,03	1610,08	318,25	23558,82
Sn ₅ Bi	119,82	120,95	4,11	0,00	159,98	860,30	312,71	23849,71
Pb ₂ Bi ₇ Sn ₄	217,76	303,08	28,74	0,00	336,86	1652,31	731,50	50217,39
PbBi ₂ Sn ₂	91,11	105,84	8,21	0,00	130,87	1889,21	280,65	19509,88
Pb ₂ Bi ₄ Sn ₄	182,21	211,68	16,42	0,00	261,75	1871,71	561,29	39019,75
Pb ₉ Bi ₄ Sn ₄	351,76	272,66	16,42	0,00	449,47	1451,39	787,85	67005,20
PbBi ₄ Sn ₄	157,99	202,97	16,42	0,00	234,93	1923,19	496,51	35021,83
Pb ₃ Bi ₄ Sn ₄	206,44	220,39	16,42	0,00	288,56	1814,24	626,08	43017,68
Pb ₅ Bi ₄ Sn ₄	254,88	237,81	16,42	0,00	342,20	1652,31	755,65	51013,52
Pb ₃ Bi ₄ Sn ₁₅	443,97	419,45	16,42	0,00	585,45	1289,46	1189,22	87275,44
Pb ₃ BiSn ₄	170,89	128,99	4,11	0,00	213,45	1849,22	455,87	31820,04
Pb7Bi4Sn4	303,32	255,23	16,42	0,00	395,84	1474,38	885,22	59009,36
Pb ₃ Bi ₉ Sn ₄	265,68	372,73	36,95	0,00	413,75	1427,40	909,75	61680,40

Таблица 3 – Теплофизические свойства металлических соединений

	ΔH^{o}_{298}	\mathbf{c}^0	С _р , ,	Дж/(мол	ь*К)	C^{0}	$H_{298}^{0}-H_{0}$
соединение	Дж/моль *К	S ₂ ₉₈ , Дж∕моль*К	а	b*10 ⁻³	c*10 ⁵	С _{р 298} Дж/моль*К	кДж/моль
PbBi ₁₂ O ₁₉	-3966,30	977.68	749,16	183,34	64,69	734,79	108,28
Pb ₂ Bi ₆ O ₁₁	-2334,32	591,89	400,89	126,16	-5,77	431,99	64,37
Pb ₅ Bi ₈ O ₁₇	-3659,69	949,48	639,94	198,32	-14,44	682,79	101,74
Pb ₃ Bi ₂ O ₆	-1324,37	357,59	239,05	72,13	-8,66	250,79	37,37
Bi ₂ PbO ₄	-856,144	220,20	148,69	46,36	-2,89	159,25	23,73
Bi ₄ PbO ₇	-1534,58	371,69	79,831	-2,89	-0,01	100,37	14,96
Bi ₁₂ PbO ₂₀	-4038,76	980,78	684,29	231,85	-8,98	743,27	110,75
Pb7Bi6O16	-3504,88	935,37	626,79	190,63	-20,21	660,83	98,47
PbBi ₈ O ₁₃	-2722,24	674,69	459,23	146,78	-2,89	499,72	74,46
Pb ₂ Bi ₂ O ₅	-1010,01	288,89	193,87	59,25	-5,78	205,02	30,55
PbSnO ₃	-843,84	117,71	121,22	20,25	-25,13	98,96	14,75
PbSnO ₄	-916,30	120,81	139,26	38,38	-31,22	115,54	17,22
Bi ₁₂ CdO ₁₉	-4007,23	963,80	668,33	207,20	-4,91	724,55	107,96
Bi ₄ CdO ₇	-1519,10	357,81	254,29	73,31	-4,91	270,61	40,32
$Cd_3Bi_{10}O_{18}$	-3935,28	921,92	659,35	186,45	-14,72	698,33	104,05
Bi ₂ CdO ₄	-897,10	206,31	150,78	39,84	-4,91	157,12	23,41
$Bi_2Sn_2O_7$	-1841,49	249,52	255,59	48,20	-44,48	219,87	32,76
CdPbO ₃	-581,61	126,61	110,47	37,38	-13,89	105,98	15,79
Cd ₂ PbO ₄	-856,65	253,21	157,74	43,74	-18,80	149,61	22,30
CdPb ₂ O ₅	-888,18	198,40	173,69	68,40	-22,87	168,33	25,10
CdSnO ₃	-884,77	103,82	123,30	13,73	-27,15	96,82	14,43
Cd ₂ SnO ₄	-862,89	158,63	170,56	20,09	-32,05	140,46	20,93
CdSnO ₂	-571,80	111,98	91,07	19,80	-4,96	91,38	13,62

Таблица 4 – Теплофизические свойства сложных оксидов

КОЭФФИЦИЕНТЫ РАСЧЕТНЫХ УРАВНЕНИЙ И ТЕПЛОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ СИСТЕМ

poorauura		р	$= 10^{2} \Pi a$					$p = 10^{3} \Pi$	a		$p = 10^4 \Pi a$				
реакция	А	ΔΑ	В	ΔB	ΔΤ,Κ	А	ΔΑ	В	ΔΒ	ΔT,K	А	ΔΑ	В	ΔB	ΔΤ,Κ
4.1	-3244,81	372,77	-0,17	0,47	600-1100	-2613,26	195,15	-0,92	0,20	800-1200	-2543,21	133,18	-1,06	0,12	900-1400
4.2	-1069,18	35,55	2,07	0,03	800-1500	-1259,96	44,45	2,21	0,03	1100-1500	-1167,22	44,77	2,15	0,04	900-1600
4.3	-6491,78	888,29	8,43	0,92	800-1200	-6625,79	514,02	8,60	0,49	800-1400	-6993,59	340,80	8,99	0,30	800-1700
4.4	-16101,57	163,48	27,40	0,15	800-1500	-16621,99	237,86	27,93	0,20	800-1800	-17245,37	324,57	28,52	0,26	800-2100
4.5	-18427,04	1334,31	19,29	1,06	1000-1600	-22801,38	1388,51	21,17	0,95	1200-1800	-26636,00	1847,20	22,01	1,13	1400-1900
4.6	-2400,88	186,90	2,67	0,14	1100-1600	-3230,31	244,06	3,28	0,17	1200-1800	-5041,94	337,47	4,42	0,20	1400-2100
4.7	-4004,46	5,81	7,61	0,01	500-1600	-3975,92	9,34	7,58	0,01	600-1800	-3967,17	12,98	7,56	0,01	500-2100
4.8	-948,85	16,59	1,46	0,02	600-1600	-961,71	18,77	1,47	0,02	600-1700	-1005,9	25,50	1,52	0,02	600-2000
4.9	-5151,58	130,14	9,81	0,15	500-1600	-5331,09	115,55	9,95	0,11	600-1800	-5075,41	90,12	9,71	0,09	500-2100
4.10	56378,81	2727,34	-53,65	1,90	1300-1600	52258,07	2309,43	-45,37	1,41	1500-1800	891,28	25,01	-15,11	0,02	800-1300
4.11	-1783,29	4,06	3,64	0,004	800-1600	-1813,87	26,13	3,67	0,03	800-1300	-1802,69	7,15	3,66	0,01	800-2100
4.12	-1355,5	28,58	1,63	0,03	700-1600	-1380,9	36,18	1,68	0,03	600-1900	-1456,89	38,34	1,72	0,03	800-1800
4.13	-52690,5	794,13	44,56	0,58	1200-1600	-2611,78	110,69	-19,68	0,11	800-1400	-4059,12	192,82	-18,54	0,13	1200-1700
4.14	8837,43	345,27	-21,45	0,40	500-1600	9591,83	387,30	-22,23	0,38	600-1800	9362,79	293,65	-22,18	0,30	500-2100
4.15	-7716,17	48,12	14,55	0,04	800-1600	-7797,85	60,70	14,63	0,05	800-1800	-7939,19	80,64	14,77	0,06	800-2100

Таблица 1 – Коэффициенты уравнения (4.16) описывающего константы равновесия реакций термической диссоциации соединения в расплаве в атмосфере Ar

pooruug		р	= 10 ⁵ Па	l				р = 10 ⁶ Г	Ia		$p = 10^7 \Pi a$				
реакция	А	ΔΑ	В	ΔB	ΔΤ,Κ	А	ΔΑ	В	ΔB	ΔT,K	А	ΔΑ	В	ΔB	ΔΤ,Κ
4.1	-2627,54	133,86	-0,96	0,11	800-1800	-2662,70	85,25	-0,94	0,07	800-2200	-2719,63	51,50	-0,89	0,03	800-3000
4.2	-1370,98	55,73	2,31	0,04	1100-1700	-1103,79	40,65	2,10	0,04	800-1600	-1103,79	40,65	2,10	0,04	800-1600
4.3	-7652,80	264,38	9,60	0,19	800-2400	-20741,91	1003,33	15,78	0,41	2100-2900	-10916,64	449,58	11,44	0,23	1300-3000
4.4	-17962,55	420,13	29,18	0,31	800-2400	-19403,02	609,32	30,43	0,41	800-2900	-19385,97	604,18	30,42	0,41	800-3000
4.5	-35279,63	1966,88	24,67	0,98	1700-2400	-52360,99	4217,62	29,04	1,67	2200-2900	-11478,12	435,01	11,07	0,21	1400-3000
4.6	-8614,90	432,09	6,27	0,21	1800-2400	-12852,20	645,50	8,20	0,27	2000-2900	-13624,46	629,63	8,49	0,26	2100-2900
4.7	-3936,05	18,98	7,51	0,02	500-2400	171072,00	6296,59	-284,88	2,62	2000-2900	-3818,64	34,97	7,40	0,03	600-3000
4.8	-1180,62	36,08	1,65	0,03	1000-2000	-1359,84	44,79	1,76	0,03	1200-2200	-962,26	19,00	1,49	0,02	500-1900
4.9	-5114,89	99,13	9,69	0,09	600-2400	-4935,49	104,13	9,50	0,08	600-2900	-4859,98	85,66	9,44	0,07	500-3000
4.10	1150,96	65,42	-15,39	0,06	800-1600	2260,96	57,92	-16,20	0,04	1300-2300	2611,06	95,00	-16,43	0,05	1600-2500
4.11	-1795,93	6,07	3,65	0,004	800-2000	-1868,72	19,76	3,71	0,013	800-3000	-1861,69	16,32	3,71	0,01	800-3000
4.12	-1375,51	33,68	1,67	0,03	600-1900	-1313,55	26,04	1,61	0,03	500-1800	-1347,85	31,47	1,65	0,03	500-2000
4.13	-2918,73	132,413	-19,41	0,11	900-1500	-4042,66	188,15	-18,56	0,13	1200-1700	-3823,39	165,94	-18,73	0,12	1200-1600
4.14	11467,37	73,76	-23,63	0,05	900-2400	8990,53	224,72	-22,10	0,22	400-2900	8982,01	217,88	-22,08	0,21	400-3000
4.15	-8105,32	101,97	14,92	0,08	800-2400	-8435,16	144,54	15,21	0,10	800-2900	-8519,31	160,70	15,28	0,11	800-3000

			p=10 ²	Па		р=10 ³ Па				
	а	Δa	b	Δb	ΔT,K	а	Δa	b	Δb	ΔT,K
Bi	8,51	0,16	-10,72	0,11	400-1200	7,09	0,18	-10,47	0,14	500-1300
Bi ₂	8,24	0,21	-10,71	0,14	400-1200	6,55	0,24	-10,24	0,18	500-1300
Bi ₃	6,49	0,84	-11,85	0,56	400-1200	0,25	0,32	-13,14	6,82	500-1300
Bi ₂	5,69	0,43	-10,70	0,29	400-1200	3,55	0,40	-9,86	0,31	500-1300
Sn	10,69	0,45	-18,17	0,46	700-1600	9,02	0,51	-17,75	0,54	700-1700
Sn ₂	11,76	0,80	-24,13	0,83	700-1600	9,21	1,01	-22,77	1,08	700-1700
Pb	8,43	0,22	-10,50	0,17	500-1200	7,23	0,17	-10,39	0,14	500-1400
Pb ₂	8,79	0,37	-15,47	0,28	500-1200	7,13	0,47	-14,88	0,38	500-1400
Cd	5,20	0,09	-5,84	0,06	400-1100	4,30	0,06	-5,89	0,04	400-1300
Cd ₂	3,51	0,52	-10,34	0,33	400-1100	2,54	0,57	-10,18	0,39	400-1300
			p=10 ⁴	Па				p=10 ⁵	Па	
	а	Δa	b	Δb	ΔT,K	а	Δa	b	Δb	ΔT,K
Bi	5,99	0,15	-10,43	0,13	500-1600	4,86	0,11	-10,35	0,11	500-2000
Bi ₂	5,32	0,17	-10,11	0,15	500-1600	4,07	0,11	-9,95	0,11	500-2000
Bi ₃	5,44	0,21	-12,91	0,18	500-1600	4,05	0,14	-12,64	0,13	500-2000
Bi ₂	2,08	0,26	-9,56	0,22	500-1600	0,61	0,18	-9,25	0,18	500-2000
Sn	7,51	0,43	-17,44	0,50	700-2000	5,25	0,35	-16,44	0,47	800-2000
Sn ₂	7,27	0,91	-21,90	1,05	700-2000	5,32	0,45	-21,73	0,56	800-2000
Pb	5,99	0,13	-10,25	0,12	500-1600	4,59	0,02	-9,97	0,02	600-1600
Pb ₂	5,69	0,52	-14,42	0,45	500-1600	5,40	0,06	-15,36	0,05	600-1600
Cd	3,61	0,08	-6,19	0,09	500-1600	2,53	0,10	-6,09	0,09	500-2000
Cd ₂	2,85	0,18	-11,34	0,19	500-1600	2,01	0,06	-11,47	0,06	500-2000
			p=10 ⁶	Па						
	а	Δa	b	Δb	ΔT,K					
Bi	3,51	0,05	-10,10	0,04	500-2000					
Bi ₂	2,76	0,10	-9,74	0,09	500-2000					
Bi ₃	2,52	0,07	-12,10	0,07	500-2000					
Bi ₂	-0,60	0,19	-9,10	0,18	500-2000					
Sn	3,26	0,01	-15,43	0,02	800-2000					
Sn ₂	2,68	0,17	-19,86	0,21	800-2000					
Pb	3,55	0,03	-9,94	0,03	600-1600					
Pb ₂	4,36	0,07	-15,33	0,06	600-1600					
Cd	1,24	0,02	-5,88	0,02	500-2000					
Cd ₂	0,05	0,05	-11,29	0,79	500-2000					

Таблица 2 – Значение коэффициентов уравнения (4.17)

р=10 ² Па											
реакция	Α	ΔΑ	В	ΔB	R^2	ΔΤ					
$Bi_2 = 2Bi$	-29167,2	261,27	33,04	0,2	0,998	600-3000					
$Bi_3 = 3Bi$	-48083,3	266,17	62,92	0,17	0,999	800-3000					
$Bi_4 = 4Bi$	-85391,6	620,99	102,43	0,44	0,998	700-3000					
$Sn_2 = 2Sn$	-28673,1	226,32	31,12	0,14	0,998	800-3000					
$Pb_2 = 2Pb$	-12578,1	63,14	28,54	0,04	0,999	700-3000					
$Cd_2 = 2Cd$	-1354,46	21,57	25,39	0,01	0,997	1100-3000					
			р=10 ³ Па		-						
реакция	А	ΔΑ	В	ΔB	R^2	ΔΤ					
$Bi_2 = 2Bi$	-24016,2	11,85	17,29	0,01	1	500-3000					
$Bi_3 = 3Bi$	-41060,9	30,59	32,98	0,02	1	500-3000					
$Bi_4 = 4Bi$	-71922,6	1,39	56,31	0,001	1	500-3000					
$Sn_2 = 2Sn$	-24333,7	105,86	15,85	0,06	0,999	800-3000					
$Pb_2 = 2Pb$	-10652,6	31,04	14,07	0,02	0,999	700-3000					
$Cd_2 = 2Cd$	-1098,55	24,82	11,46	0,01	0,993	800-2200					
			р=10 ⁴ Па		•						
реакция	Α	ΔΑ	В	ΔΒ	R^2	ΔΤ					
$Bi_2 = 2Bi$	-30100,7	332,78	28,98	0,28	0,997	500-3000					
$Bi_3 = 3Bi$	-49854,5	406,31	54,68	0,31	0,998	600-3000					
$Bi_4 = 4Bi$	-87334	773,67	89,69	0,59	0,998	600-3000					
$Sn_2 = 2Sn$	-79908,8	4840,6	31,42	3,57	0,96	900-2100					
$Pb_2 = 2Pb$	-12578,2	63,2	23,93	0,04	0,999	700-3000					
$Cd_2 = 2Cd$	-30099,7	332,78	28,98	0,28	0,997	500-3000					
			р=10 ⁵ Па								
реакция	Α	ΔΑ	В	ΔB	R^2	ΔΤ					
$Bi_2 = 2Bi$	-30117,7	336,85	26,69	0,28	0,997	500-3000					
$Bi_3 = 3Bi$	-49871,6	410,32	50,09	0,31	0,998	600-3000					
$Bi_4 = 4Bi$	-87333,8	773,6	82,78	0,59	0,998	600-3000					
$Sn_2 = 2Sn$	-74067,2	1484,11	29,4	1,02	0,994	900-2400					
$Pb_2 = 2Pb$	-12579,6	63,08	21,63	0,04	0,999	700-3000					
$Cd_2 = 2Cd$	-30117,7	336,85	26,69	0,28	0,997	500-3000					
			р=10 ⁶ Па		•						
реакция	А	ΔΑ	В	ΔΒ	\mathbb{R}^2	ΔΤ					
$Bi_2 = 2Bi$	-30035,4	319,08	24,34	0,27	0,997	500-3000					
$Bi_3 = 3Bi$	-50593	596,78	45,88	0,46	0,996	600-3000					
$Bi_4 = 4Bi$	-87333,7	773,88	75,88	0,59	0,998	600-3000					
$Sn_2 = 2Sn$	-69039,1	1293,38	23,28	0,8	0,993	900-3000					
$Pb_2 = 2Pb$	-12578,4	63,04	19,33	0,04	0,999	700-3000					
$Cd_2 = 2Cd$	-30035,4	319.08	24,34	0.27	0.997	500-3000					

