Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

На правах рукописи

Alle -

ШАРАПОВ Айнур Диньмухаметович

КУМАРИНЫ, АННЕЛИРОВАННЫЕ И ЗАМЕЩЕННЫЕ МОНОАЗАГЕТЕРОЦИКЛАМИ: СИНТЕЗ И ФОТОФИЗИЧЕСКИЕ СВОЙСТВА

1.4.3. Органическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени

кандидата химических наук

Екатеринбург – 2025

Работа выполнена на кафедре органической и биомолекулярной химии Химикотехнологического института ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б. Н. Ельцина»

Научный руководитель:	кандидат химических наук, ХАЛЫМБАДЖА Игорь Алексеевич						
Официальные оппоненты:	ДОЦЕНКО Виктор Викторович, доктор химических наук, доцент, Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет», г. Краснодар, заведующий кафедрой органической химии и технологий; МУСТАФИН Ахат Газизьянович, доктор химических наук, профессор, Уфимский институт химии - обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук.						
	заведующий лабораторией органических функциональных материалов;						
	ОБЫДЕННОВ Дмитрий Львович,						
	кандидат химических наук, Федеральное						
	государственное автономное образовательное						
	учреждение высшего образования «Уральский						

федеральный университет имени первого Президента России Б.Н. Ельцина», доцент кафедры органической химии и высокомолекулярных соединений Института естественных наук и математики.

Защита диссертации состоится «16» июня 2025 г. в 16:30 ч на заседании диссертационного совета УрФУ 1.4.06.09 по адресу: 620062, г. Екатеринбург, ул. Мира, 19, ауд. И-420 (зал Ученого совета).

С диссертацией можно ознакомиться в библиотеке и на сайте ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»: https://dissovet2.urfu.ru/mod/data/view.php?d=12&rid=7166

Автореферат разослан « » 2025 г.

диссертационного совета босшия Ученый секретарь

Поспелова Татьяна Александровна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность и степень разработанности темы исследования. История химии кумаринов началась больше 200 лет назад. Это кислородсодержащее гетероциклическое соединение, представляющие собой конденсированную систему пиран-2-она и бензола, было впервые выделено из бобов тонка и цветов донника в 1820 году независимо друг от друга А. Фогелем и Н. Гибуром. С тех пор было получено множество производных кумарина, которые нашли широкое применение в качестве биологически активных соединений.

Прогресс в химии кумаринов не ограничился только разработками их в качестве потенциальных кандидатов в лекарства. Начиная с 1980 года было найдено, что кумарины могут также рассматриваться в качестве перспективных флуорофоров. Множество обширных исследований было посвящено изучению, анализу и оптимизации фотофизических свойств красителей на основе кумарина. Данные исследования привели к применению кумаринов в качестве новых материалов для лазерных красителей, солнечных батарей, а также их использованию в качестве флуоресцентных зондов для исследования статических и динамических процессов в различных гомогенных, биологических и микрогетерогенных системах. К тому же, известные красители на основе кумарина нашли применение в качестве хемосенсоров и в фотохимии в качестве компонентов-реагентов фотохимических процессов, а также для мониторинга процессов флуоресценции. Однако, стоит отметить, что ранее проведенный поиск новых флуорофоров на основе кумаринов ограничен в большинстве исследований введением заместителей электронодонорного характера в 6- или 7-положении или электроноакцепторного характера в 3- или 4-положении. К сожалению, исследования фотофизических свойств кумаринов, замещенных по 8-положению и (гет-)аннелированных по бензольному фрагменту в качестве флуорофоров, было проведено значительно в меньшей степени. В данном аспекте, например, введение пиридина или аннелирование пиррола в бензольный фрагмент кумарина может приводить к повышению эффективности «пуш-пул» системы, а также позволит увеличить квантовые выходы за счет создания «жесткой» планарной структуры.

С другой стороны, для получения новых флуорофоров на основе как замещенных, так и аннелированных кумаринов обычно применяют классические синтетические методы: реакцию конденсации Перкина, конденсацию Кневенагеля, реакцию Виттига, реакцию Пехмана, реакцию Хартли. Однако новые требования, учитывающие принципы «зеленой химии», ограничены в синтезе кумаринов, содержащих моноазагетероциклический фрагмент. К тому же, методы синтеза (пиридинил)кумаринов путем прямого С-Н/С-Н сочетания, в частности, реакции кросс-дегидрогенативного сочетания недостаточно разработаны, а в случае пирролокумаринов построение пиран-2-она на индольном цикле с использованием «зеленых» методов (например, механохимических реакций или реакций без использования растворителей и др.) неизвестны. Данные подходы отвечают требованиям «зеленой химии» и PASE (Pot, Step, Atom Economy). Несомненными преимуществами данных методов является отказ от использования так называемых «хлорных технологий», дорогостоящих катализаторов на основе переходных металлов, что сокращает количество отходов. В связи с этим исследование возможности применения вышеуказанных методов наряду с другими синтетическими методологиями позволят получить новые фотоактивные материалы на основе моноазагетероциклических кумаринов, а также позволят разработать передовые технологии органического синтеза.

Целью настоящей диссертационной работы является разработка методов синтеза кумаринов, модифицированных моноазагетероциклами (пиррол, пиридин) в качестве потенциальных флуорофоров и исследование их фотофизических свойств.

Для достижения поставленной цели были определены следующие задачи:

1. Аналитический обзор литературных данных по синтезу и свойствам пирролоаннелированных, пиридинил- и пиримидинил- замещенных кумаринов;

2. Синтез (1,2,4-триазин-5-ил)- и (пиридин-2-ил)-замещенных кумаринов, бензо[*c*]кумаринов, исследование их строения, фотофизических и хемосенсорных свойств;

3. Разработка методов синтеза пирролокумаринов (пирроло[3,2-g]кумаринов, пирроло[2,3-g]кумаринов, пирроло[2,3-f]кумаринов), исследование их строения и фотофизических свойств;

4. Разработка методов получения пирролоаннелированных кумаринов по реакции Пехмана с механохимической активацией;

5. Синтез 9-(1,2,4-триазин-5-ил)- и 9-(пиридин-2-ил)-пирролокумаринов, исследование их строения и фотофизических свойств.

Объектами исследования являются:

• замещенные фенолы, выступающие в качестве исходных материалов в синтезе кумаринов по реакции Пехмана;

производные кумаринов, выступающие в роли нуклеофильных реагентов;

• замещенные 1,2,4-триазины, выступающие в качестве электрофильных реагентов;

пирроло[3,2-g]кумарины, пирроло[2,3-g]кумарины, пирроло[2,3-*h*]кумарины, пирроло[2,3*-f*]кумарины, 8-(1,2,4-триазин-5-ил)-8-(пиридин-2-ил)-замещенные И кумарины, 4-(пиридин-2-ил)-замещенные бензо[с]кумарины, 9-(пиридин-2ил)пирролокумарины, как целевые продукты для исследования строения, ИХ фотофизических и хемосенсорных свойств (люминесцентного отклика).

Научная новизна и теоретическая значимость работы:

• Был проведен двухстадийный синтез флуорофоров на основе (пиридин-2ил)кумаринов с исследованием последовательности реакций нуклеофильного замещения водорода (S^H_N) – Дильса-Альдера – ретро-Дильса-Альдера (реакция Боджера). Данная стратегия позволила получить 21 новых примеров производных 8-(пиридин-2ил)кумаринов. Проведены исследования фотофизических свойств, для двух наиболее перспективных соединений исследовано явление сольватохромизма. Полученные данные были проанализированы с использованием уравнения Липперта-Матага, а также шкал Косовера и Димрота/Райхардта.

• Разработана синтетическая стратегия получения потенциальных хемосенсоров на основе 8-(2,2'-бипиридин-6-ил)кумаринов, основанная на комбинации реакции S^H_N и реакции Боджера. Изучены фотофизические свойства, экспериментально исследовано явление сольватохромизма, которое теоретически подтверждено по математическим моделям.