Таблица 3 – Значения коэффициентов уравнения (4.16)

Т	v	S	Ι	U	Μ	Ср	MMg	Rg	Cpg	λ	Z
300	0,012	0,486	0,83	0,82	4,32	0,152	39,94	208,13	0,520	0,009	0,98
400	0,016	0,533	17,50	17,08	4,28	0,170	39,94	208,13	0,520	0,011	0,98
500	0,021	0,578	38,02	37,18	4,22	0,169	39,94	208,13	0,520	0,013	0,98
600	0,025	0,6104	55,51	54,25	4,22	0,170	39,94	208,13	0,520	0,015	0,98
700	0,0291	0,637	73,01	71,34	4,22	0,173	39,94	208,13	0,520	0,016	0,98
800	0,033	0,683	102,99	100,91	4,46	0,168	39,94	208,12	0,520	0,018	0,98
900	0,037	0,704	120,29	117,79	4,49	0,170	39,95	208,09	0,520	0,020	0,98
1000	0,042	0,722	137,73	134,80	4,53	0,171	39,98	207,93	0,520	0,022	0,98
1100	0,046	0,739	155,40	152,06	4,55	0,173	40,09	207,37	0,518	0,023	0,98
1200	0,050	0,755	173,46	169,69	4,55	0,175	40,41	205,70	0,514	0,023	0,98
1300	0,055	0,770	192,14	187,91	4,53	0,177	41,31	201,24	0,503	0,024	0,98
1400	0,060	0,784	211,90	207,16	4,50	0,179	43,57	190,81	0,478	0,025	0,98
1500	0,067	0,799	233,69	228,31	4,47	0,181	48,78	170,44	0,428	0,025	0,97
1600	0,078	0,816	259,75	253,41	4,43	0,182	59,76	139,11	0,352	0,023	0,96
1700	0,098	0,838	296,13	288,02	4,40	0,182	81,02	102,61	0,264	0,020	0,94
1800	0,153	0,879	367,13	354,39	4,42	0,180	118,55	70,13	0,187	0,015	0,88
1900	0,384	1,012	615,51	583,13	4,62	0,163	167,18	49,73	0,139	0,010	0,59
2000	0,641	1,145	874,19	819,60	5,24	0,149	180,61	46,03	0,130	0,009	0,30
2100	0,787	1,209	1005,27	937,79	5,63	0,145	182,12	45,65	0,130	0,009	0,18
2200	0,879	1,244	1080,00	1004,01	5,72	0,144	180,76	46,00	0,132	0,010	0,13
2300	0,967	1,276	1152,52	1068,40	5,77	0,144	178,75	46,51	0,135	0,010	0,10
2400	1,072	1,318	1250,75	1156,90	5,80	0,145	175,90	47,27	0,140	0,010	0,06
2500	1,207	1,375	1388,98	1282,63	5,81	0,145	172,14	48,30	0,145	0,011	0
2600	1,259	1,382	1406,73	1295,25	5,82	0,147	171,68	48,43	0,147	0,012	0
2700	1,310	1,388	1423,61	1307,07	5,84	0,148	171,36	48,52	0,149	0,012	0
2800	1,360	1,394	1439,98	1318,44	5,84	0,150	171,15	48,58	0,150	0,013	0
2900	1,410	1,399	1456,07	1329,57	5,85	0,152	171,00	48,62	0,152	0,013	0
3000	1,459	1,405	1472,04	1340,59	5,85	0	170,90	48,64	0,153	0,014	0

Таблица 4 – Теплофизические характеристики системы (масс %) 411Bi+398Pb+98Sn+73Cd+20Ar при 300-3000К и p=10⁵ Па в атмосфере Ar

Т – температура, К; v – удельный объем, м³/кг; М- число молей, моль/кг; I – полная энтальпия, кДж/кг; U - полная внутренняя энергия, кДж/кг; S – энтропия, кДж/(кг*моль) ; C_p – равновесная удельная теплоемкость, кДж/(кг*К); ММ_g – молярная масса паровой фазы, г/моль; R_g – газовая постоянная Дж/(кг*К); C_{pg} - равновесная теплоемкость паровой фазы, кДж/(кг*К); λ – коэффициент теплопроводности, кВт /(м*К) ; z – массовая доля конденсированной фазы.

Теплофизические	Р=10 ² Па	Р=10 ³ Па	Р=10 ⁴ Па	Р=10 ⁵ Па	Р=10 ⁶ Па	Р=10 ⁷ Па
характеристики						
			ΔΤ	, К		
		Конденсир	ованное состоя	ние		
V, м ³ /кг	300-1100	300-1200	300-1400	300-1400	300-2300	-
М, моль/кг	300-700	300-700	300-700	300-700	300-700	300-700
U, кДж/кг	300-1100	300-1200	300-1400	300-1800	300-2200	300-2900
I, кДж/кг	300-1100	300-1300	300-1400	300-1800	300-2300	-
S, кДж/(кг*моль)	300-1100	300-1200	300-1500	300-1800	300-2300	-
Ср, кДж/(кг*К)	300-700	300-700	300-700	300-700	300-700	300-700
MMg, г/моль	300-700	300-800	300-1100	300-1200	300-1400	300-1800
Rg, Дж/(кг*К)	300-700	300-800	300-900	300-1100	300-1300	300-1500
Срд, кДж/(кг*К)	300-700	300-800	300-900	300-1100	300-1300	300-1500
λ, кВт /(м*К)	300-900	300-1100	300-1200	300-1400	300-1800	300-2300
Ζ	300-900	300-1100	300-1200	300-1400	300-1800	300-2300
Теплофизические	Р=10 ² Па	Р=10 ³ Па	Р=10 ⁴ Па	Р=10 ⁵ Па	Р=10 ⁶ Па	Р=10 ⁷ Па
характеристики						
			ΔΤ	, К		
		Область фа	зовых превращ	ений		
V, м ³ /кг	1100-1700	1200-1900	1400-2200	1800-2500	2300-2600	-
М, моль/кг	700-1500	700-1700	700-2100	700-2200	700-3000	700-2900
U, кДж/кг	1100-1700	1200-1900	1400-2200	1800-2500	2200-3000	-
I, кДж/кг	1100-1700	1300-1900	1400-2200	1800-2500	2300-2500	-
S, кДж/(кг*моль)	1100-1700	1200-1900	1500-2200	1800-2500	2300-2600	-
Ср, кДж/(кг*К)	700-1500	700-1700	700-1900	700-2100	700-2700	-
MMg, г/моль	800-1700	900-1900	1100-2200	1400-2600	1800-2500	-
Rg, Дж/(кг*К)	700-1200	800-1400	900-1600	1100-1900	1300-2400	1500-
Срд, кДж/(кг*К)	700-1200	800-1400	900-1600	1100-1900	1300-2400	1500-
λ, кВт /(м*К)	900-1300	1100-1400	1200-1700	1500-2000	1800-2500	2300-
Z	900-1700	1100-1900	1400-2200	1700-2500	2200-3000	-
Теплофизические	P=10 ² Па	P=10 ³ Па	P=10 ⁴ Па	P=10 ⁵ Па	Р=10 ⁶ Па	P=10 ⁷ Па
характеристики						
			ΔΤ	, К		
		Паровая	фаза интервал	ы		
V, м ³ /кг	1700-3000	1900-3000	2200-3000	2500-3000	2600-3000	-
М, моль/кг	1500-3000	1700-3000	2100-3000	2200-3000	-	-
U, кДж/кг	1700-3000	1900-3000	2200-3000	2500-3000	-	-
I, кДж/кг	1700-3000	1900-3000	2200-3000	2500-3000	2500-3000	-
S, кДж/(кг*моль)	1700-3000	1900-3000	2200-3000	2500-3000	2600-3000	-
Ср, кДж/(кг*К)	1500-3000	1700-3000	1900-3000	2100-3000	2700-3000	-
MMg, г/моль	1700-3000	1900-3000	2200-3000	2600-3000	2500-3000	-
Rg, Дж/(кг*К)	1200-3000	1400-3000	1600-3000	1900-3000	2400-3000	-
Срд, кДж/(кг*К)	1200-3000	1400-3000	1700-3000	1900-3000	2500-3000	-
λ, кВт /(м*К)	1300-3000	1400-3000	1700-3000	2000-3000	2400-3000	-
Z	1700-3000	1900-3000	2200-3000	2500-3000	-	-

Таблица 5 – Температурные интервалы наблюдаемых значений теплофизических характеристик в атмосфере Ar

Таблица 6 – Температурные интервалы наблюдаемых значений

теплофизических характеристик в атмосфере воздуха

Теплофизические	Р=10 ² Па	Р=10 ³ Па	Р=10 ⁴ Па	Р=10 ⁵ Па	Р=10 ⁶ Па	Р=10 ⁷ Па
характеристики						
			ΔΤ,	К		
		Конденсирова	анное состояни	ie		-
V, м ³ /моль	300-1100	300-1200	300-1400	300-1800		
М, моль/кг	300-1300	300-1700	300-2100	300-1800	300-2400	
U, кДж/моль	300-1000	300-1100	300-1400	300-1700	300-1600	300-1600
I, кДж/моль	300-1000	300-1200	300-1400	300-1600	300-1500	300-1500
S, кДж/кг*К	300-1100	300-1200	300-1500	300-1700		
Ср, кДж/моль*К	300-1100	300-800	300-800	300-800	300-800	300-800
MMg, г/моль	300-900	300-1100	300-1300	300-1600	300-1800	300-2100
Rg, Дж/кг*К	300-900	300-1000	300-1200	300-1500	300-1800	300-2100
Срд, кДж/моль*К	300-900	300-1000	300-1200	300-1300	300-1800	
λ, кВт/м*К	300-1100	300-1200	300-1400	300-1800	300-3000	
Z,масс %	300-900	300-1000	300-1200	300-1500	300-1800	300-2400
Теплофизические	Р=10 ² Па	Р=10 ³ Па	Р=10 ⁴ Па	Р=10 ⁵ Па	Р=10 ⁶ Па	P=10 ⁷ Па
характеристики						
			ΔΤ,	К		
		Область фазов	ых превращен	ий		
V, м ³ /моль	1100-1900	1200-1900	1400-1700	1800-2100		
М, моль/кг	1300-1700	1700-1900	2100-2400	1900-2100	2400-3000	
U, кДж/моль	1000-1700	1100-1900	1400-2400	1700-2100	1600-3000	1600-3000
I, кДж/моль	1100-1700	1200-1900	1400-2400	1600-2100	1500-3000	1500-3000
S, кДж/кг*К	1100-1700	1200-1900	1500-2400	1700-2100		
Ср, кДж/моль*К	1100-1700	800-1900	800-2400	800-2100	800-3000	800-3000
MMg, г/моль	900-1700	1100-1900	1300-2400	1600-2100	1800-3000	2100-3000
Rg, Дж/кг*К	900-1700	1000-1900	1200-2400	1500-2100	1800-3000	2100-3000
Срд, кДж/моль*К	900-1700	1000-1900	1200-2400	1300-2100	1800-3000	
λ, кВт/м*К	1100-1700	1200-1900	1400-2400	1800-2100		
Z,масс %	900-1700	1000-1900	1200-2500	1500-2100	1800-3000	2400-3000
Теплофизические	$P=10^2 \Pi a$	P=10 ³ Па	Р=10 ⁴ Па	Р=10 ⁵ Па		
характеристики						
			ΔΤ,	К		
		Парон	зая фаза			
V, м ³ /моль	1900-3000	1900-3000	1700-3000	2100-3000		
М, моль/кг	1700-3000	1900-3000	2400-3000	2100-3000		
U, кДж/моль	1700-3000	1900-3000	2400-3000	2100-3000		
I, кДж/моль	1700-3000	1900-3000	2400-3000	2100-3000		
S, кДж/кг*К	1700-3000	1900-3000	2400-3000	2100-3000		
Ср, кДж/моль*К	1700-3000	1900-3000	2400-3000	2100-3000		
MMg, г/моль	1700-3000	1900-3000	2400-3000	2100-3000		
Rg, Дж/кг*К	1700-3000	1900-3000	2400-3000	2100-3000		
Срд, кДж/моль*К	1700-3000	1900-3000	2400-3000	2100-3000		
λ, кВт/м*К	1200-3000	1400-3000	2400-3000	2100-3000		
Z.масс %	1700-3000	1900-3000	2500-3000	2100-3000		

136

N⁰	Реоктичи	р=10 ² Па	р=10 ³ Па	р=10 ⁴ Па	p=10 ⁵ Па	р=10 ⁶ Па	р=10 ⁷ Па
п/п	геакции		·	ΔΤ	, К	·	
4.24	$3Bi_2Sn_3+13O_2=2Bi_2O_3+2BiO+9SnO_2$	300-1300	300-1400				
	$2Bi_2Sn_3+8O_2=Bi_2O_3+BiO+6SnO_2+Bi$			300-1700	300-1900		
	$2Bi_2Sn_3+6O_2=Bi+4SnO+Bi_2O_3+BiO+2SnO_2$					300-2200	300-2500
4.25	$4Bi_5Pb_3 + 23O_2 = PbO_2 + Pb_3O_4 + 2Pb_2O_3 + 4PbO + 10Bi_2O_3$	300-700	300-700	300-800	300-900	300-1000	300-1000
	$Bi_5Pb_3+5O_2=2Bi_2O_3+BiO+3PbO$	700-1300	700-1400	800-1500	900-1700		
	$Bi_5Pb_3+4O_2=Bi_2O_3+2BiO+3PbO+Bi$					1000-2000	
	$2Bi_5Pb_3+6O_2=Bi_2O_3+Pb_3O_4+Pb_2O_3+BiO+2Bi+PbO$						1000-2400
4.26	$2Bi_7Pb_3+15O_2=Pb_3O_4+2PbO_2+PbO+7Bi_2O_3$	300-700		300-800			
	$4Bi_7Pb_3+29O_2=Pb_3O4+2PbO_2+5PbO+14Bi_2O_3+Pb_2O_3$		300-700				
	$4Bi_7Pb_3 + 24O_2 = Pb_3O4 + PbO_2 + 4PbO + 14Bi_2O_3 + 2Pb_2O_3$				300-900	300-1000	
	$3Bi_7Pb_3+38O_2=Pb_2O_3+Pb_3O_4+2PbO_2+2PbO+21Bi_2O_3$						300-1000
	$Bi_7Pb_3+6O_2=3PbO+2Bi_2O_3+3BiO$	700-1300	700-1300	800-1600	900-1800		
	$Bi_7Pb_3+4O_2=3PbO+Bi_2O_3+2BiO+3Bi$					1000-2000	
	$2Bi_7Pb_3+6O_2=PbO+Bi_2O_3+BiO+11Bi+Pb_3O_4+Pb_2O_3$						1000-2400
4.27	$4Bi_7Pb+24O_2=14Bi_2O_3+PbO_2+Pb_2O_3+PbO$	300-700	300-700	300-800	300-900		
	$8Bi_7Pb + 48O_2 = 28Bi_2O_3 + 2PbO_2 + Pb_2O_3 + PbO + Pb_3O_4$					300-1000	300-1100
	Bi ₇ Pb+5O ₂ =2Bi ₂ O ₃ +3BiO+PbO	700-1300	700-1400	800-1600	900-1800		
	Bi ₇ Pb+3O ₂ =Bi ₂ O ₃ +2BiO+PbO+3Bi					1000-2000	
	$3Bi_7Pb+4O_2=Bi_2O_3+BiO+PbO+18Bi+Pb_2O_3$						1100-2400

Таблица 7– Температурные интервалы реакций окисления интерметаллидов при различных давлениях

4.28	$8BiPb+12O_2=2PbO_2+Pb_3O_4+Pb_2O_3+PbO+4Bi_2O_3$	300-700	300-700	300-900	300-900		
	$7BiPb+10O_2=PbO_2+Pb_3O_4+Pb_2O_3+PbO+BiO+3Bi_2O_3$					300-1900	
	$7BiPb+7O_2=PbO_2+Pb_3O_4+Pb_2O_3+PbO+BiO+4Bi+Bi_2O_3$						300-2200
	5BiPb+6O ₂ =2Bi ₂ O ₃ +BiO+5PbO	700-1300	700-1300	900-1500	900-1600	-	-
4.29	$3Cd_3Bi_2+8O_2=Bi_2O_3+4BiO+9CdO$	300-1200	300-1300	300-1500	300-1700		
	$2Cd_3Bi_2+5O_2=Bi_2O_3+BiO+6CdO+Bi$					300-1900	300-2200
4.30	$2CdSn+3O_2=2SnO_2+2CdO$	300-1200	300-1300	300-1500	300-1800	300-2000	
	CdSn+4O ₂ =2SnO ₂ +3CdO+SnO						300-2300
4.31	$4Pb_{3}Bi+11O_{2}=2Bi_{2}O_{3}+PbO_{2}+Pb_{3}O_{4}+2Pb_{2}O_{3}+4PbO$	300-700	300-800	300-800			
	$4Pb_{3}Bi + 11O_{2} = 2BiO + Bi_{2}O_{3} + 3PbO_{2} + Pb_{3}O_{4} + Pb_{2}O_{3} + 4PbO_{3}O_{4} + PbO_{3}O_{4} + PbO_{3}O_{4$				300-1600		
	$3Pb_3Bi+8O_2=Bi_2O_3+PbO_2+Pb_3O_4+Pb_2O_3+3PbO+BiO$					300-1900	300-1300
	$6Pb_3Bi+13O_2=2Bi_2O_3+2BiO+18PbO$	700-1200	800-1300	800-1500	-	-	
	$4Pb_3Bi+9O_2=Bi_2O_3+BiO+Bi+Pb_3O_4+Pb_2O_3+7PbO$						1300-2200
4.32	$8PbBi_2Sn_2 + 34O_2 = 2PbO_2 + Pb_2O_3 + Pb_3O_4 + PbO + 8Bi_2O_3 + 16SnO_2$	300-600	300-600	300-800	300-800	300-900	
	$7PbBi_{2}Sn_{2} + 29O_{2} = PbO_{2} + Pb_{2}O_{3} + Pb_{3}O_{4} + PbO + 2BiO + 6Bi_{2}O_{3} + 14SnO_{2}$						300-1300
	$6PbBi_2Sn_2 + 22O_2 = 6PbO + 2Bi_2O_3 + 8BiO + 12SnO_2$	600-1300	600-1500	800-1700			
	$2PbBi_2Sn_2+7O_2=2PbO+Bi_2O_3+BiO+Bi+4SnO_2$				800-1700		
	$2PbBi_2Sn_2+6O_2=2PbO+Bi+Bi_2O_3+BiO+2SnO+2SnO_2$					900-2100	1300-2500
4.33	$7PbSn+12O_2=PbO_2+Pb_3O_4+Pb_2O_3+PbO+7SnO_2$	300-700	300-800	300-800	300-1000	300-1300	300-1400
	2PbSn+3O ₂ =2PbO+2SnO ₂	700-1300	800-1500	800-1700	1000-1900		
	3PbSn+4O ₂ =3PbO+SnO+2SnO ₂					1300-2000	
	3PbSn+3O ₂ =3PbO+SnO+3SnO ₂						1400-2300

4.34	$3Sn_3Bi+11O_2=BiO+Bi_2O_3+9SnO_2$	300-1300	300-1600				
	$4Sn_3Bi+8O_2=BiO+Bi_2O_3+12SnO+Bi$			300-1700			
	$4Sn_3Bi+14O_2=BiO+Bi+Bi_2O_3+12SnO_2$				300-1900		
	$4Sn_3Bi+9O_2=Bi+10SnO+BiO+Bi_2O_3+2SnO_2$					300-2200	300-2400
4.35	$3SnBi+5O_2=Bi_2O_3+BiO+3SnO_2$	300-1300	300-1500	300-1600			
	$4SnBi+6O_2=Bi_2O_3+BiO+Bi+4SnO_2$				300-1800		
	$4SnBi+5O_2=Bi_2O_3+BiO+Bi+2SnO+2SnO_2$					300-2100	300-2300

No -			$\mathbf{P} = 10^2 \; \Pi \mathbf{a}$								
JN≌ 11/11	А	ΔA	В	ΔΒ	ΔΤ, Κ						
	-177512,00	10886,67	404,25	21,13	400-700						
4.28	165569,10	6032,88	-133,22	6,69	700-1300						
	-167591,00	525,32	373,75	1,02	400-700						
4.33	130828,70	20454,85	-78,87	19,07	900-1300						
4.35	-88017,60	8658,46	172,94	14,21	400-1000						
IMC			$\mathbf{P} = 10^3 \Pi \mathbf{a}$								
MINIC	А	ΔΑ	В	ΔB	ΔΤ, Κ						
	-186973,00	3690,32	421,69	7,16	400-700						
4.28	151876,90	1583,92	-109,58	1,75	700-1200						
4.29	-116011,00	10040,98	173,63	16,48	400-1000						
	-164858,00	3381,03	363,74	6,56	400-700						
4.33	-47943,90	2810,99	111,20	3,40	700-1000						
4.35	-87962,60	10131,10	169,18	16,63	400-1000						
ИМС	$P = 10^4 \Pi a$										
mvic	А	ΔΑ	В	ΔB	ΔΤ, Κ						
	-180831,00	5394,37	394,27	10,47	400-700						
4.28	143772,00	10148,28	-105,64	11,24	700-1200						
4.29	-111860,00	9399,99	161,55	15,43	400-1000						
	-163226,00	7224,00	354,66	14,02	400-700						
4.33	-52165,20	167,75	114,40	0,20	700-1000						
4.35	-84666,00	10767,56	159,31	17,68	400-1000						
ИМС			$\mathbf{P} = 10^5 \Pi \mathbf{a}$								
mvic	А	ΔΑ	В	ΔB	ΔΤ, Κ						
	-184960,00	9823,18	394,99	19,07	400-700						
4.28	167419,00	2264,21	-118,47	1,91	900-1600						
4.29	-108610,00	9739,55	150,55	15,99	400-1000						
4.30	15821,70	8227,73	-83,67	5,90	1100-1800						
4.31	289630,50	24341,34	-211,13	19,42	1000-1600						
	-166494,00	6345,88	354,59	10,95	400-900						
4.33	161588,10	6640,83	-85,15	4,64	1100-1900						
4.35	275188,30	6378,01	-127,32	4,57	1100-1800						

Таблица 8 – Коэффициенты уравнения (4.16) реакций окисления индивидуальных металлических соединений при различных давлениях

ИМС			$P = 10^6 \Pi a$								
FINIC	А	ΔΑ	В	ΔB	ΔΤ, Κ						
4.28	217655,40	5936,35	-140,14	4,90	800-1900						
4.29	196937,70	8827,68	-128,19	6,17	1100-1900						
4.30	137470,00	9415,52	-63,88	6,41	1100-2000						
4.31	258745,60	13466,07	-166,07	9,40	1100-1900						
	-169722,00	6531,53	352,73	10,25	400-1100						
4.33	177387,60	2699,42	-80,43	1,69	1300-2000						
4.35	53499,74	1528,65	-21,91	1,02	1200-1900						
IMC	$P = 10^7 \Pi a$										
FINIC	А	ΔΑ	В	ΔB	ΔΤ, Κ						
4.28	84294,41	2735,68	-62,81	2,15	800-2100						
4.29	213388,10	2755,52	-129,97	1,71	1200-2200						
4.30	177228,20	5550,37	-75,51	3,37	1200-2300						
	-92957,30	2524,16	149,81	3,80	400-1200						
4.31	288207,10	6115,92	-136,89	3,65	1300-2200						
	-172242,00	9515,79	348,00	14,93	400-1100						
4.33	156331,90	6636,52	-59,66	4,22	1100-2300						
4.35	225434,10	11365,20	-155,80	9,67	1000-1400						

		р	$= 10^2 \Pi a$					$p = 10^3 I$	Па		$p = 10^4 \Pi a$				
Реакции	А	ΔΑ	В	ΔΒ	ΔΤ,Κ	А	ΔΑ	В	ΔB	ΔT,K	А	ΔΑ	В	ΔB	ΔΤ,Κ
4.1	35097,1	2072,4	-34,44	1,76	1000-1400	32548,31	1748,7	-28,6	1,32	1100-1600	28646,75	1892,1	-22,28	1,29	1200-1800
4.2	-431,86	1,87	1,17	0,003	500-700	317,20	44,88	-0,31	0,11	300-500	-1593,76	44,16	3,50	0,04	800-1300
4.3	-14203	4578	17,73	5,15	800-1000	-10217,2	2231,9	12,8	2,39	800-1100	-7877,37	869,58	9,95	0,89	800-1200
4.4	1848,92	96,81	-4,99	0,18	400-700	1775,12	150,01	-4,83	0,31	400-600	-15663,2	100,24	26,94	0,1	800-1200
4.5	-18994	3682,7	27,05	4,45	700-1000	-6691,35	499,44	11,9	0,56	800-1000	-6340,77	266,67	11,49	0,28	800-1100
4.6	540,55	37,95	-1,19	0,07	400-700	-863,71	51,84	1,29	0,05	800-1000	-1060,22	86,89	1,52	0,08	800-1200
4.7	-4006,3	5,24	7,62	0,01	500-1500	-4000,13	6,64	7,61	0,01	500-1600	-3986,22	9,68	7,59	0,01	500-1800
4.8	-886,24	1,62	1,38	0,002	500-900	-886,17	1,61	1,38	0,002	500-900	-897,76	5,34	1,39	0,01	500-1200
4.9	-10817	1032,7	16,03	1,15	600-1400	-5144,78	130,18	9,81	0,15	500-1600	-5120,82	108,76	9,78	0,11	500-1800
4.10	62725,3	1544,3	-67,57	1,2	1100-1500	53926,91	3776,9	-55,3	2,86	1100-1600	48304,81	3970,8	-46,07	2,72	1200-1800
4.11	420,30	13,10	-0,54	0,03	400-700	420,31	13,10	-0,54	0,03	400-700	344,93	27,86	-0,40	0,06	300-700
4.12	-989,27	25,12	1,01	0,05	500-900	-1126,85	35,23	1,23	0,08	500-900	-1235,55	39,05	0,79	0,32	500-1200
4.13	-9750,02	201,40	-13,.25	0,13	400-700	-6750,04	195,46	-16,8	0,05	400-600	-4263,37	153,24	-17,32	1,02	800-1200
4.14	7922,97	306,77	-20,34	0,42	400-1400	8327,36	308,72	-21	0,39	400-1700	6926,18	466,39	-19,87	0,66	400-1900
4.15	-7628,8	33	14,48	0,03	800-1400	-7706,7	48,22	14,6	0,04	800-1600	-26976,1	4328,8	38,03	4,65	800-1100

Таблица 9 – Коэффициенты уравнения (4.16) констант равновесия реакций термической диссоциации индивидуальных соединений в атмосфере Ar

		р	$0 = 10^5 \Pi a$				-		$p = 10^7 \Pi a$						
Реакции	А	ΔΑ	В	ΔB	ΔΤ,Κ	А	ΔΑ	В	ΔB	ΔΤ,Κ	А	ΔΑ	В	ΔB	ΔΤ,Κ
4.1	27665,4	1503,5	-18,27	0,9	1400-2000	22826,69	1322,9	-12,5	0,69	1600-2300	16512,91	1333,1	-6,75	0,61	1900-2500
4.2	-1567,22	98,85	4,33	0,10	800-1300	-1714,0	11,91	4,50	0,01	800-1400	-1807,86	21,20	4,59	0,02	800-1400
4.3	-6899,61	314,22	8,81	0,31	800-1300	-7417,7	444.63	9,32	0,39	800-1600	189893,5	10890	-497	6,54	1400-2000
4.4	-15927,1	143,09	27,23	0,13	800-1400	-16230,9	184,58	27,6	0,16	800-1600	-16999,8	289,91	28,31	0,23	800-2000
4.5	-6615,45	356,24	11,77	0,35	800-1300	-6579,52	267,25	11,7	0,24	800-1500	-6505,95	171,11	11,61	0,14	800-1700
4.6	-1298,85	123,4	1,78	0,11	800-1400	-2376,14	193,05	2,66	0,14	1100-1600	-3339,92	293,38	3,41	0,19	1100-2000
4.7	-3963,27	13,94	7,56	0,14	500-2100	-3933,47	19,57	7,52	0,02	500-2400	-3872,45	30,17	7,44	0,02	500-2900
4.8	-863,90	6,35	2,28	0,01	600-1200	-869,32	16,46	2,29	0,02	600-1500	-975,0	14,45	2,38	0,02	600-1400
4.9	-5071,97	90,32	9,71	0,09	500-2100	-5009,16	82,04	9,63	0,07	500-2400	-5061,1	181,38	11,01	0,23	500-1400
4.10	47000,47	2772,7	-40,1	1,62	1400-2100	44763,26	1950,9	-33,8	0,97	1700-2400	34638,46	1473,9	-24,8	0,61	2000-2900
4.11	-964,21	41,98	2,95	0,05	800-1100	-1031,72	41,68	2,93	0,04	800-1200	-1011,71	36,36	2,99	0,03	800-1400
4.12	-1420,39	39,77	1,62	0,04	600-2100	-1628,07	20,43	2,05	0,01	600-2200	-1735,84	32,17	2.07	0.03	600-2200
4.13	-2604,56	106,87	-18,64	0,10	800-1400	-2503,57	111,12	-20,7	0,11	1100-1600	-2300,63	135,42	-25,1	0,15	1100-2000
4.14	8682,47	290,67	-21,6	0,33	400-2100	11248,28	86,74	-23,4	0,06	800-2500	10921,89	207,83	-23,2	0,12	900-3000
4.15	-7882,73	68,54	14,73	0,05	800-2000	-8042,47	91,45	14,9	0,06	800-2300	-8292,33	124,9	15,1	0,08	800-2700

Таблица 10 – Зависимость значений теплофизических характеристик от температуры для бинарных индивидуальных соединений при различных условиях в атмосфере Ar.

	конд	ценсиров	анная фа	аза	обла	сть фазо	вого пер	ехода		паро	эвая фаза	
Р	10^{2}	10^{3}	10 ⁴	10^{5}	10^{2}	10^{3}	10 ⁴	10^{5}	10^{2}	10^{3}	10^{4}	10^{5}
Μ	23,45	23,45	23,45	23,45	23,56	23,56	23,56	23,56	23,59	23,59	23,59	23,59
	23,59	23,56	23,56	23,59	23,59	23,59	23,59	23,59	23,59	23,59	23,59	23,59
Т	500	500	500	500	1000	1100	1200	1400	1200	1500	1600	1800
	1000	1100	1200	1400	1200	1500	1600	1800	3000	3000	3000	3000
U	0	0	0	0	16,42	17,03	19,54	24,65	21,98	23,24	25,75	29,51
	16,42	17,03	19,54	24,65	21,98	23,24	25,75	29,51	39,49	39,49	39,49	39,49
Т	300	300	300	300	1400	1500	1700	2000	1600	1700	1900	2200
	1400	1500	1700	2000	1600	1700	1900	2200	3000	3000	3000	3000
Ι	0	0	0	0	24,90	30,54	35,01	38,68	30,36	34,89	39,06	42,57
	24,90	30,54	35,01	38,68	30,36	34,89	39,06	42,57	61,96	61,96	61,96	61,96
Т	300	300	300	300	1400	1600	1800	2000	1500	1700	1900	2100
	1400	1600	1800	2000	1500	1700	1900	2100	3000	3000	3000	3000
М	39,94	39,94	39,94	39,94	39,94	39,94	39,94	39,94	41,38	41,40	41,42	41,40
Mg	39,94	39,94	39,94	39,94	41,38	41,40	41,42	41,40	42,38	42,38	42,38	42,38
Т	300	300	300	300	800	900	1000	1100	1200	1400	1600	1800
	800	900	1000	1100	1200	1400	1600	1800	3000	3000	3000	3000
Rg	8,86	8,86	8,86	8,86	8,83	8,83	8,82	8,82	8,51	8,52	8,52	8,51
	8,83	8,83	8,82	8,82	8,51	8,52	8,52	8,51	8,31	8,31	8,31	8,31
Т	300	300	300	300	800	900	1000	1100	1200	1300	1500	1800
	800	900	1000	1100	1200	1300	1500	1800	3000	3000	3000	3000
C _{pg}	0,0221	0,0221	0,0221	0,0221	0,0220	0,0220	0,0220	0,0220	0,021	0,021	0,021	0,021
	0,0220	0,0220	0,0220	0,0220	0,021	0,021	0,021	0,021	0,020	0,020	0,020	0,020
Т	300	300	300	300	800	900	1000	1100	1200	1300	1500	1800
	800	900	1000	1100	1200	1300	1500	1800	3000	3000	3000	3000
Ζ	0,077	0,077	0,077	0,077	0,07	0,077	0,077	0,077	0,036	0,037	0,036	0,037
	0,077	0,077	0,077	0,077	0,036	0,037	0,036	0,037	0	0	0	0
Т	600	600	600	600	800	900	1000	1100	1200	1300	1500	1700
	800	900	1000	1100	1200	1300	1500	1700	1600	1700	1900	2200
_				-		D'			-			

 Bi_2Sn_3

Bi₇Pb₃

		конденс	ированн	ая фаза		обла	сть фазо	вого пер	ехода	паровая фаза			
Р	10^{2}	10^{3}	10 ⁴	10^{5}	10^{2}	10^{3}	10 ⁴	10 ⁵	10^{2}	10^{3}	10 ⁴	10^{5}	
М	20.54	20.54	20.54	20.54	20.72	20.73	20.74	20.74	20.62	20.64	20.63	20.63	
	20.72	20.73	20.74	20.74	20.62	20.64	20.63	20.63	20.81	20.81	20.81	20.81	
Т	700	700	700	700	800	900	1000	1200	1000	1100	1300	1500	
	800	900	1000	1200	1000	1100	1300	1500	3000	3000	3000	3000	
U	0	0	0	0	8.35	9.69	11.02	12.36	18.93	19.95	20.82	23.43	
	8.35	9.69	11.02	12.36	18.93	19.95	20.82	23.43	43.56	43.56	43.56	43.56	
Т	300	300	300	300	900	1000	1100	1200	1100	1200	1300	1500	
	900	1000	1100	1200	1100	1200	1300	1500	3000	3000	3000	3000	
Ι	0	0	0	0	13.13	15.26	17.39	21.75	25.60	27.45	29.15	33.42	
	13.13	15.26	17.39	21.75	25.60	27.45	29.15	33.42	66.03	66.03	66.03	66.03	
Т	0	0	0	0	900	1000	1100	1300	1100	1200	1300	1400	
	900	1000	1100	1300	1100	1200	1300	1400	3000	3000	3000	3000	
Cp	0.0213	0.0213	0.0213	0.0213	0.0212	0.0212	0.0213	0.0213	0.0207	0.0208	0.0208	0.0208	
1	0.0212	0.0212	0.0213	0.0213	0.0207	0.0208	0.0208	0.0208	0.0210	0.0210	0.0210	0.0210	