• Продемонстрирована возможность реакции S^H в 3,5-ди(гет)арил-1,2,4-триазинах с бензо[*c*]кумаринами и проведена трансформация полученных 4-(1,2,4триазин-5-ил)бензо[*c*]кумаринов в 4-(пиридин-2-ил)бензо[*c*]кумарины по реакции Боджера. Для полученных соединений исследованы фотофизические свойства. Кроме того, разработан однореакторный синтез 1,2,4-триазинилзамещенных бензо[*c*]кумаринов методом двойного окисления.

Для полученных 8-(пиридин-2-ил)- и 8-(1,2,4-триазин-5-ил)-замещенных кумаринов впервые изучена молекулярная и кристаллическая структура методом рентгеноструктурного анализа (PCA). Получены данные межмолекулярного взаимодействия в кристалле И ИХ влияние кристаллическую на структуру азагетероциклических кумаринов.

• Впервые использован механохимический подход в синтезе линеарных производных пирроло[2,3-g] и [3,2-g]кумаринов при взаимодействии производных гидроксиндолов с β-кетоэфирами в шаровой мельнице в присутствии метансульфоновой кислоты. Были оптимизированы условия реакции и исследованы селективность и «зеленые» параметры реакции: показатели EcoScale, E-фактор.

• Предложен двухстадийный синтез новых флуорофоров на основе пирролокумаринов с четырьмя типами аннелирования ([3,2-g], [2,3-g], [2,3-h], [2,3-f]). Синтез пирроло[3,2-g]кумаринов, пирроло[2,3-g]кумаринов, пирроло[2,3-h]кумаринов осуществлен по реакции Бишлера-Мелау, а пирроло[2,3-f]кумарины получены по реакции Неницеску, с последующей реакцией по Пехману. Были исследованы фотофизические свойства полученных соединений, проведены квантово-химические расчеты и проанализированы данные по уравнению Липперта-Матага.

• Проведен двухстадийный синтез новых 9-(пиридин-2-ил)-замещенных пирролокумаринов по последовательности реакций S^H_N – реакция Боджера. Исследованы фотофизические свойства 9-(пиридин-2-ил)-замещенных пирролокумаринов.

Практическая значимость работы:

• Разработка подходов к синтезу новых азотсодержащих и аннелированных кумаринов позволяет получить новые флуорофоры и хемосенсоры простыми, высокоэффективными и селективными методами. Кроме того, методологии синтеза производных кумаринов на основе реакции конструирования новых С-С, С-О, С-N связей отвечают современным требованиям «зеленой химии», которые существенно снижают нагрузку на окружающую среду.

• (Би)пиридинил производные кумаринов, пирролоаннелированные производные кумаринов с высокими значениями квантового выхода и обладающие положительным сольватохромизмом представляют собой перспективные материалы для солнечных батарей, для OLED-материалов, как материалы для молекулярной электроники.

• Функциональные флуорофорные системы на основе (бипиридинил)кумаринов показали себя как хемосенсоры на катионы металлов (Al³⁺, Cu²⁺, Cd²⁺, Zn²⁺), которые могут быть использованы как материалы для количественного и качественного анализа содержания металлов в химической и металлургической промышленности.

Методология и методы диссертационного исследования

В работе были применены синтетические подходы на основе: реакции кроссдегидрогенизационного сочетания (в разновидности реакции нуклеофильного замещения водорода) в 1,2,4-триазинах с замещенными кумаринами, бензо[*c*]кумаринами, пирролокумаринами, реакция Боджера, механохимическая реакция Пехмана.

• Для полученных моноазагетероциклических кумаринов были определены фотофизические (определение максимумов абсорбции и эмиссии, квантовых выходов, время жизни люминесценции) и хемосенсорные свойства (взаимодействие с катионами металлов), квантово-химические расчеты (DFT-расчеты).

Положения, выносимые на защиту:

• Синтез ((би)пиридин-2-ил)- и (1,2,4-триазин-5-ил)-замещенных бензо[*c*]кумаринов посредством реакции нуклеофильного замещения водорода и реакции Боджера, в том числе, с применением реакций двойного окисления;

• Синтез пирролоаннелированных кумаринов посредством реакции Пехмана, а также использование механохимической активации в реакции Пехмана для синтеза пирроло[2,3-g] и [3,2-g]кумаринов;

• Синтез 9-(1,2,4-триазин-5-ил)- и 9-(пиридин-2-ил)-замещенных пирролокумаринов посредством реакции S_N^H и реакции Боджера;

• Исследование фотофизических свойств (пиридин-2-ил)-замещенных (пирроло)кумаринов и пирролоаннелированных кумаринов.

• Исследование люминесцентного отклика 8-(2,2'-бипиридин-6-ил)кумаринов на ионы Al³⁺, Cu²⁺, Cd²⁺, Zn²⁺.

• Проведение квантово-химических расчетов с использованием DFT (индексы перекрывания HCMO и B3MO, ширина запрещенной зоны), электростатических потенциалов, пирролокумаринов и азагетероциклических кумаринов.

Степень достоверности и апробация результатов

Синтезированные кумарины были охарактеризованы методами спектроскопии ядерного-магнитного резонанса (ЯМР ¹H, ¹³C, ¹⁹F), масс-спектрометрии, а также данными элементного анализа. Молекулярные структуры были подтверждены данными РСА. Измерения физико-химических характеристик (структурных, фотофизических и др.) кумаринов были проведены на оборудовании Уральского федерального университета (ЦКП «Комплексных исследований и экспертной оценки органических материалов») и в Институте органического синтеза им. И.Я. Постовского УрО РАН (ЦКП «Спектроскопия и анализ органических соединений»). Квантово-химические расчеты были проведены в Институте химии Санкт-Петербургского государственного университета.

Основные результаты были представлены на конференциях: 5-я Международная научно-практическая конференция «Современные синтетические методологии для создания лекарственных препаратов и функциональных материалов» (MOSM2021) (г. Екатеринбург, 2021 г.), VI Северо-Кавказский Симпозиум по органической химии (г. Ставрополь, 2022 г.), 7-я Международная научно-практическая конференция «Современные синтетические методологии для создания лекарственных препаратов и функциональных материалов» (MOSM2021) (г. Ставрополь, 2022 г.), 7-я Международная научно-практическая конференция «Современные синтетические методологии для создания лекарственных препаратов и функциональных материалов» (MOSM2023) (г. Екатеринбург, 2023 г.), 26th International Conference on Physical Organic Chemistry (26th ICPOC) (Китай, г. Пекин, 2024 г.).

Публикации

Основное содержание диссертационной работы опубликовано в 13 научных работах, из них 7 статей, опубликованных в рецензируемых научных журналах, определенных ВАК РФ и Аттестационным советом УрФУ и индексируемых библиографическими базами Scopus и Web of Science; 1 патент РФ на изобретение, а также 5 тезисов докладов международных и всероссийских конференций.

Структура и объем работы

Диссертация изложена на 168 страницах, состоит из введения и трех глав: аналитический литературный обзор (глава 1), обсуждение результатов (глава 2), экспериментальная часть (глава 3), заключение, список сокращений и условных обозначений, приложение. Диссертация содержит 90 схем, 16 таблиц, 30 рисунков. Библиографический список цитируемой литературы содержит 148 наименований.

Личный вклад соискателя состоял в аналитическом сборе информации, систематизации и анализе литературных данных, в постановке целей и задач основной темы диссертации, планировании и проведении экспериментов по синтезу, а также в исследованиях фотофизических и хемосенсорных свойств.