Т	300	300	300	300	900	1000	1100	1200	1300	1400	1600	1800
	900	1000	1100	1200	1300	1400	1600	1800	3000	3000	3000	3000
Μ	39.94	39.94	39.94	39.94	39.94	39.94	39.94	39.94	48.29	48.35	48.46	48.28
Mg	39,94	39.94	39.94	39.94	48.29	48.35	48.46	48.28	48.09	48.09	48.09	48.09
Т	300	300	300	300	900	1000	1100	1200	1100	1200	1300	1500
	900	1000	1100	1200	1100	1200	1300	1500	3000	3000	3000	3000
Ra	10.07	10.07	10.07	10.07	10.07	10.07	10.07	10.07	8.31	8.31	8.31	8.31
g	10.07	10.07	10.07	10.07	8.31	8.31	8.31	8.31	8.31	8.31	8.31	8.31
Т	300	300	300	300	900	1000	1100	1200	1100	1200	1300	1500
_	900	1000	1100	1200	1100	1200	1300	1500	3000	3000	3000	3000
C	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.020	0.020	0.020	0.020
Opg	0.025	0.025	0.025	0.025	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
Т	300	300	300	300	900	1000	1100	1200	1100	1200	1300	1500
1	900	1000	1100	1200	1100	1200	1300	1500	3000	3000	3000	3000
2	0.017	0.017	0.017	0.017	0.038	0.040	0.045	0.048	0.030	0.040	0.044	0.040
λ	0.017	0.017	0.017	0.017	0.030	0.040	0.043	0.048	0.039	0.040	0.044	0.049
т	300	300	300	300	0.039	1000	1100	1300	1100	1200	1300	1500
1	000	1000	1100	1200	900	1200	1200	1500	2000	2000	2000	2000
7	900	1000	0.0208	0.0208	0.0208	0.0208	1300	0.0208	3000	3000	3000	3000
	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	1000	0.0208	1100	1200	1200	1500
1	600	600	600	600	800	900	1000	1500	2000	1200	1300	1500
	800	900	1000	1100	1100	1200	1300	1500	3000	3000	3000	3000
						Bi ₇ I	Pb					
	КОН	іденсиро	ванная (фаза	обла	сть фазо	вого пер	ехода		пар	овая фаза	
Р	10^{2}	10^{3}	10^{4}	10 ⁵	10^{2}	10^{3}	104	10^{5}	10^{2}	10^{3}	104	10 ⁵
Μ	21.40	21.40	21.40	21.40	21.61	21.62	21.62	21.62	21.41	21.43	21.47	21.47
	21.61	21.62	21.62	21.62	21.41	21.43	21.47	21.47	21.64	21.64	21.64	21.64
Т	700	700	700	700	800	900	1000	1100	1000	1100	1300	1400
	800	900	1000	1100	1000	1100	1300	1400	3000	3000	3000	3000
U	0	0	0	0	8.22	9.53	10.84	12.16	16.79	17.82	18.70	21.30
	8.22	9.53	10.84	12.16	16.79	17.82	18.70	21.30	41.29	41.29	41.29	41.29
Т	300	300	300	300	900	1000	1100	1200	1100	1200	1300	1500
	900	1000	1100	1200	1100	1200	1300	1500	3000	3000	3000	3000
Ι	0	0	0	0	13.04	15.15	17.27	22.66	20.30	25.32	27.03	31.30
	13.04	15.15	17.27	22.66	20.30	25.32	27.03	31.30	63.76	63.76	63.76	63.76
Т	300	300	300	300	900	1000	1100	1200	1100	1200	1300	1500
	900	1000	1100	1200	1100	1200	1300	1500	3000	3000	3000	3000
C _n	0.0212	0.0212	0.0212	0.0212	0.0211	0.0211	0.0211	0.0211	0.0208	0.0208	0.0208	0.0208
1	0.0211	0.0211	0.0211	0.0211	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208	0.0208
Т	300	300	300	300	300	1000	1100	1300	1300	1400	1600	1800
	900	1000	1100	1300	1300	1400	1600	1800	3000	3000	3000	3000
MM _σ	39.94	39.94	39.94	39.94	39.94	39.94	39.94	39.94	46.68	46.47	46.57	46.55
0	39.94	39.94	39.94	39.94	46.68	46.47	46.57	46.55	40.25	40.25	40.25	40.25
Т	300	300	300	300	800	900	1000	1100	1000	1200	1300	1500
	800	900	1000	1100	1000	1200	1300	1500	3000	3000	3000	3000
Rø	9.67	9.67	9.67	9.67	9.62	9.62	9.62	9.62	8.31	8.31	8.31	8.31
8	9.62	9.62	9.62	9.62	8.31	8.31	8.31	8.31	8.31	8.31	8.31	8.31
Т	300	300	300	300	800	900	1000	1100	1000	1200	1300	1500
	800	900	1000	1100	1000	1200	1300	1500	3000	3000	3000	3000
C _{pg}	0.0241	0.0241	0.0241	0.0241	0.0240	0.0240	0.0240	0.0240	0.0209	0.0209	0.0209	0.0209
10	0.0240	0.0240	0.0240	0.0240	0.0209	0.0209	0.0209	0.0209	0.0209	0.0209	0.0209	0.0209
Т	300	300	300	300	800	900	1000	1100	1000	1200	1300	1500
	800	900	1000	1100	1000	1200	1300	1500	3000	3000	3000	3000
λ	0.0178	0.0178	0.0178	0.0178	0.0380	0.040	0.043	0.048	0.0386	0.041	0.045	0.050
	0.038	0.0407	0.043	0.048	0.0386	0.041	0.045	0.050	0.078	0.078	0.078	0.078
Т	300	300	300	300	900	1000	1100	1300	1000	1100	1300	1500
-	900	1000	1100	1300	1000	1100	1300	1500	3000	3000	3000	3000
Z	0.167	0.167	0.167	0.167	0.167	0.167	0.167	0.167	0	0	0	0
	0.167	0.167	0.167	0.167	0	0	0	0				
Т	600	600	600	600	800	900	1000	1100	1000	1200	1300	1500
-----------------	-----------------	----------	-----------------	----------	----------	-------------------	-----------------	----------	-----------------	----------	-----------------	----------------
	800	900	1000	1100	1000	1200	1300	1500	3000	3000	3000	3000
						Ph _a F	Ri					
					1 .	1 031	J1 ₄					
	КОН	иденсиро	ванная (раза	обла	сть фазо	вого пер	ехода		паро	эвая фаза	Ę
Р	10 ²	10°	104	105	10^{2}	103	104	105	10 ²	10°	104	103
М	21.91	21.91	21.91	21.91	21.99	22.00	22.01	22.01	21.97	21.97	21.99	21.99
	21.99	22.00	22.01	22.01	21.97	21.97	21.99	21.99	22.08	22.08	22.08	22.08
Т	700	700	700	700	900	900	1000	1200	1000	1100	1200	1400
	900	900	1000	1200	1000	1100	1200	1400	1400	1500	1800	2100
U	0	0	0	0	8.028	9.335	10.643	11.954	16.09	17.231	18.280	20.83
	8.028	9.335	10.643	11.954	16.09	17.231	18.280	20.83	40.23	40.23	40.23	40.23
Т	300	300	300	300	900	1000	1100	1200	1100	1200	1300	1500
	900	1000	1100	1200	1100	1200	1300	1500	3000	3000	3000	3000
Ι	0	0	0	0	12.89	15.00	17.11	21.35	22.76	24.72	26.60	30.82
	12.89	15.00	17.11	21.35	22.76	24.72	26.60	30.82	62.69	62.69	62.69	62.69
Т	300	300	300	300	900	1000	1100	1300	1100	1200	1300	1500
1	900	1000	1100	1300	1100	1200	1300	1500	3000	3000	3000	3000
С	0.0212	0.0212	0.0212	0.0212	0.0211	0.0211	0.0211	0.0211	0.0207	0.0207	0.0208	0.0208
Сp	0.0212	0.0212	0.0212	0.0212	0.0211	0.0211	0.0211	0.0211	0.0207	0.0207	0.0200	0.0200
т	700	700	700	700	0.0207	1000	1100	1200	1200	1400	1600	1800
1	000	1000	1100	1200	1200	1400	1600	1200	3000	3000	3000	3000
MM	900	20.049	20.049	20.049	20.049	20.049	20.049	20.049	45 200	3000	5000	3000
WIWIg	39.948	39.948	39.948	39.948	39.948	39.948	39.948	39.948	45.398	45.397	45.451	45.441
	39.948	39.948	39.948	39.948	45.368	45.397	45.451	45.441	45.30	45.30	45.30	45.30
Т	300	300	300	300	800	900	1000	1100	1100	1200	1300	1500
_	800	900	1000	1100	1100	1200	1300	1500	3000	3000	3000	3000
R _g	9.470	9.470	9.470	9.470	9.460	9.457	9.455	9.453	8.314	8.314	8.314	8.314
	9.460	9.457	9.455	9.455	8.314	8.314	8.314	8.314	8.314	8.314	8.314	8.314
Т	300	300	300	300	800	900	1000	1100	1100	1200	1300	1500
	800	900	1000	1100	1100	1200	1300	1500	3000	3000	3000	3000
C _{pg}	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0236	0.0208	0.0208	0.0208	0.0208
10	0.0236	0.0236	0.0236	0.0236	0.0208	0.0208	0.0208	0.0208	0.0209	0.0209	0.0209	0.0209
Т	300	300	300	300	800	900	1000	1100	1100	1200	1300	1500
	800	900	1000	1100	1100	1200	1300	1500	3000	3000	3000	3000
λ	0.0178	0.0178	0.0178	0.0178	0.0380	0.0407	0.0433	0.0483	0.0388	0.0432	0.0457	0.0502
	0.0380	0.0407	0.0433	0.0483	0.0388	0.0432	0.0457	0.0502	0.079	0.079	0.079	0.079
Т	300	300	300	300	900	1000	1100	1300	1000	1200	1300	1500
-	900	1000	1100	1300	1000	1200	1300	1500	3000	3000	3000	3000
Z	0 147	0.147	0.0147	0.0147	0.145	0.145	0.145	0.145	0	0	0	0
2	0.0145	0.0145	0.145	0.0145	0.115	0.115	0.115	0.115	Ŭ	Ū	Ū	0
т	600	600	600	600	800	900	1000	1100	1100	1200	1300	1500
1	800	000	1000	1100	1100	1200	1300	1500	3000	3000	3000	3000
	800	900	1000	1100	1100	1200	1300	1500	3000	3000	3000	3000
						Pb_3	B1					
	КОН	іденсиро	ванная (раза	обла	сть фазо	вого пер	ехода		паро	эвая фаза	
Р	10^{2}	10^{3}	10 ⁴	10^{5}	10^{2}	10^{3}	10 ⁴	10^{5}	10^{2}	10^{3}	10 ⁴	10^{5}
М	23.264	23.264	23.264	23.264	23.298	23.303	23.305	23.306	23.349	23.348	23.350	23.349
	23.298	23.303	23.305	23.306	23.349	23.348	23.350	23.349	23.353	23.353	23.353	23.353
Т	700	700	700	700	900	1000	1100	1200	1100	1200	1400	1600
_	900	1000	1100	1200	1100	1200	1400	1600	3000	3000	3000	3000
U	0	0	0	0	7,736	9.018	10.30					
Ŭ	7.736	9.018	10.301	14,177	10.027	13.2	1					
Т	300	300	300	300	900	1000	1100	1	ł	ł		
1	900	1000	1100	1300	1000	1000	1300					
т	0	0000	0	1300	12 66	1176	16.06	21.14	17.04	10.02	24.15	25.50
1	12 66	1476	16.94	21 14	12.00	14./0	24.15	21.14	1/.80	19.93	24.13 50.29	23.39 50.69
т	12.00	14.70	200	21.14	17.80	19.93	24.13	25.59	1000	1100	1200	J7.00
1	300	500	300	300	900	1000	1100	1200	1000	1100	1300	1400
	900	1000	1100	1200	1000	1100	1300	1400	3000	3000	3000	3000

-p	0.010	0.020	0.020	0.020	0.021	0.021	0.021	0.021	0.020	0.020	0.020	0.020
	0.021	0.021	0.021	0.021	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
Т	300	300	300	300	900	1000	1100	1200	1000	1100	1300	1500
	900	100	1100	1200	1000	1100	1300	1500	3000	3000	3000	3000
MMa	39.94	39.94	39.94	39.94	39.94	39.94	39.94	39.94	42.85	42.85	42.85	42.85
5	39.94	39.94	39.94	39.94	42.85	42.85	42.83	42.83	42.85	42.85	42.85	42.85
Т	300	300	300	300	800	900	1000	1100	1000	1100	1300	1500
1	800	900	1000	1100	1000	1100	1300	1500	3000	3000	3000	3000
D	8.02	900	8.02	9 02	8.02	8.02	8.02	8.02	9 21	9 21	9 21	9 21
к _g	0.95	0.95	0.95	0.95	0.95	0.95	0.92	0.92	0.31	0.51	0.51	0.31 9.21
T	0.95	200	0.92	0.92	0.31	0.31	0.31	0.31	0.31	0.51	1200	0.31
1	300	300	300	300	800	900	1000	1100	1000	1100	1300	1500
~	800	900	1000	1100	1000	1100	1300	1500	3000	3000	3000	3000
C _{pg}	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.020	0.020	0.020	0.020
	0.022	0.022	0.022	0.022	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
Т	00	300	300	300	800	900	1000	1100	1000	1100	1300	1500
	800	900	1000	1100	1000	1100	1300	1500	3000	3000	3000	3000
λ	0.017	0.017	0.017	0.017	0.038	0.040	0.043	0.048	0.039	0.041	0.046	0.051
	0.038	0.040	0.043	0.048	0.039	0.041	0.046	0.051	0.081	0.081	0.081	0.081
Т	300	300	300	300	900	1000	1100	1300	1000	1100	1300	1500
	900	1000	1100	1300	1000	1100	1300	1500	3000	3000	3000	3000
Z	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0	0	0	0
2	0.003	0.003	0.003	0.003	0.005	0.005	0.005	0.005	Ŭ	Ū	Ū	Ū
т	600	600	600	600	800	000	1000	1100	1000	1100	1200	1500
1	800	000	1000	1100	1000	900	1200	1500	2000	2000	2000	2000
	800	900	1000	1100	1000	1100	1500	1300	3000	3000	5000	3000
						PbS	n ₃					
	кон	денсиро	ванная d	раза	облас	сть фазон	зого пере	ехода		паро	эвая фаза	
Р	10^{2}	10 ³	104	10 ⁵	10^{2}	10^{3}	10^{4}	10 ⁵	10^{2}	10^{3}	10^{4}	10^{5}
M	23.92	23.92	23.92	23.92	23.98	23.98	23.98	23.98	24.02	24.02	24.02	24.02
	23.98	23.98	23.98	23.98	24.02	24.02	24.02	24.02	24.02	24.02	24.02	24.02
т	300	300	300	300	000	1000	1100	1200	1200	1300	1500	1800
1	500	500	500	500	900	1000	1100	1200	1200	1500	1500	1000
	000	1000	1100	1200	1200	1300	1500	1800	3000	3000	3000	3000
IJ	900	1000	1100	1200	1200	1300	1500	1800	3000	3000	3000	3000
U	900 0	1000 0	1100 0	1200 0	1200 15.46	1300 16.13	1500 18.35	1800 21.67	3000 19.42	3000 22.21	3000 24.72	3000 26.67
U	900 0 15.46	1000 0 16.13	1100 0 18.35	1200 0 21.67	1200 15.46 19.42	1300 16.13 22.21	1500 18.35 24.72	1800 21.67 26.67	3000 19.42 38.51	3000 22.21 38.51	3000 24.72 38.51	3000 26.67 38.51
U T	900 0 15.46 300	1000 0 16.13 300	1100 0 18.35 300	1200 0 21.67 300	1200 15.46 19.42 1400	1300 16.13 22.21 1500	1500 18.35 24.72 1700	1800 21.67 26.67 1900	3000 19.42 38.51 1500	3000 22.21 38.51 1700	3000 24.72 38.51 1900	3000 26.67 38.51 2100
U T	900 0 15.46 300 1400	1000 0 16.13 300 1500	1100 0 18.35 300 1700	1200 0 21.67 300 1900	1200 15.46 19.42 1400 1500	1300 16.13 22.21 1500 1700	1500 18.35 24.72 1700 1900	1800 21.67 26.67 1900 2100	3000 19.42 38.51 1500 3000	3000 22.21 38.51 1700 3000	3000 24.72 38.51 1900 3000	3000 26.67 38.51 2100 3000
U T I	900 0 15.46 300 1400 0	1000 0 16.13 300 1500 0	1100 0 18.35 300 1700 0	1200 0 21.67 300 1900 0	1200 15.46 19.42 1400 1500 23.82	1300 16.13 22.21 1500 1700 25.27	1500 18.35 24.72 1700 1900 31.68	1800 21.67 26.67 1900 2100 34.27	3000 19.42 38.51 1500 3000 29.40	3000 22.21 38.51 1700 3000 33.87	3000 24.72 38.51 1900 3000 38.04	3000 26.67 38.51 2100 3000 41.62
U T I	900 0 15.46 300 1400 0 22.82	1000 0 16.13 300 1500 0 25.27	1100 0 18.35 300 1700 0 31.68	1200 0 21.67 300 1900 0 34.27	1200 15.46 19.42 1400 1500 23.82 29.40	1300 16.13 22.21 1500 1700 25.27 33.87	1500 18.35 24.72 1700 1900 31.68 38.04	1800 21.67 26.67 1900 2100 34.27 41.62	3000 19.42 38.51 1500 3000 29.40 60.97	3000 22.21 38.51 1700 3000 33.87 60.97	3000 24.72 38.51 1900 3000 38.04 60.97	3000 26.67 38.51 2100 3000 41.62 60.97
U T I T	900 0 15.46 300 1400 0 22.82 300	1000 0 16.13 300 1500 0 25.27 300	1100 0 18.35 300 1700 0 31.68 300	1200 0 21.67 300 1900 0 34.27 300	1200 15.46 19.42 1400 1500 23.82 29.40 1400	1300 16.13 22.21 1500 1700 25.27 33.87 1500	1500 18.35 24.72 1700 1900 31.68 38.04 1800	1800 21.67 26.67 1900 2100 34.27 41.62 1900	3000 19.42 38.51 1500 3000 29.40 60.97 1500	3000 22.21 38.51 1700 3000 33.87 60.97 1700	3000 24.72 38.51 1900 3000 38.04 60.97 1900	3000 26.67 38.51 2100 3000 41.62 60.97 2100
U T I T	900 0 15.46 300 1400 0 22.82 300 1400	1000 0 16.13 300 1500 0 25.27 300 1500	1100 0 18.35 300 1700 0 31.68 300 1800	1200 0 21.67 300 1900 0 34.27 300 1900	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000
U T I T C _p	900 0 15.46 300 1400 0 22.82 300 1400 0.021	1000 0 16.13 300 1500 0 25.27 300 1500 0.021	1100 0 18.35 300 1700 0 31.68 300 1800 0.021	1200 0 21.67 300 1900 0 34.27 300 1900 0.021	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500 0.020	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020
U T I C _p	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020	1000 0 16.13 300 1500 0 25.27 300 1500 0.021 0.020	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500 0.020 0.020	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020 0.020	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020 0.020	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020 0.020	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 0.020
U T I C _p T	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300	1000 0 16.13 300 1500 0 25.27 300 1500 0.021 0.020 300	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 300	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500 0.020 0.020 900	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 0.020 1000	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020 0.020 0.020 1100	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020 0.020 1200	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 0.020 1100	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 0.020 1300	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020 0.020 1400	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 0.020 1600
U T I C _p T	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900	1000 0 16.13 300 1500 0 25.27 300 1500 0.021 0.020 300 1000	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 300 1200	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500 0.020 0.020 0.020 900 1100	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 0.020 1000 1300	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020 0.020 0.020 1100 1400	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020 0.020 1200 1600	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 0.020 1100 3000	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 0.020 1300 3000	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020 0.020 1400 3000	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 0.020 1600 3000
U T I C _p T	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900 39.94	1000 0 16.13 300 1500 0 25.27 300 1500 0.021 0.020 300 1000 39.94	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100 39.94	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 300 1200 39.94	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500 0.020 0.020 0.020 900 1100 39.94	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 0.020 1000 1300 39.94	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020 0.020 0.020 1100 1400 39.94	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020 0.020 1200 1600 39.94	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 0.020 1100 3000 41.54	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 0.020 1300 3000 41.62	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020 0.020 1400 3000 41.63	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 0.020 1600 3000 41.63
U T T C _p T MM _g	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900 39.94 39.94	1000 0 16.13 300 1500 0 25.27 300 1500 0.021 0.020 300 1000 39.94 39.94	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100 39.94 39.94	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 300 1200 39.94 39.94	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500 0.020 0.020 900 1100 39.94 41.54	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 0.020 1000 1300 39.94 41.62	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020 0.020 0.020 1100 1400 39.94 41.63	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020 0.020 1200 1600 39.94 41.63	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 0.020 1100 3000 41.54 41.64	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 0.020 1300 3000 41.62 41.64	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020 0.020 1400 3000 41.63 41.64	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 0.020 1600 3000 41.63 41.64
U T T C _p T MM _g	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900 39.94 39.94 300	1000 0 16.13 300 1500 0 25.27 300 1500 0.021 0.020 300 1000 39.94 39.94 300	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100 39.94 39.94 300	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 300 1200 39.94 39.94 300	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500 0.020 0.020 900 1100 39.94 41.54 900	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 0.020 1000 1300 39.94 41.62 1000	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020 0.020 0.020 1100 1400 39.94 41.63 1100	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020 0.020 1200 1600 39.94 41.63	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 0.020 1100 3000 41.54 41.64	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 0.020 1300 3000 41.62 41.64	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020 0.020 1400 3000 41.63 41.64 1900	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 0.020 1600 3000 41.63 41.64 2200
U T T C _p T MM _g T	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900 39.94 39.94 300 900	1000 0 16.13 300 1500 0 25.27 300 1500 0.021 0.020 300 1000 39.94 39.94 300 1000	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100 39.94 39.94 300 1100	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 300 1200 39.94 39.94 300 1300	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500 0.020 0.020 900 1100 39.94 41.54 900 1500	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 1000 1300 39.94 41.62 1000 1700	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020 0.020 0.020 1100 1400 39.94 41.63 1100	$\begin{array}{c} 1800\\ 21.67\\ 26.67\\ 1900\\ 2100\\ 34.27\\ 41.62\\ 1900\\ 2100\\ 0.020\\ 0.020\\ 1200\\ 1600\\ 39.94\\ 41.63\\ 1300\\ 2200\\ \end{array}$	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 0.020 1100 3000 41.54 41.64 1500 3000	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 0.020 1300 3000 41.62 41.64 1700 3000	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020 0.020 1400 3000 41.63 41.64 1900 3000	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 0.020 1600 3000 41.63 41.64 2200 3000
U T T C _p T MM _g T	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900 39.94 39.94 300 900 8.60	1000 0 16.13 300 1500 0 25.27 300 1500 0.021 0.020 300 1000 39.94 39.94 300 1000 8.60	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100 39.94 39.94 300 1100 2.60	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 300 1200 39.94 39.94 300 1300 × 60	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500 0.020 0.020 900 1100 39.94 41.54 900 1500 2.66	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 1000 1300 39.94 41.62 1000 1700 8.66	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020 0.020 0.020 1100 1400 39.94 41.63 1100 1900 8.66	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020 0.020 0.020 1200 1600 39.94 41.63 1300 2200 8.67	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 0.020 1100 3000 41.54 41.64 1500 3000 8.51	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 0.020 1300 3000 41.62 41.64 1700 3000 8.40	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020 0.020 1400 3000 41.63 41.64 1900 3000 8 50	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 0.020 1600 3000 41.63 41.64 2200 3000 8 56
U T T C _p T MM _g T R _g	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900 39.94 39.94 39.94 300 900 8.69 8.69	1000 0 16.13 300 1500 0 25.27 300 1500 0.021 0.020 300 1000 39.94 39.94 300 1000 8.69 8.69 8.66	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100 39.94 39.94 300 1100 8.69 8.69 8.69	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 300 1200 39.94 39.94 300 1300 8.69 8.67	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500 0.020 0.020 900 1100 39.94 41.54 900 1500 8.66 8.51	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 1000 1300 39.94 41.62 1000 1700 8.66 8.40	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020 0.020 1100 1400 39.94 41.63 1100 1900 8.66 8.50	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020 0.020 1200 1600 39.94 41.63 1300 2200 8.67 \$ 56	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 1100 3000 41.54 41.64 1500 3000 8.51 8.21	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 1300 3000 41.62 41.64 1700 3000 8.49 8.21	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020 0.020 1400 3000 41.63 41.64 1900 3000 8.50 8.21	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 0.020 1600 3000 41.63 41.64 2200 3000 8.56 8.31
U T T C _p T MM _g T R _g	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900 39.94 39.94 39.94 300 900 8.69 8.66	1000 0 16.13 300 1500 0 25.27 300 1500 0.021 0.020 300 1000 39.94 39.94 300 1000 8.69 8.66 200	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100 39.94 39.94 300 1100 8.69 8.66 200	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 300 1200 39.94 39.94 300 1300 8.69 8.67 200	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500 0.020 0.020 900 1100 39.94 41.54 900 1500 8.66 8.51	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 1000 1300 39.94 41.62 1000 1700 8.66 8.49 1000	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020 0.020 1100 1400 39.94 41.63 1100 1900 8.66 8.50 1100	$\begin{array}{r} 1800\\ 21.67\\ 26.67\\ 1900\\ 2100\\ 34.27\\ 41.62\\ 1900\\ 2100\\ 0.020\\ 0.020\\ 1200\\ 1600\\ 39.94\\ 41.63\\ 1300\\ 2200\\ 8.67\\ 8.56\\ 1200\end{array}$	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 0.020 1100 3000 41.54 41.64 1500 3000 8.51 8.31	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 0.020 1300 3000 41.62 41.64 1700 3000 8.49 8.31	$\begin{array}{r} 3000\\ 24.72\\ 38.51\\ 1900\\ 3000\\ 38.04\\ 60.97\\ 1900\\ 3000\\ 0.020\\ 0.020\\ 0.020\\ 1400\\ 3000\\ 41.63\\ 41.64\\ 1900\\ 3000\\ 8.50\\ 8.31\\ 1600\\ \end{array}$	$\begin{array}{r} 3000\\ \hline 3000\\ \hline 26.67\\ \hline 38.51\\ \hline 2100\\ \hline 3000\\ \hline 41.62\\ \hline 60.97\\ \hline 2100\\ \hline 3000\\ \hline 0.020\\ \hline 0.020\\ \hline 0.020\\ \hline 1600\\ \hline 3000\\ \hline 41.63\\ \hline 41.64\\ \hline 2200\\ \hline 3000\\ \hline 8.56\\ \hline 8.31\\ \hline 1000\\ \hline \end{array}$
U T T C _p T MM _g T R _g T	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900 39.94 39.94 300 900 8.69 8.66 300 0.020	1000 0 16.13 300 1500 0 25.27 300 1500 0.021 0.020 300 1000 39.94 39.94 300 1000 8.69 8.66 300 1000	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100 39.94 39.94 300 1100 8.69 8.66 300 1100	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 300 1200 39.94 39.94 300 1300 8.69 8.67 300 1200	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500 0.020 0.020 900 1100 39.94 41.54 900 1500 8.66 8.51 900	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 1000 1300 39.94 41.62 1000 1700 8.66 8.49 1000 1500	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020 0.020 0.020 1100 1400 39.94 41.63 1100 1900 8.66 8.50 1100 1.62	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020 0.020 1200 1600 39.94 41.63 1300 2200 8.67 8.56 1200 1200	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 0.020 1100 3000 41.54 41.64 1500 3000 8.51 8.31 1200	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 0.020 1300 3000 41.62 41.64 1700 3000 8.49 8.31 1500	$\begin{array}{r} 3000\\ 24.72\\ 38.51\\ 1900\\ 3000\\ 38.04\\ 60.97\\ 1900\\ 3000\\ 0.020\\ 0.020\\ 0.020\\ 1400\\ 3000\\ 41.63\\ 41.64\\ 1900\\ 3000\\ 8.50\\ 8.31\\ 1600\\ 1600\\ 1600\\ \end{array}$	$\begin{array}{r} 3000\\ 26.67\\ 38.51\\ 2100\\ 3000\\ 41.62\\ 60.97\\ 2100\\ 3000\\ 0.020\\ 0.020\\ 1600\\ 3000\\ 41.63\\ 41.64\\ 2200\\ 3000\\ 8.56\\ 8.31\\ 1800\\ 2200\\ \end{array}$
U T T C _p T MM _g T R _g	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900 39.94 39.94 39.94 300 900 8.69 8.66 300 900	1000 0 16.13 300 1500 0 25.27 300 1500 0.021 0.020 300 1000 39.94 39.94 300 1000 8.69 8.66 300 1000	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100 39.94 39.94 300 1100 8.69 8.66 300 1100	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 300 1200 39.94 39.94 300 1300 8.69 8.67 300 1200 300 1200 39.94 300 1300 1300 1300 1300 1200 300 1200 1300 1200 1300 1200 1300 1200 1300 1200 1300 1200 1300 1200 1300 1300 1300 1200 1300 1200 1300 1000 1	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500 0.020 0.020 900 1100 39.94 41.54 900 1500 8.66 8.51 900 1200	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 1000 1300 39.94 41.62 1000 1700 8.66 8.49 1000 1500 1500 1000 1500 1700 1000 170	$\begin{array}{c} 1500\\ 18.35\\ 24.72\\ 1700\\ 1900\\ 31.68\\ 38.04\\ 1800\\ 1900\\ 0.020\\ 0.020\\ 0.020\\ 1100\\ 1400\\ 39.94\\ 41.63\\ 1100\\ 1900\\ 8.66\\ 8.50\\ 1100\\ 1600\\ 10$	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020 0.020 1200 1600 39.94 41.63 1300 2200 8.67 8.56 1200 1800	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 0.020 1100 3000 41.54 41.64 1500 3000 8.51 8.31 1200 1600	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 0.020 1300 3000 41.62 41.64 1700 3000 8.49 8.31 1500 1700	$\begin{array}{r} 3000\\ 24.72\\ 38.51\\ 1900\\ 3000\\ 38.04\\ 60.97\\ 1900\\ 3000\\ 0.020\\ 0.020\\ 0.020\\ 1400\\ 3000\\ 41.63\\ 41.64\\ 1900\\ 3000\\ 8.50\\ 8.31\\ 1600\\ 1900\\ \end{array}$	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 0.020 1600 3000 41.63 41.64 2200 3000 8.56 8.31 1800 2200
$\begin{tabular}{c} U \\ \hline T \\ \hline T \\ \hline T \\ \hline C_p \\ \hline T \\ \hline MM_g \\ \hline T \\ \hline R_g \\ \hline T \\ \hline C_{pg} \\ \end{tabular}$	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900 39.94 300 900 8.69 8.66 300 900	1000 0 16.13 300 1500 0 25.27 300 1500 0.021 0.020 300 1000 39.94 39.94 300 1000 8.69 8.66 300 1000 0.021	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100 39.94 39.94 300 1100 8.69 8.66 300 1100 0.021	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 300 1200 39.94 39.94 300 1300 8.69 8.67 300 1200 0.021	$\begin{array}{c} 1200\\ 15.46\\ 19.42\\ 1400\\ 1500\\ 23.82\\ 29.40\\ 1400\\ 1500\\ 0.020\\ 0.020\\ 0.020\\ 900\\ 1100\\ 39.94\\ 41.54\\ 900\\ 1500\\ 8.66\\ 8.51\\ 900\\ 1200\\ 0.020\\ \end{array}$	$\begin{array}{c} 1300\\ 16.13\\ 22.21\\ 1500\\ 1700\\ 25.27\\ 33.87\\ 1500\\ 1700\\ 0.020\\ 0.020\\ 1000\\ 1300\\ 39.94\\ 41.62\\ 1000\\ 1300\\ 39.94\\ 41.62\\ 1000\\ 1700\\ 8.66\\ 8.49\\ 1000\\ 1500\\ 0.020\\ \end{array}$	$\begin{array}{c} 1500\\ 18.35\\ 24.72\\ 1700\\ 1900\\ 31.68\\ 38.04\\ 1800\\ 1900\\ 0.020\\ 0.020\\ 0.020\\ 1100\\ 1400\\ 39.94\\ 41.63\\ 1100\\ 1900\\ 8.66\\ 8.50\\ 1100\\ 1600\\ 0.020\\ \end{array}$	$\begin{array}{c} 1800\\ 21.67\\ 26.67\\ 1900\\ 2100\\ 34.27\\ 41.62\\ 1900\\ 2100\\ 0.020\\ 0.020\\ 1200\\ 1600\\ 39.94\\ 41.63\\ 1300\\ 2200\\ 8.67\\ 8.56\\ 1200\\ 1800\\ 0.020\\ \end{array}$	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 0.020 1100 3000 41.54 41.64 1500 3000 8.51 8.31 1200 1600	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 0.020 1300 3000 41.62 41.64 1700 3000 8.49 8.31 1500 1700	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020 0.020 0.020 1400 3000 41.63 41.64 1900 3000 8.50 8.31 1600 1900	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 0.020 1600 3000 41.63 41.64 2200 3000 8.56 8.31 1800 2200
$\begin{tabular}{c} U \\ \hline T \\ \hline T \\ \hline T \\ \hline C_p \\ \hline T \\ \hline MM_g \\ \hline T \\ \hline R_g \\ \hline T \\ \hline C_{pg} \\ \hline \end{tabular}$	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900 39.94 39.94 300 900 8.69 8.66 300 900 0.021 0.021 0.020 0.021 0.021 0.020	1000 0 16.13 300 1500 0 25.27 300 1500 0.021 0.020 300 1000 39.94 39.94 300 1000 8.69 8.66 300 1000 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.020 0 0 0 0 0 0 0 0 0 0 0 0 0	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100 39.94 39.94 300 1100 8.69 8.66 300 1100 0.021 0.020 0.021 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.020 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.021 0.020 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.020 0.020	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 39.94 39.94 300 1300 8.69 8.67 300 1200 0.021 0.020 0.021 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.020 0.020 0.021 0.020 0.020 0.021 0.020 0.020 0.021 0.020 0.020 0.021 0.020 0.020 0.021 0.020 0.020 0.021 0.020 0.020 0.020 0.021 0.020 0.020 0.021 0.020 0.00	$\begin{array}{c} 1200\\ 15.46\\ 19.42\\ 1400\\ 1500\\ 23.82\\ 29.40\\ 1400\\ 1500\\ 0.020\\ 0.020\\ 0.020\\ 900\\ 1100\\ 39.94\\ 41.54\\ 900\\ 1500\\ 8.66\\ 8.51\\ 900\\ 1200\\ 0.020\\ 0.020\\ 0.020\\ 0.020\\ \end{array}$	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 1000 1300 39.94 41.62 1000 1700 8.66 8.49 1000 1500 0.020 0.020	$\begin{array}{c} 1500\\ 18.35\\ 24.72\\ 1700\\ 1900\\ 31.68\\ 38.04\\ 1800\\ 1900\\ 0.020\\ 0.020\\ 0.020\\ 1100\\ 1400\\ 39.94\\ 41.63\\ 1100\\ 1900\\ 8.66\\ 8.50\\ 1100\\ 1600\\ 0.020\\ 0.020\\ 0.020\\ 0.020\\ \end{array}$	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020 0.020 1200 1600 39.94 41.63 1300 2200 8.67 8.56 1200 1800 0.020 0.020	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 0.020 1100 3000 41.54 41.64 1500 3000 8.51 8.31 1200 1600	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 0.020 1300 3000 41.62 41.64 1700 3000 8.49 8.31 1500 1700	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020 0.020 0.020 1400 3000 41.63 41.64 1900 3000 8.50 8.31 1600 1900	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 0.020 1600 3000 41.63 41.63 41.64 2200 3000 8.56 8.31 1800 2200
$\begin{tabular}{c} U \\ \hline T \\ \hline T \\ \hline T \\ \hline C_p \\ \hline T \\ \hline MM_g \\ \hline T \\ \hline R_g \\ \hline T \\ \hline C_{pg} \\ \hline T \\ \hline T \\ \hline \end{array}$	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900 39.94 300 900 8.69 8.66 300 900 0.021 0.021 300 900 3.66 300 900 3.00 900 3.00 900 3.00 900	1000 0 16.13 300 1500 0 25.27 300 1500 0.021 0.020 300 1000 39.94 39.94 300 1000 8.69 8.66 300 1000 0.021 0.021 0.020 300 1000 8.69 8.66 300 1000 0.021 0.021 0.020 300 1000 0.021 0.020 300 1000 0 300 1000 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.00 1000 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.00 1000 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.021 30.00 1000 30.021 0.020 30.021 0.020 30.021 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.021 0.020 30.021 30.021 0.020 30.021 30.021 0.020 30.021 0.020 30.021 30.	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100 39.94 39.94 300 1100 8.69 8.66 300 1100 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 300 1100 0.021 0.020 0.020 0.021 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.020 0.021 0.021 0.020 0.021 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.020 0.021 0.020 0.020 0.021 0.020 0.020 0.021 0.020 0.020 0.021 0.020 0.020 0.020 0.021 0.020 0.0	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 39.94 39.94 300 1200 39.94 39.94 300 1200 8.69 8.67 300 1200 0.021 0.021 0.020 300 1200 0.021 0.020 300 1200 0.021 0.020 300 1200 0.021 0.020 300 1200 0.021 0.020 300 1300 1200 300 300 1200 300 300 1200 300 300 300 1200 300 300 300 300 300 300 300	1200 15.46 19.42 1400 23.82 29.40 1400 1500 0.020 0.020 900 1100 39.94 41.54 900 1500 8.66 8.51 900 1200 0.020 0.020 0.020 900	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 1000 1300 39.94 41.62 1000 1700 8.66 8.49 1000 1500 0.020 0.020 1000 1500 0.020 0.020 1000	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020 0.020 0.020 1100 1400 39.94 41.63 1100 1900 8.66 8.50 1100 1600 0.020 0.020 0.020 1100	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020 0.020 1200 1600 39.94 41.63 1300 2200 8.67 8.56 1200 1800 0.020 1200	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 0.020 0.020 1100 3000 41.54 41.64 1500 3000 8.51 8.31 1200 1600	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 0.020 0.020 1300 3000 41.62 41.64 1700 3000 8.49 8.31 1500 1700	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020 0.020 0.020 0.020 1400 3000 41.63 41.64 1900 3000 8.50 8.31 1600 1900	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 0.020 1600 3000 41.63 41.64 2200 3000 8.56 8.31 1800 2200
$\begin{tabular}{c} U \\ \hline T \\ \hline T \\ \hline T \\ \hline C_p \\ \hline T \\ \hline MM_g \\ \hline T \\ \hline R_g \\ \hline T \\ \hline C_{pg} \\ \hline T \\ \hline T \\ \hline \end{tabular}$	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900 39.94 300 900 8.69 8.66 300 900 0.021 0.020	1000 0 16.13 300 1500 0 25.27 300 1500 0.25.27 300 1500 0.021 0.020 300 1000 39.94 300 1000 8.69 8.66 300 1000 0.021 0.021 0.021 300 1000 8.69 8.66 300 1000 0.021 0.020	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100 39.94 39.94 300 1100 8.69 8.66 300 1100 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.020 300 1100 1100 1100 1100 1100 100	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 300 1200 39.94 39.94 300 1300 8.69 8.67 300 1200 0.021 0.020 300 1200 0.021 0.020 300 1200 0.021 0.020 300 1200 0.021 0.020 300 1200 0.021 0.020 300 1200 0.021 0.020 300 1200 0.021 0.020 300 1200 1300 1200 0.021 0.020 300 1200 1300 1200 1300 1200 1300 1200 1300 1200 1300 1200 1300 1200 1300 1200 1300 1200 1300 1200 300 1200 1300 1200 300 1200 30.94 30.94 30.00 1200 30.01 1200 30.00 1200 30.01 30.00 1200 0.021 0.021 0.020 30.00 1200 0.021 0.021 0.021 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.020 0.021 0.020 0	$\begin{array}{c} 1200\\ 15.46\\ 19.42\\ 1400\\ 1500\\ 23.82\\ 29.40\\ 1400\\ 1500\\ 0.020\\ 0.020\\ 0.020\\ 900\\ 1100\\ 39.94\\ 41.54\\ 900\\ 1500\\ 8.66\\ 8.51\\ 900\\ 1200\\ 0.020\\ 0.020\\ 0.020\\ 900\\ \end{array}$	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 1000 1300 39.94 41.62 1000 1700 8.66 8.49 1000 1500 0.020 1000	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020 0.020 1100 1400 39.94 41.63 1100 1900 8.66 8.50 1100 1600 0.020 1100 1600 0.020 1100	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020 0.020 1200 1600 39.94 41.63 1300 2200 8.67 8.56 1200 1800 0.020 1200	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 0.020 0.020 1100 3000 41.54 41.64 1500 3000 8.51 8.31 1200 1600	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 0.020 0.020 1300 3000 41.62 41.64 1700 3000 8.49 8.31 1500 1700	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020 0.020 0.020 0.020 1400 3000 41.63 41.64 1900 3000 8.50 8.31 1600 1900	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 0.020 1600 3000 41.63 41.64 2200 3000 8.56 8.31 1800 2200
$\begin{tabular}{c} U \\ \hline T \\ \hline T \\ \hline T \\ \hline C_p \\ \hline T \\ \hline MM_g \\ \hline T \\ \hline R_g \\ \hline T \\ \hline C_{pg} \\ \hline T \\ \hline Z \\ \end{tabular}$	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900 39.94 300 900 8.69 8.66 300 900 0.021 0.020 300 900 8.69 8.66 300 900 0.021 0.020 300 900 0.021 0.020	1000 0 16.13 300 1500 0 25.27 300 1500 0.25.27 300 1500 0.021 0.020 300 1000 39.94 300 1000 8.69 8.66 300 1000 0.021 0.020 300 1000 8.69 8.66 300 1000 0.021 0.020 300 1000 0.021 0.020	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100 39.94 39.94 300 1100 8.69 8.66 300 1100 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.021 0.020 0.021 0.020 0.021 0.021 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.0256 0.056	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 300 1200 39.94 39.94 300 1300 8.69 8.67 300 1200 0.021 0.020 300 1200 0.021 0.020 300 1200 0.021 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.020 0.021 0.020 0.021 0.020 0.020 0.021 0.020 0.025 0.025 0.056	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500 0.020 0.020 900 1100 39.94 41.54 900 1500 8.66 8.51 900 1200 0.020 0.020 0.020 0.020 900	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 1000 1300 39.94 41.62 1000 1700 8.66 8.49 1000 1500 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020 0.020 0.020 1100 1400 39.94 41.63 1100 1900 8.66 8.50 1100 1600 0.0256	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020 0.020 1200 1600 39.94 41.63 1300 2200 8.67 8.56 1200 1800 0.020 1200 0.020 0.020 0.020 0.020	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 0.020 0.020 1100 3000 41.54 41.64 1500 3000 8.51 8.31 1200 1600 1600	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 0.020 0.020 1300 3000 41.62 41.64 1700 3000 8.49 8.31 1500 1700	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020 0.020 0.020 1400 3000 41.63 41.64 1900 3000 8.50 8.31 1600 1900	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 1600 3000 41.63 41.64 2200 3000 8.56 8.31 1800 2200 0.034
$\begin{tabular}{c} U \\ \hline T \\ \hline T \\ \hline C_p \\ \hline T \\ \hline MM_g \\ \hline T \\ \hline R_g \\ \hline T \\ \hline C_{pg} \\ \hline T \\ \hline Z \\ \end{tabular}$	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900 39.94 300 900 8.69 8.66 300 900 0.021 0.020 300 900 0.021 0.020 300 900 0.021 0.020 300 900 0.021 0.020 300 900 0.056 0.056	1000 0 16.13 300 1500 0 25.27 300 1500 0.25.27 300 1500 0.021 0.020 300 1000 39.94 300 1000 8.69 8.66 300 1000 0.021 0.020 300 1000 8.69 8.66 300 1000 0.021 0.020 300 1000 0.021 0.020 300 1000 0.056 0.056	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100 39.94 300 1100 8.69 8.66 300 1100 0.021 0.021 0.021 0.020 300 1100 0.021 0.020 300 1100 0.021 0.020 300 1100 0.020 300 1100 0.056 0.056	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 300 1200 39.94 39.94 300 1300 8.69 8.67 300 1200 0.021 0.020 300 1200 0.021 0.020 300 1200 0.021 0.020 300 1200 0.021 0.020 300 1200 0.021 0.020 0.025 0.056 0.056 0.056	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500 0.020 0.020 900 1100 39.94 41.54 900 1500 8.66 8.51 900 1200 0.020 0.020 0.020 0.020 900	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 1000 1300 39.94 41.62 1000 1700 8.66 8.49 1000 1500 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.056 0.035	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020 0.020 1100 1400 39.94 41.63 1100 1900 8.66 8.50 1100 1600 0.020 0.020 0.020 0.020 1100 1600 0.020 0.036 0.036 0.036	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020 0.020 1200 1600 39.94 41.63 1300 2200 8.67 8.56 1200 1800 0.020 1200 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.056 0.034	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 1100 3000 41.54 41.64 1500 3000 8.51 8.31 1200 1600 0.034 0	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 1300 3000 41.62 41.64 1700 3000 8.49 8.31 1500 1700 1700	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020 1400 3000 41.63 41.64 1900 3000 8.50 8.31 1600 1900 0.036 0	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 1600 3000 41.63 41.64 2200 3000 8.56 8.31 1800 2200 0.034 0
$\begin{array}{c} U \\ T \\ I \\ T \\ C_p \\ T \\ MM_g \\ T \\ R_g \\ T \\ C_{pg} \\ T \\ C_{pg} \\ T \\ T \\ Z \\ T \end{array}$	900 0 15.46 300 1400 0 22.82 300 1400 0.021 0.020 300 900 39.94 39.94 300 900 8.69 8.66 300 900 0.021 0.020 300 900 0.021 0.020 300 900 0.021 0.020 300 900 0.021 0.020 300 900 0.021 0.020 300 900 0.021 0.020 0.021 0.020 0.021 0.020 0.020 0.021 0.020 0.020 0.021 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.056 0.0	1000 0 16.13 300 1500 0 25.27 300 1500 0.25.27 300 1500 0.021 0.020 300 1000 39.94 300 1000 8.69 8.66 300 1000 0.021 0.020 300 1000 0.021 0.020 300 1000 0.021 0.020 300 1000 0.020 300 1000 0.056 0.056 600	1100 0 18.35 300 1700 0 31.68 300 1800 0.021 0.020 300 1100 39.94 300 1100 8.69 8.66 300 1100 0.021 0.021 0.021 0.021 0.021 0.020 300 1100 0.021 0.020 300 1100 0.020 300 1100 0.020 300 1100 0.056 0.056 600	1200 0 21.67 300 1900 0 34.27 300 1900 0.021 0.020 300 1200 39.94 39.94 300 1300 8.69 8.67 300 1200 0.021 0.020 300 1200 0.021 0.020 300 1200 0.021 0.020 300 1200 0.021 0.020 300 1200 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.020 0.021 0.020 0.020 0.021 0.020 0.020 0.025 0.056	1200 15.46 19.42 1400 1500 23.82 29.40 1400 1500 0.020 900 1100 39.94 41.54 900 1500 8.66 8.51 900 1200 0.020 0.020 0.020 900 2.0020 900 0.020 900	1300 16.13 22.21 1500 1700 25.27 33.87 1500 1700 0.020 0.020 1000 1300 39.94 41.62 1000 1700 8.66 8.49 1000 1500 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.035 900	1500 18.35 24.72 1700 1900 31.68 38.04 1800 1900 0.020 0.020 1100 1400 39.94 41.63 1100 1900 8.66 8.50 1100 1600 0.020 0.020 0.020 0.020 1100 1600 0.020 0.020 1100 1600 0.020 0.020 1100 1600 0.020 0.020 1100 1000	1800 21.67 26.67 1900 2100 34.27 41.62 1900 2100 0.020 0.020 1200 1600 39.94 41.63 1300 2200 8.67 8.56 1200 1800 0.020 0.020 0.020 1200 1200 1200 1200 1200 1200 0.020 0.020 1200	3000 19.42 38.51 1500 3000 29.40 60.97 1500 3000 0.020 0.020 1100 3000 41.54 41.64 1500 3000 8.51 8.31 1200 1600 0.034 0 1300	3000 22.21 38.51 1700 3000 33.87 60.97 1700 3000 0.020 0.020 1300 3000 41.62 41.64 1700 3000 8.49 8.31 1500 1700 1700 0.035 0 1400	3000 24.72 38.51 1900 3000 38.04 60.97 1900 3000 0.020 1400 3000 41.63 41.64 1900 3000 8.50 8.31 1600 1900	3000 26.67 38.51 2100 3000 41.62 60.97 2100 3000 0.020 0.020 1600 3000 41.63 41.64 2200 3000 8.56 8.31 1800 2200 0.034 0 1800