Благодарность. Автор выражает искреннюю благодарность научному руководителю диссертации к.х.н. Халымбаджа И.А., коллективу химико-технологического института Уральского федерального университета, в частности сотрудникам кафедры органической и биомолекулярной химии: профессору кафедры, академику РАН О.Н. Чупахину, заведующему кафедрой, чл.-корр. РАН В.Л. Русинову, д.х.н. Г.В. Зырянову и д.х.н. Д.С. Копчуку за проведение совместных исследований по синтезу и исследованию фотофизических свойств кумарин-(би)пиридинов, к.х.н. Фатыхову Р.Ф. и аспиранту Потаповой А.П. за подготовку публикаций, к.х.н. Новикову А.С. за проведение квантовохимических расчетов, к.х.н. Шарутину В.В. и к.х.н. Слепухину П.А. за проведение РСА, к.х.н. Ельцову О.С. за проведение экспериментов по спектроскопии ядерного магнитного резонанса.

Работа выполнена при поддержке Российского научного фонда (РНФ), проект № 21-73-00214 и № 23-73-10050.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Результаты диссертационной работы изложены в трех основных главах. Во введении обоснована актуальность и практическая значимость работы, сформулирована цель и задачи исследования. В обзоре литературы (глава 1) обсуждаются методы синтеза пирроло-, пиридинил- и пиримидинил-кумаринов, а также их перспективы применения (флуорофоры, хемосенсоры, биологически активные соединения). В главе 2 приведено обсуждение результатов собственных исследований по синтезу производных кумаринов и их свойств. В экспериментальной части (глава 3) представлены сведения об объектах исследования, оборудовании, реактивах и материалах, методах и методиках проведения синтеза соединений и доказательство их строения.

Глава 2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Кумарины (2*H*-хромен-2-оны) являются одним из важных классов бензопиронов, широко распространенных природных соединений. Кумарины проявляют многообразную биологическую активность и уникальные фотофизические свойства. Данный класс соединений привлекает внимание ученых благодаря высоким квантовым выходам флуоресценции, настраиваемым длинам волн абсорбции и эмиссии и высокой химической стабильности. Как было ранее отмечено в литературном обзоре, введение различных заместителей, в частности моноазагетероциклов в кумариновый каркас позволяет настраивать и улучшать свойства кумаринов, например, получать высокоэффективные материалы для OLED технологий, материалы pH-чувствительных фотосистем доставки лекарств или стабильные промышленные красители.

2.1 Синтез и свойства (1,2,4-триазин-5-ил)- и (пиридин-2-ил)-замещенных кумаринов 2.1.1 Синтез производных 8-((би)пиридинил)кумаринов

Первоначальным этапом в создании новых флуорофоров на основе кумаринов являлось исследование фотофизических свойств 8-(пиридин-2-ил)кумаринов 4 (Схема 1), полученных нами ранее при помощи последовательности реакций S_N^H в 3,6-диарил-1,2,4-триазинах **2а-ж** с кумаринами **1а-г** с получением 8-(1,2,4-триазин-5-ил)кумаринов **3а-х** и их трансформацией по Боджеру в 8-(пиридин-2-ил)кумарины **4а-х**. В данной работе, синтез ранее описанных производных 8-(1,2,4-триазин-5-ил)кумаринов **3а-х** [Р.Ф. Фатыхов, Дис. канд. хим. наук, 2021] был проведен по оптимизированной процедуре без выделения промежуточных аддуктов, что позволяло уменьшить потери в выходе аддуктов и сократить время реакции.

Схема 1

Была исследована применимость вышеописанного метода в синтезе 8-(2,2'бипиридинил)кумаринов **6а-г**, изучены фотофизические свойства полученных соединений, а также был зарегистрирован их люминесцентный отклик на катионы Al³⁺, Cu²⁺, Cd²⁺ и Zn²⁺. В отличие от реакции **1а-г** с триазинами **2а-ж**, 3 эквивалента метансульфокислоты оказалось недостаточно для эффективной активации этой реакции, и из реакционной смеси была выделена смесь исходных соединений – кумарина **1** и триазина **23,и**. Было обнаружено, что увеличение количества метансульфокислоты до 10 эквивалентов позволило провести первую стадию с высоким выходом. Последующая окислительная ароматизация образовавшихся дигидротриазинов была проведена без выделения из реакционной массы под действием дихлордицианобензохинона (DDQ) в ДХЭ при кипячении, в результате чего были получены продукты ароматизации **5а-г** с хорошими выходами (65-77%). Условия реакции Боджера были аналогичны условиям получения 8-(пиридин-2-ил)кумаринов **4**, выходы 8-(2,2-бипиридин-6-ил)кумаринов **6а-г** составили 69-75% (Схема 2). Для однозначного подтверждения структуры для соединения **66** был проведен РСА (Схема 2).

Для изучения влияния природы заместителей пиридинового или кумаринового заместителя на оптические свойства были проведены фотофизические исследования полученных ((би)пиридинил)кумаринов **4а-х** и **6а-г**.

Так, в спектрах поглощения в растворах ацетонитрила полученные 8-(пиридин-2ил)кумарины **4а-х** демонстрировали интенсивное поглощение в области 209–308 нм, что соответствует π - π *-переходам. Удивительно, но в спектрах флуоресценции 4фенилзамещенные кумарины **43-0** проявляли эмиссию в области 368–475 нм (Таблица 1, № 8-14), а наблюдаемые значения квантовых выходов составляли <0.1%.

№	Соед.	R ¹	R ²	\mathbf{R}^3	R ⁴	λabs, HM ^a	λem, HM ^b	Стоксов сдвиг, нм (см ⁻¹)	Φ, % ^c
1	4a			$4-(MeO)C_6H_4(PMP)$	Ph	301	402	101 (8347)	13.7
2	4б			3,4-(MeO) ₂ C ₆ H ₃	Ph	305	411	106 (8456)	0.9
3	4 B			PMP	PMP	302-307	406	99 (7943)	7.8
4	4г	Me	Η	2-Нафтил	Ph	301	402	101 (8347)	5.7
5	4д			Tol	Ph	300	402	102 (8458)	14.4
6	4 e			PMP	Tol	301	402	101 (8347)	10.1
7	4ж			Ph	Ph	295	401	106 (8960)	4.6
8	43			PMP	Ph	265	369	104 (10636)	< 0.1
9	4и			PMP	Tol	293	475	182 (13078)	< 0.1
10	4к			Tol	Ph	283	455	172 (13357)	< 0.1
11	4л	Ph	Η	2-Нафтил	Ph	300	390	90 (7692)	< 0.1
12	4м			3,4-(MeO) ₂ C ₆ H ₃	Ph	301-308	388	80 (6694)	< 0.1
13	4н			PMP	PMP	302	368	66 (5938)	< 0.1
14	40			Ph	Ph	290	390	100 (8841)	< 0.1
15	4п			Ph	Ph	300	410	110 (8943)	15.8
16	4p			PMP	Ph	303	413	110 (8790)	16.2
17	4c	Ма	Dn	2-Нафтил	Ph	303	404	101 (8251)	7.0
18	4т	wie	ы	PMP	Tol	291-302	410	108 (8722)	19.1
19	4y			Tol	Ph	296-300	410	110 (8943)	13.3
20	4ф			3,4-(MeO) ₂ C ₆ H ₃	Ph	307	415	108 (8477)	13.5
21	4x	Pr	Η	Ph	Ph	296	403	107 (8970)	8.1

Таблица 1 – Фотофизические свойства соединений 4

Здесь и далее: ^аСпектры абсорбции зарегистрированы при к.т. в MeCN; ^ьСпектры эмиссии зарегистрированы при к.т. в MeCN; ^сАбсолютный квантовый выход измерялся при к.т. в MeCN с использованием интегрирующей сферы Horiba-Fluoromax-4.

С другой стороны, 4-метилкумариновые производные **4а-ж** демонстрировали заметную флуоресцентную эмиссию при 402–411 нм со значениями квантовых выходов от 0.9 до 14.4% (Таблица 1, № 1-7).