Ν

Ζ

Т

0.056

0.053

600

1000

0.056 0.054

600

900

0.056

0.054

600

1100

0.056

0.055

600

1200

0.054

0.035

900

1200

						51131	ונ					
	кон	денсиро	ванная ф	раза	облас	ть фазон	вого пере	ехода		паро	эвая фаза	
Р	10^{2}	10^{3}	10^{4}	10^{5}	10^{2}	10^{3}	10^{4}	10^{5}	10^{2}	10^{3}	10 ⁴	10^{5}
М	23.90	23.90	23.90	23.90	24.00	24.00	24.00	24.00	24.01	24.01	24.01	24.01
	24.00	24.00	24.00	24.00	24.01	24.01	24.01	24.01	24.01	24.01	24.01	24.01
Т	500	500	500	500	1000	1100	1300	1500	1200	1300	1500	1800
	1000	1100	1300	1500	1200	1300	1500	1800	3000	3000	3000	3000
U	0	0	0	0	14.83	16.18	17.81	21.18	19.47	22.27	24.78	26.72
	14.83	16.18	18.71	21.18	19.47	22.27	24.78	16.72	38.52	38.52	38.52	38.52
Т	300	300	300	300	1400	1500	1700	1900	1500	1700	1900	2100
	1400	1500	1700	1900	1500	1700	1900	2100	3000	3000	3000	3000
Ι	0	0	0	0	23.87	29.64	34.11	37.79	29.46	33.92	38.09	41.67
	23.87	29.64	34.11	37.79	29.46	33.92	38.09	41.67	60.99	60.99	60.99	60.99
Т	300	300	300	300	1400	1600	1800	2000	1500	1700	1900	2100
	1400	1600	1800	2000	1500	1700	1900	2100	3000	3000	3000	3000
ИMg	39.94	39.94	39.94	39.94	39.94	39.94	39.94	39.94	40.68	40.66	40.69	40.68
-	39.94	39.94	39.94	39.94	40.68	40.66	40.69	40.68	41.63	41.63	41.63	41.63
Т	300	300	300	300	800	900	1000	1100	1300	1400	1600	1800
	800	900	1000	1100	1300	1400	1600	1800	1600	1700	1900	2200
R _g	8.70	8.70	8.70	8.70	8.67	8.67	8.67	8.67	8.31	8.31	8.31	8.31
-	8.67	8.67	8.67	8.67	8.51	8.51	8.51	8.51	8.51	8.51	8.51	8.51
Т	300	300	300	300	800	900	1000	1100	1200	1400	1500	1800
	800	900	1000	1100	1200	1400	1500	1800	1600	1700	1900	2200
C _{pg}	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021
	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.020	0.020	0.020	0.020
Т	300	300	300	300	800	900	1000	1100	1200	1400	1500	1800
	800	900	1000	1100	1200	1400	1500	1800	1600	1700	1900	2200