Пиридинильные производные 3-бензил-4-метилкумаринов **4п-ф** проявляли эмиссию при 404–415 нм с квантовым выходом до 19.1% (Таблица 1, № 15-20). Как и ожидалось, введение метильной или метокси-группы в ароматические заместители пиридинового ядра пиридин-кумариновых флуорофоров **4** приводит к изменению их фотофизических свойств, таких как батохромный сдвиг максимумов абсорбции и эмиссии, а также к увеличению квантовых выходов флуоресценции.

Рисунок 1 – Молекулярная структура соединения 43 по данным расчетов DFT с использованием гибридного потенциала B3LYP в базисе 6-31G

Чтобы понять причину низкого квантового выхода производных 4-фенилкумарина были проведены расчеты в рамках теории DFT с использованием гибридного потенциала B3LYP в базисе 6-31G молекулярной структуры соединения 4а, содержащего 4-метильную группу в кумариновом кольце, и его 4-фенильного аналога 43. Оказалось, что пироновое кольцо в 4-фенилкумарине 4з искажено и не лежит в плоскости. Из-за этих структурных особенностей эффективное сопряжение в 4фенилпроизводных оказывается невозможным, поскольку двойные связи в значительной степени изолированы, что приводит к низким выходам флуоресценции (Рисунок 1).

Для того, чтобы подтвердить выводы, сделанные на основании DFT-расчетов, мы провели PCA для

соединения **4ж** и **40**. Было обнаружено, что молекула **40** представляет собой типичный случай системы с нарушенной системой сопряжения ароматических колец, в котором азагетероциклическая и кумариновая части могут рассматриваться, как независимые друг от друга. Этот результат хорошо согласуется с данными DFT-расчетов (кумариновое кольцо не является планарным, двугранные углы составляют 5.759°, 3.560° и -8.552°), что объясняет низкие выходы флуоресценции для производных **43-0** (Рисунок 2).

Рисунок 2 – Соединение 4ж и 40 по данным РСА

На следующем этапе был проведен систематический анализ совместного влияния обеих флуорофорных систем – на основе диарилпиридина и кумарина – на фотофизические свойства гибридных пиридин-кумариновых флуорофоров 4 (Таблица 2). Таким образом, во всех случаях значения Стоксова сдвига для пиридин-кумариновых флуорофоров 4 были значительно больше, чем для флуорофоров 1, 7, 9. Так, для алкилоксизамещенных пиридинов 9 значения Стоксова сдвига во всех случаях не превышали 64 нм (5238 см⁻¹), тогда как в случае 8-(пиридин-2-ил)кумаринов 4 эти значения могли достигать величины 182 нм (13078 см⁻¹) (Таблица 1 и 2).

-			1			1	1	
N₂	Соед.	R ¹	R ²		λ _{abs} , нм	λem, HM	Стоксов сдвиг, нм (см-1)	Ф, %
					MeO R ¹	.R ²		
1	1a	Me]]	Η	317	392	75 (6035)	8.1
2	16	Ph	Н		327	409, 428(пл)	82 (6131)	2.5
3	1в	Me	E	Bn		408	87 (6643)	3.1
4	1г	н-Pr]]	Н	317	393	76 (6100)	<0.
								1
						R ⁴		
№	Соед.	R	R ³	R ⁴	λabs, HM	λem, HM	Стоксов сдвиг, нм (см-1)	Ф, %
5	7a	Н	Ph	Ph	278	358	80 (8038)	9.8
6	7д	Н	PMP	PMP	307	367	60 (5325)	34.1
7	7ж	Н	PMP	Tol	302	366	64 (5790)	32.4
8	9к	MeO	PMP	Tol	319	383	64 (5238)	33.7
9	9л	MeO	Tol	Ph	315	370	55 (4719)	15.6
10	9м	PrO	Ph	$2-FC_6H_4$	319	366	47 (4026)	17.6

Таблица 2 – Фотофизические свойства кумаринов 1 и пиридинов 7, 9

Для производных 3-бензил-4-метилкумарина, таких как **4p** и **4ф**, мы изучили фотофизические свойства в растворителях различной полярности. В случае соединения **4p**, содержащего 4-метоксифенильный и фенильный заместители в пиридиновом ядре, наблюдался заметный положительный сольватохромизм – батохромный сдвиг максимума эмиссии до 100 нм в диапазоне растворителей от наименее полярного н-гептана до наиболее полярного метанола. Значительно менее выраженный положительный сольватохромизм был отмечен и для соединения **4ф**. На рисунке 3 представлены эмиссионные спектры обоих соединений в различных растворителях.

растворителях

Кроме того, влияние природы растворителей на изменение фотофизических свойств этих флуорофоров было показано в результате анализа данных, полученных с помощью уравнения Липперта-Матага. Для обоих флуорофоров (**4p** и **4ф**) наблюдался линейный характер зависимости ($R^2 = 0.9$), что подтверждает влияние полярности растворителя на фотофизические свойства флуорофоров. Полученные результаты батохромных сдвигов максимумов эмиссии почти во всех случаях хорошо коррелировали с количественными значениями полярности соответствующих растворителей, в соответствии с параметрами Косовера (Z) и Димрота/Райхардта (E_T). Например, в метаноле (Z = 83.6 ккал/мол, $E_T = 55.4$ ккал/мол) наблюдается более длинноволновый максимум эмиссии (для **4p**, $\lambda_{em} = 430$ нм; для

4ф, $\lambda_{em} = 420$ нм). В неполярном растворителе как циклогексан (E_T = 30.9 ккал/мол) максимум эмиссии был зарегистрирован в коротковолновой области (для **4p**, $\lambda_{em} = 398$ нм; для **4ф**, $\lambda_{em} = 394$ нм).

В случае ряда 8-([2,2'-бипиридин]-6-ил)-5,7-диметоксикумаринов были также изучены фотофизические свойства соединений **6а-6**г. Было обнаружено, что эти соединения проявляют флуоресценцию в растворах ацетонитрила с максимумами эмиссии в диапазоне 401–410 нм и квантовым выходами флуоресценции до 15% (Таблица 3).

N⁰	Соед.	R ¹	R ²	R ³	λabs, HM	λem, HM	Стоксов сдвиг,	Ф, %
							нм (см ⁻¹)	
1	6a	Ph	Н	Tol	292	408	116 (9736)	< 0.1
2	66	Me	Η	Ph	294	401	107 (9076)	5.6
3	6в	Me	Н	Tol	296	401	105 (8846)	8.4
4	6г	Me	Bn	Tol	296	410	114 (9393)	15.0
5	Ph N N				298	357	59 (5546)	3.2
6	Tol				302	360	58 (5335)	17.0

Таблица 3 – Фотофизические свойства соединений ба-г

Очевидно, что замена фенильного заместителя в положении C2' на 2-пиридинил в (8-пиридин-2-ил)кумаринах **4** приводит к образованию потенциального координирующего центра. Так, в ходе исследования люминесцентного отклика соединений ряда 8-(2,2'бипиридин-6-ил)кумаринов **6** было установлено, что титрование ацетонитрильных растворов соединений **6а-г** раствором AlCl₃ в TГФ в большинстве случаев сопровождается значительным увеличением интенсивности эмиссии (Рисунок 4A), а в случае лиганда **6а** наблюдается батохромный сдвиг максимума эмиссии комплекса относительно лиганда на 67 нм с постепенным увеличением интенсивности флуоресценции до 2.7 раз (Рисунок 4A). Предполагается, что усиление эмиссии лигандов **6а-г** при координации с ионами Al³⁺, Zn²⁺, Cd²⁺ связано с вкладом безызлучательных процессов релаксации возбужденного состояния в результате образования связанного соединения с соответствующим ионом.

Обратная ситуация наблюдалась при титровании ацетонитрильных растворов лигандов **6а-г** раствором CuCl₂ в $T\Gamma\Phi$ (Рисунок 4Б). В данном случае увеличение концентрации катионов Cu²⁺ в анализируемых растворах сопровождается резким падением интенсивности эмиссии вплоть до полной потери флуоресцентных свойств. Уменьшение интенсивности эмиссии можно объяснить электронно-обменными процессами (по механизму Декстера).

Рисунок 4 – Спектры эмиссии растворов 6а (А) и 6в (Б) при титровании AlCl₃ и CuCl₂ соответственно (в ТГФ)

Следует отметить, что обнаруженный положительный сольватохромизм открывает ряд перспектив для использования представленных здесь новых (би)пиридин-кумариновых флуорофоров **4** и **6**. В частности, они могут рассматриваться как потенциальные кандидаты для создания флуоресцентных зондов, а также в качестве компонентов для флуоресцентных и нелинейно-оптических материалов.

2.1.3 Синтез 4-(1,2,4-триазин-5-ил)- и 4-(пиридин-2-ил)-бензо[с]кумаринов

Аннелирование дополнительного бензольного цикла в кумаринах позволяет модифицировать фотофизические свойства флуорофорных систем за счет удлинения цепи сопряжения, и часто приводит к сдвигу максимумов поглощения и испускания, изменению квантового выхода, позволяя, таким образом, проводить тонкую настройку фотофизических свойств.

В представленной работе было использовано два подхода для синтеза исходных производных бензо[*c*]кумаринов: ароматизация циклогексенового фрагмента и построение бензо[*c*]кумаринов при помощи реакции Хартли [Organometallics, 1989, 8(10), 2293-2299].

Было найдено, что увеличение количества DDQ до 3.6 эквивалентов позволяет получить 4-(1,2,4-триазин-5-ил)бензо[c]кумарин **11а** с высоким выходом (Таблица 4, №2). С другой стороны, использование хлоранила (TCQ) даже в четырехкратном избытке приводило лишь к ароматизации дигидротриазинового ядра с высоким выходом продукта **12а** (Таблица 4, №4). Использование MnO₂ также приводило к образованию соединения **12а** с умеренным выходом (Таблица 4, №5).

Далее была изучена применимость предложенного метода и его синтетические ограничения с использованием разнообразных 3,6-диарил-1,2,4-триазинов **2а-д** и **2н-п**.

Таблица 4 – Оптимизация условий окислительной ароматизации аддукта 10а

	IUa	11a 12	a
N⁰	Окислитель (количество эквивалентов)	Продукт	Выход
1	DDQ (1.5)	трудноразделимая смесь п	продуктов
2	DDQ (3.6)	11a	90%
3	TCQ (3.6)	12a	84%
4	TCQ (4.0)	12a	84%
5	MnO ₂ (10.0)	12a	51%
6	Кислород воздуха (барботирование)	исходное соединение	
7	$K_3[Fe(CN)_6]$ (2.0), NaOH	исходное соединение	

Во всех случаях окислительное сочетание приводило исключительно к производным бензо[*c*]кумаринов **11а-и**, содержащим в положении С4 триазиновое кольцо (Схема 3), с выходами от хороших до высоких.

11a (88%): $R^1 = R^2 = Ph$ **116** (74%): $R^1 = Tol, R^2 = PMP$; **11b** (59%): $R^1 = Ph, R^2 = 4$ -Tol; **11r** (71%): $R^1 = Ph, R^2 = 2$ -Haφτил; **11g** (77%): $R^1 = R^2 = PMP$; **11e** (75%): $R^1 = PMP, R^2 = 4$ -BrC₆H₄; **11x** (74%): $R^1 = Tol, R^2 = 4$ -BrC₆H₄; **113** (78%): $R^1 = Ph, R^2 = 4$ -BrC₆H₄; **11n** (67%): $R^1 = Ph, R^2 = H$

Стоит отметить, что использование 3-фенил-1,2,4-триазина **2p** в данном превращении также привело к образованию ожидаемого продукта **11и** с общим выходом 67% (Схема 3).

Было отмечено, что окислительное сочетание кумарина 1д с 1,2,4-триазинами 2з и 2и не привело к образованию продуктов. В связи с этим, было решено разработать подход для сочетания бензо[c]кумаринов 1е-и с производными 1,2,4-триазинов 2 (Схема 4). Применение ранее предложенного подхода сочетания кумаринов с 1,2,4-триазинами и их трансформации по Боджеру в 8-((би)пиридинил)кумарины 4 и 6 было также успешно продемонстрировано в случае окислительного сочетания 3,6-диарилтриазинов 2а-и, 2н,о с бензо[c]кумаринами 1е-и с последующей трансформацией триазинового ядра в соединениях 11а-ж, 14а-з, 15а-д в пиридиновое, которое позволило нам получить ряды 4-(пиридин-2-ил)бензо[c]кумаринов 16а-п, включая производные 2,2'-бипиридинового ряда 17а-д (Схема 4).

2.1.4 Фотофизические свойства 4-(пиридин-2-ил)бензо[с]кумаринов

Как видно из таблицы 5, аннелирование дополнительного бензольного кольца к кумариновой системе (соединения **16**) приводит к батохромному сдвигу максимума эмиссии в область 411–429 нм и увеличению квантового выхода.

Введение в структуру пиридина толильного фрагмента (соединения 166 и 16в, Таблица 5) приводило к снижению квантового выхода по сравнению с соединением 16а. С другой стороны, введение сильных донорных заместителей (MeO) в фенильные заместители пиридина способствовало батохромному сдвигу максимумов абсорбции и эмиссии, а также увеличению квантового выхода. Это хорошо видно для флуорофоров 16д,з,и.

№	Соеед.	R ¹	R ²	R ³	R ⁴	λabs, HM	λem, HM	Стоксов сдвиг, нм (см ⁻¹)	Ф, %
1	16a			Ph	Ph	211, 281	420	139 (11778)	17.0
2	166			PMP	4-Tol	225, 264	414	150 (13724)	0.7
3	16в			4-Tol	Ph	247, 287	420	133 (11034)	13.3
4	16г			2-нафтил	Ph	249, 269	419	150 (13308)	34.6
5	16д	Н	Н	PMP	PMP	226, 283	421	138 (11583)	37.4
6	16e			4-BrC ₆ H ₄	PMP	272	419	147 (12898)	5.9
7	16ж			4-BrC ₆ H ₄	4-Tol	282	419	137 (11595)	7.9
8	163			3,4-(MeO) ₂ C ₆ H ₃	Ph	229, 247, 282	423	141 (11820)	25.1
9	16и			PMP	Ph	233, 283	422	139 (11639)	42.2

Таблица 5 – Фотофизические свойства соединений 16

10	16к			Ph	Ph	285	428	143 (11723)	27.7
11	16л	OMe	Н	PMP	4-Tol	283	429	146 (12025)	51.1
12	16м			2-нафтил	Ph	273	427	154 (13211)	44.2
13	16н			Ph	Ph	249, 284	411	127 (10880)	40.6
14	160	Н	Me	PMP	4-Tol	275	412	137 (12092)	37.8
15	16п			2-нафтил	Ph	242, 272	419	147 (12898)	5.9

Дополнительное введение в структуру бензо[*c*]кумарина донорного заместителя (MeO) способствует изменению фотофизических свойств: наблюдается батохромный сдвиг максимумов, а также повышается квантовый выход (**16a** и **16k**, **16б** и **16л**, **16г** и **16м**, Таблица 5).

Введение в структуру бензо[c]кумаринов бипиридинового фрагмента (соединения **17**, Таблица 6, №1-5) не приводило к значительным изменениям длин волн максимумов абсорбции и эмиссии, но в некоторых случаях способствовало значительному повышению квантового выхода, например, для соединений **17а** и **176**.