Sn₃Bi

 $\overline{Sn_4Bi_2}$

0.053

0.036

1000

1300

0.054

0.036

1100

1500

0.055

0.034

1200

1700

0.035

0

1200

3000

0.036

0

1300

3000

0.036

0

1500

3000

0.036

0 1700

3000

	кон	денсиро	ванная d	аза	облас	ть фазоі	зого пер	ехода		паро	эвая фаза	
Р	10^{2}	10^{3}	104	10^{5}	10^{2}	10^{3}	104	10^{5}	10^{2}	10^{3}	10^{4}	10^{5}
М	23.22	23.22	23.22	23.22	23.36	23.36	23.37	23.37	23.39	23.39	23.39	23.39
	23.36	23.36	23.37	23.37	23.39	23.39	23.39	23.39	23.39	23.39	23.39	23.39
Т	500	500	500	500	1000	1100	1300	1500	1200	1400	1600	1800
	1000	1100	1300	1500	1200	1400	1600	1800	3000	3000	3000	3000
U	0	0	0	0	15.97	17.53	20.28	24.81	23.37	24.62	27.13	30.90
	15.97	17.53	20.28	24.81	23.37	24.62	27.13	30.90	40.87	40.87	40.87	40.87
Т	300	300	300	300	1400	1500	1700	2000	1600	1700	1900	2200
	1400	1500	1700	2000	1600	1700	1900	2200	3000	3000	3000	3000
Ι	0	0	0	0	24.67	30.62	35.09	38.78	34.19	36.28	40.45	46.71
	24.67	30.62	35.09	38.78	34.19	36.28	40.45	46.71	63.33	63.33	63.33	63.33
Т	300	300	300	300	1400	1600	1800	2000	1600	1700	1900	2200
	1400	1600	1800	2000	1600	1700	1900	2200	3000	3000	3000	3000
Cp	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.020	0.020	0.020	0.020	0.020
-	0.021	0.021	0.021	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
Т	500	500	500	500	900	1000	1100	1300	1200	1400	1500	1800
	900	1000	1100	1300	1200	1400	1500	1800	3000	3000	3000	3000
MMg	39.94	39.94	39.94	39.94	39.94	39.94	39.94	39.94	41.43	41.41	41.43	41.43
-	39.94	39.94	39.94	39.94	41.43	41.41	41.43	41.41	42.74	42.74	42.74	42.74
Т	300	300	300	300	800	900	1000	1100	1300	1400	1600	1800
	800	900	1000	1100	1300	1400	1600	1800	1600	1700	1900	2200
Rg	8.94	8.94	8.94	8.94	8.91	8.90	8.90	8.90	8.58	8.58	8.59	8.58
	8.91	8.90	8.90	8.90	8.58	8.58	8.59	8.58	8.3	8.3	8.3	8.3
Т	300	300	300	300	800	900	1000	1100	1200	1400	1500	1800
	800	900	1000	1100	1200	1400	1500	1800	3000	3000	3000	3000

C _{pg}	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.021	0.021	0.021	0.021
	0.022	0.022	0.022	0.022	0.021	0.021	0.021	0.021	0.020	0.020	0.020	0.020
Т	300	300	300	300	800	900	1000	1200	1200	1400	1600	1800
	800	900	1000	1200	1200	1400	1600	1800	1600	1700	1900	2200
Z	0.089	0.089	0.089	0.089	0.089	0.089	0.089	0.089	0.048	0.04	0.04	0.050
	0.089	0.089	0.089	0.089	0.048	0.04	0.04	0.050	0	0	0	0
Т	600	600	600	600	800	900	1000	1100	1200	1400	1500	1700
	800	900	1000	1100	1200	1400	1500	1700	1600	1700	1900	2200
						Pb ₅ Bi	$_{4}Sn_{4}$					

	кон	денсиро	ванная d	аза	облас	сть фазон	вого пер	ехода		паро	эвая фаза	
Р	10^{2}	10^{3}	10^{4}	10^{5}	10^{2}	10^{3}	10^{4}	10^{5}	10^{2}	10^{3}	10^{4}	10 ⁵
М	20.22	20.22	20.22	20.22	20.30	20.28	20.24	20.18	20.45	20.45	20.45	20.45
	20.30	20.28	20.24	20.18	20.45	20.45	20.45	20.45				
Т	300	300	300	300	1000	1100	1200	1400	1300	1500	1700	2000
	1000	1100	1200	1400	1300	1500	1700	2000				
U	0	0	0	0	8.50	9.88	12.79	16.93	31.21	32.28	34.35	38.79
	8.50	9.88	12.79	16.93	31.21	32.28	34.35	38.79	49.09	49.09	49.09	49.09
Т	300	300	300	300	900	1000	1200	1400	1600	1700	1900	2200
	900	1000	1200	1400	1600	1700	1900	2200	3000	3000	3000	3000
Ι	0	0	0	0	13.22	15.39	19.78	22.03	42.03	43.93	47.63	54.60
	13.22	15.39	19.78	22.03	42.03	43.93	47.63	54.60	70.28	70.28	70.28	70.28
Т	300	300	300	300	900	1000	1200	1300	1600	1700	1900	2200
	900	1000	1200	1300	1600	1700	1900	2200	3000	3000	3000	3000
Cp	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.020	0.020	0.021	0.021
					0.020	0.020	0.021	0.021				
Т	400	400	400	400	900	1000	1200	1400	1200	1400	1500	1800
	900	1000	1200	1400	1200	1400	1500	1800	3000	3000	3000	3000
MM_g	39.94	39.94	39.94	39.94	39.94	39.94	39.94	39.94	47.46	47.37	47.39	47.41
					47.76	47.37	47.39	47.41	48.87	48.87	48.87	48.87
Т	300	300	300	300	900	1000	1100	1200	1300	1400	1600	1900
	900	1000	1100	1200	1300	1400	1600	1900	1600	1700	2000	2200
R _g	10.29	10.29	10.29	10.29	10.25	10.25	10.25	10.25	8.65	8.65	8.65	8.72
	10.25	10.25	10.25	10.25	8.65	8.65	8.65	8.72	8.31	8.48	8.34	8.31
Т	300	300	300	300	900	1000	1100	1200	1300	1400	1500	1700
	900	1000	1100	1200	1300	1400	1500	1700	1600	1800	1900	2200
C_{pg}	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.021	0.021	0.021	0.021
					0.021	0.021	0.021	0.021				
Т	300	300	300	300	900	1000	1100	1200	1200	1400	1600	1800
	900	1000	1100	1200	1200	1400	1600	1800	1600	1700	1900	2200
λ	0.017	0.017	0.017	0.017	0.040	0.043	0.045	0.050	0.040	0.043	0.047	0.052
	0.040	0.043	0.045	0.050	0.040	0.043	0.047	0.052	0.076	0.076	0.076	0.076
Т	300	300	300	300	1000	1100	1200	1400	1100	1200	1400	1600
	1000	1100	1200	1400	1100	1200	1400	1600	3000	3000	3000	3000
Z	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.052	0.050	0.051	0.056
	60.0	60.0	60.0	600	0.052	0.050	0.051	0.056	0	0	0	0
Т	600	600	600	600	800	1000	1100	1200	1200	1400	1600	1800
	900	1000	1100	1200	1200	1400	1600	1800	1600	1700	2000	2200

$PbBi_2Sn_2$

	кон	денсиро	ванная ф	аза	облас	сть фазон	вого пере	ехода		паро	эвая фаза	
Р	10^{2}	10^{3}	10^{4}	10^{5}	10^{2}	10^{3}	10^{4}	10^{5}	10^{2}	10^{3}	10^{4}	10^{5}
М	23.69	23.69	23.69	23.69	23.73	23.73	23.74	23.73	23.77	23.77	23.77	23.77
	23.73	23.73	23.74	23.73	23.77	23.77	23.77	23.77				
Т	500	500	500	500	800	1000	1200	1300	1200	1400	1600	1800
	800	1000	1200	1300	1200	1400	1600	1800	3000	3000	3000	3000
U	0	0	0	0	7.77	9.05	11.61	12.89	18.93	19.81	22.60	26.44
	7.77	9.05	11.61	12.89	18.93	19.81	22.60	26.44	37.71	37.71	37.71	37.71
Т	300	300	300	300	900	1000	1100	1300	1500	1600	1800	2100
	900	1000	1100	1300	1500	1600	1800	2100	3000	3000	3000	3000

Ι	0	0	0	0	12.70	17.09	19.00	32.96	28.92	30.62	35.08	41.42
	12.70	17.09	19.00	32.96	28.92	30.62	35.08	41.42	60.18	60.18	60.18	60.18
Т	300	300	300	300	900	1100	1200	1800	1500	1600	1800	2100
	900	1100	1200	1800	1500	1600	1800	2100	3000	3000	3000	3000
Cp	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
Т	400	400	400	400	800	900	1000	1200	1200	1300	1500	1700
	800	900	1000	1200	1200	1300	1500	1700	3000	3000	3000	3000
MMg	39.94	39.94	39.94	39.94	39.94	39.94	39.94	39.94	41.55	41.57	41.54	41.53
Ŭ					41.55	41.57	41.54	41.53	42.06	42.06	42.06	42.06
Т	300	300	300	300	800	900	1000	1100	1200	1400	1500	1700
	800	900	1000	1100	1200	1400	1500	1700	1500	1700	1800	2100
Rg	8.77	8.77	8.77	8.77	8.76	8.76	8.76	8.76	8.41	8.41	8.41	8.40
_	8.76	8.76	8.76	8.76	8.41	8.41	8.41	8.40				
Т	300	300	300	300	800	900	1000	1100	1200	1300	1500	1700
	800	900	1000	1100	1200	1300	1500	1700	1500	1700	1800	2100
C _{pg}	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.21	0.021	0.0210.0
									0.020	0.020	0.020	20
Т	300	300	300	300	800	900	1000	1100	1200	1400	1500	1700
	800	900	1000	1100	1200	1400	1500	1700	1500	1700	1800	2100
Z	0.06	0.06	0.06	0.06	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021
	0.065	0.065	0.065	0.065					0.020	0.020	0.020	0.020
Т	600	600	600	600	800	900	1000	1100	1200	1300	1500	1700
	800	900	1000	1100	1200	1300	1500	1700	1500	1700	1800	2100

Продолжение таблицы 10

T – температура, К; Р- внешнее давление, Па.; v – удельный объем, м³/кг; М- число молей, моль/кг; I – полная энтальпия, кДж/моль; U - полная внутренняя энергия, кДж/моль; S – энтропия, кДж/(моль*К) ; C_p – равновесная удельная теплоемкость, кДж/(моль*К); ММ_g – молярная масса паровой фазы, г/моль; R_g – паровая постоянная Дж/(моль*К); C_{pg} равновесная теплоемкость паровой фазы, кДж/(моль*К); λ – коэффициент теплопроводности (кВт/м*К); z – массовая доля конденсированной фазы.

Таблица 11 – Зависимость значений теплофизических характеристик от температуры для бинарных ИМС соединений при различных условиях в атмосфере воздуха.

	кон	денсиро	ванная ф	раза	облас	сть фазово	го перех	ода		паро	вая фаза	
Р	10 ²	10^{3}	10 ⁴	10 ⁵	10^{2}	10^{3}	10 ⁴	10 ⁵	10 ²	10^{3}	10^{4}	10^{5}
М	23,26	23,26	23,26	23,26	23,26	23,26	23,26	23,26	23,64	23,61	23,56	23,56
	23,26	23,26	23,26	23,26	23,64	23,61	23,56	23,56	24,82	24,65	24,11	23,89
Т	300	300	300	300	1100	1200	1400	1600	1500	1900	1800	2400
	1100	1200	1400	1600	1500	1900	1800	2400	2900	3000	2900	3000
U	-9,90	-9,90	-9,90	-9,90	9,21	9,21	9,82	15,70	17,84	19,12	21,77	22,27
	9,21	9,21	9,82	15,70	17,84	19,12	21,77	22,27	60,40	56,50	48,93	42,51
Т	300	300	300	300	1400	1400	1500	1800	1500	1600	1800	1900
	1400	1400	1500	1800	1500	1600	1800	1900	3000	3000	3000	3000

Bi₂Sn₃

Т	300	300	300	300	1100	1200	1400	1500	1500	1600	1800	1900
	1100	1200	1400	1500	1500	1600	1800	1900	2900	2900	2900	2900
MM_{g}	39,72	39,72	39,72	39,72	39,72	39,72	39,72	39,72	42,28	42,28	42,28	42,28
	39,72	39,72	39,72	39,72	42,28	42,28	42,28	42,28	40,28	40,56	41,46	41,84
Т	300	300	300	300	1100	1200	1400	1500	1500	1600	1800	1900
	1100	1200	1400	1500	1500	1600	1800	1900	2900	2900	2900	2900
R _g	8,99	8,99	8,99	8,99	8,99	8,99	8,99	8,99	8,31	8,31	8,31	8,31
	8,99	8,99	8,99	8,99	8,31	8,31	8,31	8,31	8,31	8,31	8,31	8.31
Т	300	300	300	300	1100	1200	1300	1500	1500	1600	1800	1900
	1100	1200	1300	1500	1500	1600	1800	1900	3000	3000	3000	3000
C_{pg}	0,022	0,022	0,022	0,022	0,022	0,022	0,022	0,022	0,021	0,021	0,021	0,021
	0,022	0,022	0,022	0,022	0,021	0,021	0,021	0,021	0,021	0,021	0,021	0,021
Т	300	300	300	300	1100	1200	1400	1500	1500	1600	1800	1900
	1100	1200	1400	1500	1500	1600	1800	1900	3000	3000	3000	3000
Ζ	0,091	0,091	0,091	0,091	0,091	0,091	0,091	0,091	0	0	0	0
	0,091	0,091	0,091	0,091	0	0	0	0				
Т	600	600	600	600	1100	1200	1400	1500	1500	1600	1800	1900
	1100	1200	1400	1500	1500	1600	1800	1900	3000	3000	3000	3000
						Bi ₅ Pb ₅	3					
	КОН,	денсиров	занная ф	аза	облас	сть фазов	юго пере	хода		парон	зая фаза	
Р	10^{2}	10^{3}	10^{4}	10^{5}	10^{2}	10^{3}	10^{4}	10^{5}	10^{2}	10^{3}	10^{4}	10^{5}
М	20 05	20.05	20.05	20.05	21 10	21 18	21 10	21 11	21 60	21 66	21.66	21.57

-9,84

19,67

300

1500

0,021

0,022

-9,84

20,40

300

1600

0,021

0,022

-9,84

28,04

300

1800

0,021

0,022

18,25

27,83

1400

1500

0,022

0,021

-9,84

18.25

300

1400

0,021

0,022

I

Т

C_p

)⁵ 21,57 20,95 20,95 20,95 20,95 21,10 21,18 21,10 21,11 21,69 21,66 21,66 Μ 21,10 21,18 21,10 21,69 21,66 21,66 21,57 22,95 22,84 22,46 22,08 21,11 1300 1400 1400 Т 400 400 400 400 1200 1600 1300 1600 1700 1200 1300 1400 1600 1300 1400 1600 1700 3000 3000 3000 3000 -10,82 -10,82 14,54 18,79 U -10,82 -10,82 2,48 4,65 10,47 19,81 22,60 23,10 2,48 4,65 10,47 14,54 18,79 19,81 22,60 23,10 64,43 62,29 55,13 47,93 Т 300 300 300 300 1200 1400 1600 1300 1400 1600 1700 1100 3000 1100 1200 1400 1600 1300 1400 1600 1700 3000 3000 3000 Ι -10,80 -10,80 -10,80 -10,8 8,92 11,68 19,50 19,15 27,12 28,97 29,66 34,76 8,92 11,68 19,50 19,15 27,12 28,97 29,66 34,76 86,90 84,75 77,59 70,40 Т 300 300 300 300 1100 1200 1400 1500 1300 1400 1500 1700 3000 1100 1200 1400 1300 1400 1500 1700 3000 3000 3000 1500 0,023 0,023 0,022 0,022 0,022 0,022 0,023 0,023 0,021 0,021 0,021 0,021 C_p 0,023 0,023 0,023 0,023 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 Т 300 300 1200 1200 1400 1300 1500 300 300 1100 1400 1700 1100 1200 1200 1400 1300 1400 1500 1700 3000 3000 3000 3000 MM 39,78 39,78 39,78 39,78 39,73 39,72 39,73 39,90 45,87 46,16 46,36 46,36 39,73 39,72 39,73 39,90 45,87 46,16 46,36 46,34 43,55 43,77 44,51 45,28 Т 300 300 300 300 1000 1100 1200 1300 1200 1400 1500 1700 1000 1100 1200 1200 1400 1500 1700 3000 3000 3000 3000 1300 9,97 9,97 9,97 9,97 9,92 9,84 9,84 9,91 8,31 8,31 8,31 8,31 R_{g} 9,92 9,84 9,84 9,91 8,31 9,31 9,31 9,31 8,31 8,31 8,31 8,31