N₂	17	R ¹	R ²	R ³	λabs, HM	λem, HM	Стоксов сдвиг, нм (см ⁻¹)	Φ, %				
1	a	ч	п	TT	TT	Ph	247, 276	422	146 (12535)	86.3		
2	б	п	н	4-Tol	227, 284	420	136 (11401)	51.5				
3	В	OMe	Н	Ph	232, 284	429	145 (11901)	23.1				
4	Г	OMe	OMe	Ph	303	406	103 (8373)	71.3				
5	Д	Н	Me	4-Tol	308	410	102 (8077)	51.4				

Таблица 6 – Фотофизические свойства соединений 17

В отличие от соединений 17, бипиридиновые производные **6а-г** (Таблица 3) продемонстрировали слабую люминесценцию с испусканием в области 401–412 нм и квантовым выходом, не превышающим 15%. Сопоставление фотофизических свойств флуорофоров **17** и **6а-г** показало, что введение пиридинового фрагмента приводит к гипсохромному сдвигу максимумов абсорбции и эмиссии, а также снижению квантового выхода. Это можно наблюдать при сравнении соединений **16н** и **6г**. В связи с чем, можно заключить, что введение дополнительного бензольного кольца в структуру кумарина позитивно сказывается на фотофизических свойствах: наблюдается батохромный сдвиг максимума эмиссии и значительно повышаются квантовые выходы.

2.2 Синтез и свойства пирролоаннелированных кумаринов

Как было установлено для соединений 16 и 17, аннелирование бензольного кольца в кумаринах может существенно влиять на фотофизические свойства. Поэтому в данной части было решено рассмотреть и пирролоаннелированные производные кумаринов для получения соединений на основе кумаринов с эмиссией в длинноволновой области.

2.2.1 Синтез пирроло [f]-, [g]-, [h]- кумаринов

Было обнаружено, что 4-гидрокси- и 6-гидроксииндолы являются удобными исходными материалами для получения трех изомерных пирролокумаринов – [2,3-*f*], [3,2-*g*] и [2,3-*h*] путем их конденсации с β-кетоэфирами по Пехману. Эти гидроксииндолы могут быть легко получены в одну стадию с помощью реакции Бишлера-Мелау. Конденсация 3-аминофенола с бензоином (Схема 5) приводит к смеси 4-гидрокси- и 6-гидрокси-2,3-дифенилиндолов **18a** и **186** соответственно, с общим выходом 88%. Индолы **18a** и **186** были разделены колоночной хроматографией на силикагеле.

Конденсация 4-гидроксииндола **18а** с этилбензоилацетатом или этил-3-оксогексаноатом по Пехману позволила получить пирроло[2,3-*h*]кумарины **19а** и **196** с выходами 68 и 63% соответственно (Схема 6). Спектральные данные ¹Н и ¹³С ЯМР подтверждают строение пирроло[2,3-*h*]кумаринов **19а** и **19б**. В частности, протоны при С-5 и С-6 характеризуются дублетами с константой спин-спинового взаимодействия (КССВ) 8.7 Гц.

6-Гидроксииндол 186, в отличие от 4-гидроксииндола 18а, содержит два положения в бензольном цикле, которые могут участвовать в реакции Пехмана (атомы C5 и C7), поэтому в реакции с β -кетоэфирами было выделено два изомерных пирролокумарина с линеарным [3,2-g] 20 и ангулярным [2,3-f] 21 типом аннелирования колец. Полученные пирролокумарины 20 и 21 были разделены колоночной хроматографией. Структуры полученных соединений были установлены на основе спектроскопии ¹H и ¹³C ЯМР. Ангулярный пирроло[2,3-f]кумарин 20а характеризуется дублетами протонов C8-H и C9-H при 7.2 и 7.7 м.д. с КССВ 8.7 Гц, тогда как линеарный пирроло[3,2-f]кумарин 21а не имеет КССВ между протонами при C5 и C9 (Схема 7).

Для получения дополнительных примеров флуорофоров: пирролокумарины **20в,ж,и** были подвергнуты алкилированию в попытке изменить их фотофизические свойства. N-этил- и N-бензилпроизводные **22а-г** были получены в реакции пирроло[3,2-g]кумаринов с йодистым этилом или бромистым бензилом. Кроме того, известно, что аннелирование бензольного кольца к флуорофорной системе способно улучшить ее фотофизические свойства, поэтому была проведена ароматизация циклогексенового фрагмента соединения **21ж** с 3 эквивалентами DDQ при кипячении в ДХЭ до бензольного цикла с получением соединения **23** (Схема 7).

Наконец, были введены заместители в фенильные группы индольного кольца, чтобы оценить влияние этих групп на фотофизические свойства. Для этого была применена конденсация гексаметоксибензоина с 3-аминофенолом по реакции Бишлера-Мелау с получением 6-гидроксииндола **18в** с выходом 70%. Затем полученный 6-гидроксииндол **18в** был вовлечен в реакцию Пехмана с бензоилацетатом при нагревании в MsOH с получением пирроло[3,2-g]кумарина **24** с выходом 68% (Схема 8).

2.2 Синтез пирроло[g]кумаринов в механохимических условиях

Для достижения региоселективности и высоких выходов в синтезе пирролокумаринов был применен также подход механохимической активации. Хотелось бы отметить, что флуорофоры с ядром пирроло[2,3-g]кумаринов были изучены ранее, и мы начали наше исследование с пирролокумаринов с [2,3-g] типом аннелирования.

Сначала были изучены различные условия реакции 5-гидроксииндола 18г с этил-2-оксоциклогексан-1-карбоксилатом (Таблица 7). Простое перемешивание исходных реагентов в метансульфоновой, серной или хлорной кислоте (Таблица 7, № 1-4) приводило к желаемым продуктам лишь с умеренными выходами. Однако, при использовании условий, ранее оптимизированных для механохимического синтеза кумаринов 1, пирролокумарин 25а был получен с выходом 86 %.

Таблица 7 – Оптимизация условий реакции в синтезе пирроло[2,3-g]кумарина

н

H

		Me EtO ₂ C 18r	к.п. условия Ме Истории СО2Et EtO2C 25a (86%)	
N₂	Катализатор	Количество катализатора	Условия	Выход, %
1	MeSO ₃ H	10 мол.%	300 об/мин.	45
2	MeSO ₃ H	10 мол.%	500 об/мин.	61
3	H_2SO_4	растворитель	600 об/мин.	47
4	HClO ₄	растворитель	600 об/мин.	63
5	MeSO ₃ H	10 мол.%	шаровая мельница (500 об/мин.)	86

Важно отметить, что реакция 5-гидроксииндола **18г** с β-кетоэфирами в условиях шарового измельчения приводила только к линеарным изомерам пирролокумаринов **25а-в** (Схема 9). Данный вывод основан на химических сдвигах протонов C5 и C9 кумаринов (7.68 и 7.77 м.д.), соответствующих таковым линеарного пирролокумарина. Чтобы продемонстрировать полезность этого механохимического метода, 8-этоксикарбонилпирроло[2,3-g]кумарины **25а,6** успешно были превращены в 8-незамещенные производные индола **26а** и **266** соответственно: гидролиз эфира с последующим декарбоксилированием был проведен при нагревании в уксусной кислоте в присутствии серной кислоты (Схема 9).

Реакция 6-гидроксииндолов **186**, в с β-кетоэфирами при механохимической активации приводила к образованию пирроло[3,2-*g*]кумаринов **20**, **24** с выходами 53-88 % (Схема 10). В случае реакции 2,3-дифенил-6-гидроксииндола **186** с этил 2-оксоциклогептан-1-карбоксилатом обнаружено лишь следовое количество изомера пирроло[2,3-*f*]кумарина **21**з (идентифицирован в сырой реакционной смеси методом ¹Н ЯМР, характерные дублеты протонов С8 и С9 с КССВ 8.7 Гц, (см. **21**з на схеме 10). Таким образом, в этой механохимической конденсации Пехмана без использования растворителя наблюдалась отличная региоселективность в образовании продукта. Следует отметить, что описано лишь несколько примеров реакций Пехмана с использованием 6-гидроксииндола, и эти реакции характеризуются, как правило, выходами не более 30%.

Схема 10

Дополнительно, соответствие предложенного механохимического протокола критериям зеленой химии подтверждено зеленой метрикой EcoScale. Метрика EcoScale характеризует простоту и общую применимость метода (значение приведено в скобках, Схемы 9, 10). Эта метрика учитывает стоимость, безопасность, техническое оснащение, энергетические аспекты и аспекты, связанные с очисткой продукта.

2.2.3 Фотофизические исследования пирролокумаринов

Для составления фотофизического профиля пирролокумаринов использовали производные пирроло[2,3-g]кумаринов 25а и 26а, десять изомерных пирролокумаринов с линеарным [3,2-g]- или ангулярным [2,3-f]-типом аннелирования колец, такими как 20а-и, 21а-ж, 23 и 24, N-этил и N-бензил производные пирроло[3,2-g]кумаринов 22а-г, и, наконец, пирроло[2,3-*h*]кумарины 19а,б. Кроме того, проведены корреляционные исследования «структура-свойство» донорно-акцепторных (D-A) аннелированных гетероциклических флуорофоров, включающих простые отдельные фрагменты пирролокумаринов 1, 18. Было установлено, что все флуорофоры растворимы при концентрациях ниже 2×10^{-5} М как в неполярных растворителях (н-гептан, толуол), слабо- и сильнополярных апротонных растворителях (ТГФ, дихлорметан, ацетонитрил, ДМФА, ДМСО), так и в сильнополярном протонном растворителе (метанол). Все соединения показали флуоресценцию в растворе.

Из таблицы 8 видно, что интенсивность каждой полосы поглощения для соединений 20-22 зависит от природы функциональных групп в положениях 3-4 для линеарных изомеров и для ангулярных изомеров. Так, циклоалкан-аннелированные производные 20з и 20е демонстрируют доминирующую полосу, обусловленную переходом $S_0 \rightarrow S_2$ с $\epsilon M >$ 55000 M⁻¹ см⁻¹, в то время как полосы поглощения флуорофоров 206-216, 20в-21в, 20д-21д, 21е и 22а представляют собой баланс между двумя переходами ($S_0 \rightarrow S_2$ и $S_0 \rightarrow S_1$) с $\epsilon M <$ 10000 M⁻¹.

Эмиссионные спектры флуорофоров **206-216**, **20в-21в**, **20е-21е**, **213** и **22а** наблюдались как непрерывные неструктурированные эмиссионные полосы с максимумом от 421 до 522 нм, относящиеся к возбужденному состоянию ICT (внутримолекулярный перенос заряда) в сильно полярном апротонном растворителе, что было подтверждено DFT-расчетами (см. Рисунок 5Б).

Фотофизические свойства флуорофоров производных пирролокумаринов в ацетонитриле приведены в таблице 8.

		_1		- 2	εM.	_		Стоксов	
N⁰	Соед.	R	R ²	R ³	мМ ⁻¹ см ⁻¹	λ _{abs} , HM	λem, HM	сдвиг, нм (см ⁻¹)	Ф, %
1	19a	Ph	-	-	4.4, 1.0	241, 285	522	281 (15931)	0.1
2	196	C_3H_7	-	-	3.3, 1.6	241, 280	474	233 (14617)	7
3	20a	Н	Me	Н	0.8	335	502	167 (9930)	14
4	206	Me	Me	Н	1.4, 0.7	284, 337	491	207 (9307)	7
5	20в	Н	C_3H_7	Н	0.7, 0.5	271, 300	499	199 (13293)	89
6	20г	Bn	Me	Н	3.3	338	500	162 (9586)	10
7	20д	Cl	Me	Н	1.6, 1.4, 1.1	225, 303, 330 (пл)	420, 520	217 (10618)	4
8	20e	(CH	H ₂) ₃	Н	5.6, 0.9	275, 337	490	215 (9265)	11
9	20ж	(CH	H ₂) ₄	Н	3.5	334	471	137 (8709)	25
10	203	(CH	H ₂) ₅	Н	3.3, 0.8	275, 337	421	146 (5921)	15
11	20и	Н	Ph	Н	2.5, 2.4, 0.7	245, 303, 335 (пл)	500	197 (12680)	9
12	22a	Н	Pr	Et	1.3, 0.7	285, 335	522	281 (10694)	9
13	226	(CH	H ₂) ₄	Et	2.2, 1.5	284, 329	420	136 (6586)	10
14	22в	Н	Ph	Et	0.9	341	586	245 (12261)	< 0.1
15	22г	Н	Ph	Bn	3.4, 0.8	274, 339	570	231 (11955)	< 0.1
16	24	-	-	-	1.1	315	421	278 (14883)	< 0.1
17	21a	Н	Me	-	1.1	287	496	209 (14682)	57
18	216	Me	Me	-	0.7, 0.6	275, 298	481	206 (12767)	49
19	21в	Н	C_3H_7	-	0.6, 0.6	268, 300	484	194 (13090)	76
20	21г	Bn	Me	-	2.7, 2.8	278, 306	489	183 (12230)	66
21	21д	Cl	Me	-	1.4, 1.1	243, 305	416, 524	219 (8025)	33
22	21e	(CH	H ₂) ₃	-	2.9, 2.7	271, 302	473	171 (12872)	60
23	21ж	(CH	H ₂) ₄	-	4.3, 4.7	274, 302	475	173 (12060)	61
24	23	(Cl	H)4	-	2.8, 1.6	268, 322	516	248 (11676)	6
25	25a		J_).	CO ₂ Et	2.9, 4.1	271 (пл), 329	416	145 (6357)	24
26	26a	(CI	12)4	Н	0.6	274	447	173 (6868)	< 0.1
				Ph		C ₃ H ₇ OM	e C ₃ H ₇		
					N,		\triangleleft		
			Ph	<u></u> ~`⊾_					
				ΗŤ	Owe MeO	✓ `0´ ``0 Me0´ ✓	`0´ ``0		
				18д		1n 1r			
27	18д				2.8, 2.7	261, 325	418	157 (7036)	98
28	1п				3.3, 2.9, 2.3	241, 279, 307 (пл)	375	134 (5907)	2
29	1г				-	317	393	74 (6100)	< 0.1

Таблица 8 – Фотофизические свойства пирролокумаринов **19-26** и компонентов сравнения, $c \approx 10^{-5}$ M, к.т.

Для некоторых производных пирролокумаринов **20-22** были построены нормализованные графики спектров абсорбции и эмиссии (Рисунок 5), что позволило провести сравнительный анализ полученных спектроскопических данных.

Рисунок 5 – Нормализованные спектры абсорбции (А) и эмиссии (Б) для соединений 20-22

В случае 3-хлорзамещенных хромофоров **20д-21**д наблюдалось двойная (гибридная) эмиссия. Значительный гипсохромный сдвиг максимума эмиссии ($\lambda_{em} = 421$ нм) наблюдался только для циклогептен-аннелированного пирролокумарина **20**3, который имеет наименее энергетически выгодное состояние из всей полученной серии флуорофоров.

Было оценено влияние заместителей в соединениях 20 и 21 в пиррольном и

Рисунок 6 – Фотография растворов пирролокумаринов 25а, 20з, 20в и 20д в ацетонитриле при облучении 365 нм (1мМ, Нg лампа)

пирановом фрагменте на фотофизические свойства. Обнаружено, что наибольшие квантовые выходы при достаточно высоких Стоксова сдвига демонстрируют значениях 21в. содержащие соединения 20в И Hпропильный заместитель положение В 4 соответственно. Также были изучены фотофизические пирроло[2,3свойства *g*]кумаринов 25a, 26a пирроло[2,3-И *h*]кумаринов **19а**, **19б**. Так, соединение **19б** показало эмиссию В ацетонитрильных растворах при фотовозбуждении в области 474-522 нм с квантовым выходом до 7%. При сравнении фотофизических свойств соединений

19а, **196** с их изомерами **20в**, **20и** и **21в** было установлено, что соединение **19а** по сравнению с **20и** продемонстрировало значительно большее значение Стоксова сдвига (15931 см⁻¹ против 12680 см⁻¹), и это значение оказалось максимальным в ряду изученных соединений.