19,67

29,94

1500

1600

0,022

0,021

20,40

34,26

1600

1800

0,022

0,021

28,04

35.57

1800

1900

0,022

0,021

27,83

29,94

1500

3000

0,021

0,021

29,94

78,96

1600

3000

0,021

0,021

34,26

71.39

1800

3000

0,021

0,021

35,57

64,98

1900

3000

0,021

0,021

Т	300	300	300	30	1000	1100	1200	1300	1300	1400	1500	1700
	1000	1100	1200	1300	1300	1400	1500	1700	3000	3000	3000	3000
C _{pg}	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,021	0,021	0,021	0,021
	0,025	0,025	0,025	0,025	0,021	0,021	0,021	0,021	0,021	0,021	0,021	0,021
Т	300	300	300	300	1000	1100	1200	1300	1300	1400	1500	1700
	1000	1100	1200	1300	1300	1400	1500	1700	3000	3000	3000	3000
Z	0,18	0,18	0,18	0,18	0,18	0,17	0,17	0,18	0	0	0	0
	0,18	0,17	0,17	0,18	0	0	0	0				
Т	300	300	300	300	1000	1100	1200	1300	1300	1400	1500	1700
	1000	1100	1200	1300	1300	1400	1500	1700	3000	3000	3000	3000
						Bi ₇ Pb	3					
	КОН	денсиро	ванная ф	раза	обла	сть фазон	вого пер	ехода		паров	ая фаза	
Р	10 ²	10^{3}	10^{4}	10 ⁵	10^{2}	10^{3}	10 ⁴	10^{5}	10^{2}	10^{3}	10^{4}	10^{5}
М	19,85	19,85	19,85	19,85	20,15	20,01	20,01	20,03	20,83	20,77	20,79	20,76
	20,15	20,01	20,01	20,03	20,83	20,77	20,79	20,76	21,99	21,99	21,60	21,22
Т	300	300	300	300	1200	1300	1400	1600	1300	1400	1600	1800
	1200	1300	1400	1600	1300	1400	1600	1800	3000	3000	3000	3000
U	-14,32	-14,32	-14,32	-14,32	1,79	3,16	8,19	12,56	20,91	21,71	24,64	27,12
	1,79	3,16	8,19	12,56	20,91	21,71	24,64	27,12	67,49	65,21	57,75	50,35
Т	300	300	300	300	1100	1200	1400	1600	1300	1400	1600	1800
	1100	1200	1400	1600	1300	1400	1600	1800	3000	3000	3000	3000
Ι	-14,30	-14,30	-14,30	-14,30	6,20	10,46	14,16	23,16	29,24	30,87	35,46	39,60
	6,20	10,46	14,16	23,16	29,24	30,87	35,46	39,60	89,95	87,68	80,21	72,82
Т	300	300	300	300	1100	1200	1400	1600	1300	1400	1600	1800
~	1100	1200	1400	1600	1300	1400	1600	1800	3000	3000	3000	3000
C _p	0,023	0,023	0,023	0,023	0,024	0,024	0,024	0,024	0,021	0,021	0,021	0,021
T	0,024	0,024	0,024	0,024	0,021	0,021	0,021	0,021	0,021	0,021	0,021	0,021
1	300	300	300	300	1100	1200	1300	1500	1300	1400	1600	1800
MM	1100	1200	1300	1500	1300	1400	1600	1800	3000	3000	3000	3000
MIMg	39,83	39,83	39,83	39,83	39,77 47.00	39,97 48 12	39,99 48.00	40,50	47,99	48,12	48,09	48,10
т	39,77	39,97	39,99	40,30	47,99	40,12	48,09	40,10	43,22	1400	40,28	47,10
1	1000	1100	1200	1400	1300	1400	1200	1400	3000	3000	3000	3000
R.	10.51	10.51	10.51	10.51	10.46	10.43	10.43	10.29	8 31	8 31	8 31	8 31
g	10.46	10.43	10.43	10.29	8.31	8.31	8.31	8.31	8.31	8.31	8.31	8.31
Т	300	300	300	300	1000	1100	1200	1400	1300	1400	1600	1800
	1000	1100	1200	1400	1300	1400	1600	1800	3000	3000	3000	3000
C _{pg}	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,021	0,021	0,021	0,021
18	0,026	0,026	0,026	0,026	0,021	0,021	0,021	0,021	0,021	0,021	0,021	0,021
Т	300	300	300	300	1000	1100	1200	1400	1300	1400	1600	1800
	1000	1100	1200	1400	1300	1400	1600	1800	3000	3000	3000	3000
λ	0,01	0,01	0,01	0,01	0,04	0,04	0,05	0,05	0,04	0,05	0,05	0,05
	0,04	0,04	0,05	0,05	0,04	0,05	0,05	0,05	0,08	0,08	0,08	0.08
Т	300	300	300	300	1200	1300	1400	1600	1300	1400	1600	1800
	1200	1300	1400	1600	1300	1400	1600	1800	3000	3000	3000	3000
Z	0,23	0,23	0,23	0,23	0,23	0,22	0,22	0,22	0	0	0	0
	0,23	0,22	0,22	0,22	0	0	0	0				
Т	300	300	300	300	1000	1100	1200	1300	1300	1400	1600	1800
	1000	1100	1200	1300	1300	1400	1600	1800	3000	3000	3000	3000

1400

-8,45

16,02

300

1400

0,021

0,022

I

Т

 C_p

1500

-8,45

19,57

300

1500

0,021

0,022

1600

-8,45

20,54

300

1600

0,021

0,022

1800

-8,45

27,42

300

1800

0,021

0,022

1500

16,02

26,93

1400

1500

0,022

0,021

1600

19,57

29,05

1500

1600

0,022

0,021

1800

20,54

33,38

1600

1800

0,022

0,021

1900

27,42

34,90

1800

1900

0,022

0,021

3000

26,93

81,60

1500

3000

0,021

0,020

3000

29,05

77,79

1600

3000

0,021

0,021

3000

33,38

70,35

1800

3000

0,021

0,021

3000

34,90

64,01

1900

3000

0,021

0,021

Bi₇Pb

	кон	денсиро	ванная d	раза	облас	сть фазон	вого пер	ехода		паро	эвая фаза	
Р	10 ²	10 ³	104	10 ⁵	10 ²	10 ³	104	10 ⁵	10 ²	10 ³	104	10 ⁵
М	20,89	20,89	20,89	20,89	20,95	20,95	20,95	21,09	21,77	21,72	21,73	21,70
	20,95	20,95	20,95	21,09	21,77	21,72	21,73	21,70	22,94	22,83	22,45	22,09
Т	300	300	300	300	1200	1300	1400	1600	1300	1400	1600	1800
	1200	1300	1400	1600	1300	1400	1600	1800	3000	3000	3000	3000
U	-10,97	-10,97	-10,97	-10,97	2,03	3,78	7,30	12,95	19,81	20,72	23,54	26,02
	2,03	3,78	7,30	12,95	19,81	20,72	23,54	26,02	64,47	62,32	55,25	48,18
Т	300	300	300	300	1100	1200	1400	1600	1300	1400	1600	1800
	1100	1200	1400	1600	1300	1400	1600	1800	3000	3000	3000	3000
Ι	-10,95	-10,95	-10,95	-10,95	8,54	11,12	16,05	23,59	28,14	29,88	34,36	38,51
	8,54	11,12	16,05	23,59	28,14	29,88	34,36	38,51	86,94	84,82	77,72	70,65
Т	300	300	300	300	1100	1200	1400	1600	1300	1400	1600	1800
	1100	1200	1400	1600	1300	1400	1600	1800	3000	3000	3000	3000
Cp	0,022	0,022	0,022	0,022	0,024	0,024	0,024	0,024	0,021	0,021	0,021	0,021
	0,024	0,024	0,024	0,024	0,021	0,021	0,021	0,021	0,021	0,021	0,021	0,021
Т	300	300	300	300	1100	1200	1300	1500	1300	1400	1600	1800
	1100	1200	1300	1500	1300	1400	1600	1800	3000	3000	3000	3000
MMg	39,76	39,76	39,76	39,76	39,76	39,76	39,76	39,76	45,93	46,03	46,01	46,07
	39,76	39,76	39,76	39,76	45,93	46,03	46,01	46,07	43,57	43,79	44,52	45,26
Т	300	300	300	300	1000	1100	1200	1400	1300	1400	1600	1800
	1000	1100	1200	1400	1300	1400	1600	1800	3000	3000	3000	3000
R _g	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	8,31	8,31	8,31	8,31
	10,00	10,00	10,00	10,00	8,31	8,31	8,31	8,31	8,31	8,31	8,31	8,31
Т	300	300	300	300	1000	1100	1200	1300	1300	1400	1600	1800
	1000	1100	1200	1300	1300	1400	1600	1800	3000	3000	3000	3000
C _{pg}	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,021	0,021	0,021	0,021
	0,025	0,025	0,025	0,025	0,021	0.021	0,021	0,021	0,021	0,021	0,021	0,021
Т	300	300	300	300	1100	1200	1300	1500	1300	1400	1600	1800
	1100	1200	1300	1500	1300	1400	1600	1800	3000	3000	3000	3000
λ	0,018	0,018	0,018	0,018	0,04	0,04	0,05	0,05	0,04	0,04	0,05	0,06
	0,046	0,049	0,05	0,056	0,04	0,04	0,05	0,06	0,08	0,08	0,08	0,08
Т	300	300	300	300	1200	1300	1400	1600	1300	1400	1600	1800
	1200	1300	1400	1600	1300	1400	1600	1800	3000	3000	3000	3000
Z	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0	0	0	0
	0,18	0,18	0,18	0,18	0	0	0	0	0	0	0	0
Т	300	300	300	300	1000	1100	1200	1300	1300	1400	1600	1800
	1000	1100	1200	1300	1300	1400	1600	1800	3000	3000	3000	3000
						Sn ₃ l	Bi					
	кон	денсиро	ванная ф	раза	облас	сть фазон	вого пер	ехода		паро	эвая фаза	
Р	10^{2}	10^{3}	10^{4}	10^{5}	10^{2}	10^{3}	10^{4}	10^{5}	10^2 10^3 10^4 10^5			
U	-8,46	-8,46	-8,46	-8,46	6,99	9,71	10,40	13,17	16,94	18,23	20,89	21,60
	6,99	9,71	10,40	13,17	16,94	18,23	20,89	21,60	59,13	55,33	47,88	41,55
Т	300	300	300	300	1400	1500	1600	1800	1500	1600	1800	1900

Т	300	300	300	300	1400	1500	1600	1800	1500	1600	1800	1900	
	1400	1500	1600	1800	1500	1600	1800	1900	3000	3000	3000	3000	
MMg	39,70	39,70	39,70	39,70	39,70	39,70	39,70	39,70	41,52	41,52	41,52	41,52	
	39,70	39,70	39,70	39,70	41,52	41,52	41,52	41,52	39,54	39,87	40,53	41,10	
Т	300	300	300	300	1100	1200	1400	1500	1500	1600	1800	1900	
	1100	1200	1400	1500	1500	1600	1800	1900	3000	3000	3000	3000	
R _g	8,79	8,79	8,79	8,79	8,79	8,79	8,79	8,79	8,31	8,31	8,31	8,31	
	8,79	8,79	8,79	8,79	8,31	8,31	8,31	8,31	8,31	8,31	8,31	8,31	
Т	300	300	300	300	1100	1200	1400	1500	1500	1600	1800	1900	
	1100	1200	1400	1500	1500	1600	1800	1900	3000	3000	3000	3000	
C_{pg}	0,022	0,022	0,022	0,022	0,022	0,022	0,022	0,022	0,021	0,021	0,021	0,021	
	0,022	0,022	0,022	0,022	0,021	0,021	0,021	0,021	0,021	0,021	0,021	0,021	
Т	300	300	300	300	1100	1200	1400	1500	1500	1600	1800	1900	
	1100	1200	1400	1500	1500	1600	1800	1900	3000	3000	3000	3000	
Z	0,068	0,068	0,068	0,068	0,068	0,068	0,068	0,068	0	0	0	0	
	0,068	0,068	0,068	0,068	0	0	0	0					
Т	300	300	300	300	1100	1200	1300	1500	1500	1600	1800	1900	
	1100	1200	1300	1500	1500	1600	1800	1900	3000	3000	3000	3000	
Cd ₃ Bi ₂													
	КОН	денсиро	ванная (раза	облас	сть фазон	вого пер	ехода	паровая фаза				
Р	10 ²	10 ³	104	10 ⁵	10 ²	10^{3}	104	10^{5}	10 ²	10 ³	104	10^{5}	
М	23,41	23,41	23,41	23,41	23,41	23,41	23,41	23,41	23,65	23,65	23,65	23,65	
	23,41	23,41	23,41	23,41	23,65	23,65	23,65	23,65	24,90	24,79	24,43	24,07	
Т	300	300	300	300	1000	1100	1200	1400	1300	1400	1500	1700	
	1000	1100	1200	1400	1300	1400	1500	1700	3000	3000	3000	3000	
U	-5,90	-5,90	-5,90	-5,90	3,80	5,41	6,84	9,73	16,21	17,47	18,66	21,31	
	3,80	5,41	6,84	9,73	16,21	17,47	18,66	21,31	58,46	56,63	50,20	43,62	
Т	300	300	300	300	1000	1100	1200	1400	1300	1400	1500	1700	
	1000	1100	1200	1400	1300	1400	1500	1700	3000	3000	3000	3000	
Ι	-5,89	-5,89	-5,89	-5,89	9,53	11,96	14,21	18,73	21,05	28,64	28,65	32,96	
	9,53	11,96	14,21	18,73	21,05	28,64	28,65	32,96	80,93	79,09	72,67	66,09	
Т	300	300	300	300	1000	1100	1200	1400	1200	1400	1500	1700	
	1000	1100	1200	1400	1200	1400	1500	1700	3000	3000	3000	3000	
Cp	0,021	0,021	0,021	0,021	0,022	0,022	0,022	0,022	0,021	0,021	0,021	0,021	
	0,022	0,022	0,022	0,022	0,021	0,021	0,021	0,021	0,020	0,020	0,021	0,021	
Т	300	300	300	300	1100	1100	1200	1300	1300	1400	1500	1700	
	1100	1100	1200	1300	1300	1400	1500	1700	3000	3000	3000	3000	
MMg	39,67	39,67	39,67	39,67	39,67	39,67	39,67	39,67	42,22	42,27	42,04	42,05	
	39,67	39,67	39,67	39,67	42,22	42,27	42,04	42,05	40,15	40,32	40,92	41,53	
Т	300	300	300	300	1000	1100	1200	1300	1200	1300	1500	1700	
	1000	1100	1200	1300	1200	1300	1500	1700	3000	3000	3000	3000	
R _g	8,95	8,95	8,95	8,95	8,95	8,95	8,95	8,95	8,31	8,31	8,31	8,31	
	8,95	8,95	8,95	8,95	8,31	8,31	8,31	8,31	8,31	8,31	8,31	8,31	
T.	300	300	300	300	1000	1100	1200	1300	1200	1300	1500	1700	
	1000	1100	1200	1300	1200	1300	1500	1700	3000	3000	3000	3000	
C_{pg}	0,022	0,022	0,022	0,022	0,022	0,022	0,022	0,022	0,021	0,021	0,021	0,021	
	0,022	0,022	0,022	0,022	0,021	0,021	0,021	0,021	0,020	0,021	0,021	0,021	
	300	300	300	500	1000	1100	1200	1400	1200	1300	1500	1/00	
1	1000	1100	1200	1400	1200	1300	1500	1700	3000	3000	3000	3000	

Продолжение таблицы 11

Z	0,087	0,087	0,087	0,087	0,087	0,087	0,087	0,087	0	0	0	0
	0,087	0,087	0,087	0,087	0	0	0	0				
Т	300	300	300	300	1000	1100	1200	1300	1200	1300	1500	1700
	1000	1100	1200	1300	1200	1300	1500	1700	3000	3000	3000	3000
Pb Bi ₂ Sn ₂												

	конденсированная фаза				область фазового перехода				паровая фаза			
Р	10^{2}	10^{3}	10^{4}	10^{5}	10^{2}	10^{3}	10^{4}	10^{5}	10^{2}	10^{3}	10^{4}	10^{5}
U	-6,43	-6,43	-6,43	-6,43	4,92	8,18	9,28	12,16	17,60	18,86	19,51	21,71
	4,92	8,18	9,28	12,16	17,60	18,86	19,51	21,71	58,78	55,91	48,94	42,43
Т	300	300	300	300	1100	1300	1400	1600	1500	1600	1700	1900
	1100	1300	1400	1600	1500	1600	1700	1900	3000	3000	3000	3000
Ι	-6,41	-6,41	-6,41	-6,41	11,51	13,83	18,32	22,84	27,59	29,69	31,16	36,03
	11,51	13,83	18,32	22,84	27,59	29,69	31,16	36,03	81,25	78,37	71,41	64,90
Т	300	300	300	300	1100	1200	1400	1600	1500	1600	1700	1900
	1100	1200	1400	1600	1500	1600	1700	1900	3000	3000	3000	3000
Cp	0,021	0,021	0,021	0,021	0,022	0,022	0,022	0,022	0,021	0,021	0,021	0,021
	0,022	0,022	0,022	0,022	0,021	0,021	0,021	0,021	0,020	0,021	0,021	0,021
Т	300	300	300	300	1100	1200	1300	1500	1500	1600	1800	1900
	1100	1200	1300	1500	1500	1600	1800	1900	3000	3000	3000	3000
MMg	39,69	39,69	39,69	39,69	39,67	39,67	39,67	39,67	41,85	41,87	41,79	41,90
	39,67	39,67	39,67	39,67	41,85	41,87	41,79	41,90	39,95	40,16	40,79	41,39
Т	300	300	300	300	1000	1100	1200	1300	1500	1600	1700	1900
	1000	1100	1200	1300	1500	1600	1700	1900	3000	3000	3000	3000
Rg	8,88	8,88	8,88	8,88	8,88	8,88	8,88	8,88	8,31	8,31	8,33	8,31
	8,88	8,88	8,88	8,88	8,31	8,31	8,33	8,31	8,31	8,31	8,31	8,31
Т	300	300	300	300	1000	1100	1200	1300	1500	1600	1700	1900
	1000	1100	1200	1300	1500	1600	1700	1900	3000	3000	3000	3000
C _{pg}	0,022	0,022	0,022	0,022	0,022	0,022	0,022	0,022	0,021	0,021	0,021	0,021
	0,022	0,022	0,022	0,022	0,021	0,021	0,021	0,021	0,021	0,021	0,021	0,021
Т	300	300	300	300	1100	1200	1300	1400	1500	1600	1700	1900
	1100	1200	1300	1400	1500	1600	1700	1900	3000	3000	3000	3000
Z	0,076	0,076	0,076	0,076	0,076	0,076	0,076	0,076	0	0	0	0
	0,076	0,076	0,076	0,076	0	0	0	0				
Т	300	300	300	300	1000	1100	1200	1300	1500	1600	1800	1900
	1000	1100	1200	1300	1500	1600	1800	1900	3000	3000	3000	3000

Т – температура, К; Р- внешнее давление, Па; М- число молей, моль/кг; І – полная энтальпия, кДж/моль; U - полная внутренняя энергия, кДж/моль; C_p – равновесная удельная теплоемкость, кДж/(моль*К); ММ_g – молярная масса паровой фазы, г/моль; R_g – газовая постоянная Дж/(моль*К); C_{pg} равновесная теплоемкость паровой фазы, кДж/(моль*К); λ – коэффициент теплопроводности (кВт/м*К); z – массовая доля конденсированной фазы.