Таким образом, большинство соединений **19-21** характеризуются высокими квантовыми выходами и большими Стоксовыми сдвигами (до 14682 см⁻¹). Кроме того, их эмиссионные волны лежат в широком диапазоне от синего до зеленого (Рисунок 6).

N-Алкилирование соединений **20** во всех случаях приводило к заметному снижению квантовых выходов люминесценции, особенно для соединений **22в** и **22г** со значительным красным сдвигом в длинноволновую область до 586 нм со Стоксовым сдвигом 10694 см⁻¹.

В целом, для большинства изученных соединений следует отметить их значительно большие Стоксовы сдвиги (до 15000 см⁻¹), что было достигнуто за счет правильного объединения хромофоров кумарина и 1Н-индола в единую планарную π-сопряженную систему пирролокумаринов с возможностью настройки фотофизических свойств за счет степени угла/длины сопряжения и природы функциональных групп, включая циклопентеновый, циклогексеновый или циклогептеновый фрагменты.

Для выяснения влияния характера внутримолекулярного переноса заряда в возбужденном состоянии и влияния природы растворителей на флуоресцентное поведение были проведены дополнительные DFT-расчеты хромофоров В сочетании с математическими моделями Липперта-Матага для оценки общего влияния растворителей на флуорофоры 20-21. Разница между основным и возбужденным дипольными моментами ($\Delta\mu$) для образцов рассчитывалась как тангенс угла наклона графика Липперта-Матага. Однако, только высокая линейность графиков ($R^2 > 0.90$) на основе линейного уравнения корреляции Липперта-Матага являлась значимым доказательством положительного сольватохромного эффекта для образцов 21в, 21ж и 22а.

Нормированные графики эмиссии в растворителях различной природы и единый график зависимости Стоксова сдвига флуорофоров **21в** от ориентационной поляризуемости растворителей Δf представлены на рисунке 7.

Для более детального изучения гибридного процесса LE-ICT было исследовано поведение затухания флуоресценции во временном разрешении для **21в** и **22а** по сравнению с **21ж** с ярко выраженным состоянием ICT в метаноле. Согласно полученным результатам, в чистом метаноле кривые затухания флуоресценции **21в** и **22а** были биэкспоненциальными, тогда как для **21ж** эти кривые были моноэкспоненциальными. В то же время среднее время жизни флуоресценции (τ_{av}) для **21ж** в метаноле составило 6.07 нс и

было значительно выше, чем для **21в** и **22а**. С другой стороны, при возбуждении в максимуме полосы ICT среднее время жизни было значительно выше (4.18 нс для **21в** и 1.64 нс для **22а**), чем при возбуждении в максимуме полосы LE (локальное возбужденное состояние) (2.86 нс для **21в** и 1.15 нс для **22а**).

Рисунок 7 – Нормированный спектр флуоресценции 21в (А) в различных растворителях (С = 10⁻⁵ М⁻¹); (Б) графики Липперта-Матага для соединений 21в, 21ж и 22а в н-гептане, толуоле, ТГФ, ДХМ, ДМФА, МеСN и МеОН.

Спектры флуоресценции соединений **20**д-**21**д были измерены в ряде растворителей, охватывающих шкалу ориентационной поляризуемости от н-гептана до MeOH (Рисунок 8)

Рисунок 8 – Спектры флуоресценции соединений 20д(А)-21д(Б)

Таким образом, начиная с ТГФ, во всех остальных растворителях наблюдалась двойная (гибридная) флуоресценция в диапазонах длин волн 390–475 нм и 480–740 нм, что соответствует общепринятому механизму возбужденного состояния с расширенным сопряжением (возбужденное состояние с расширенным сопряжением ESEC).

Для пирролокумаринов **20-22** теоретические расчеты в газовой фазе были выполнены с использованием теории функционала плотности (DFT) с помощью программы Gaussian 09 на теоретическом уровне CAM-B3LYP/6-31+G*.

На основании анализа вышеприведенных данных фотофизических исследований и теоретических расчетов можно утверждать, что настройка свойств ICT-состояния ряда пирролокумариновых флуорофоров **20-22** типа D-А возможна как путем варьирования природы функциональных групп в положениях 3-4 пирролокумаринов для серий **20**, **22**, так и изменением угла переноса электрона для двух изомерных пирролокумаринов с линеарным [3,2-g] (**20**,**22**) и ангулярным [2,3-g] (**21**) типами аннелирования. Так, значительный сдвиг СТ-полосы в ацетонитриле (520 нм и 524 нм) наблюдался только у 3-хлорзамещенных соединений **20**д-**21**д, которые имеют наиболее энергетически выгодные состояния из полученного ряда флуорофоров (6.19 эВ для **20**д и 6.15 эВ для **21**д, самые низкие значения ΔЕ в газовой фазе). Эти факты можно объяснить, с одной стороны,

улучшением сопряженности модели хромофора за счет электронодонорного мезомерного эффекта атома хлора, а с другой – усилением акцепторной природы кольца 2*H*-пиран-2-она за счет электроноакцепторного индуктивного эффекта атома хлора.

Кроме того, для каждой пары линеарного [3,2-g] и ангулярного [2,3-f] изомеров пирролокумаринов 20-21 с одинаковыми заместителями разумно предсказать, что более высокая делокализация электронной плотности граничных орбиталей обеспечивает большую атомную подвижность во времени релаксации геометрии возбужденного состояния. Поэтому индекс перекрывания ВЗМО-НСМО, Л, дает хорошее представление о величине Стоксова сдвига, и меньший Λ , что хорошо коррелирует с большим $\Delta\lambda$. Действительно, рассчитанный индекс перекрывания граничных орбиталей Л для пирролокумарина 20а меньше (0.75613), следовательно, Стоксов сдвиг больше, чем для 21а (0.77065). Полученные результаты индексов перекрывания граничных орбиталей Л также хорошо коррелировали и для других пар изомеров: 206 (0.76332) и 216 (0.78534), 20в (0.75773) и 21в (0.77740).

Таким образом, в данной части были найдены флуорофоры с высокими квантовыми выходами до 89 % и большими Стоксовыми сдвигами около 14000 см⁻¹. Кроме того, предложенный метод их синтеза предполагает использование доступных исходных материалов.

2.4 Синтез и свойства триазин-5-ил и пиридин-2-ил пирролокумаринов

На завершающем этапе была показана применимость реакции нуклеофильного замещения водорода в 1,2,4-триазинах с пирролокумаринами и реакции Боджера с целью получения объединенных флуорофоров пиридин-пирролокумаринов. Однако, данная последовательность оказалась реализуемой только для линеарных производных пирроло[3,2-g]кумаринов. Было найдено, что наиболее оптимальными условиями проведения реакции между пирроло[3,2-g]кумаринами 20 и 3-этилтио-1,2,4 триазином с получением аддуктов 27 является кипячение в TFA (Схема 11). Дальнейшая окислительная ароматизация аддуктов 27 с DDQ в ДХЭ при кипячении приводила к образованию продуктов нуклеофильного замещения водорода 28 с хорошими выходами (Схема 11). В гетероядерном эксперименте ¹H-¹³C HMBC для соединений **28** были зарегистрированы кросс-пики между протонами H-6 триазиновой системы (9.78 м.д.), H-5 (8.57 м.д.) и N-H (8.84 м.д.) пирролокумариновой системы и углеродом С-9 при 116.5 м.д., что также свидетельствует о достоверности строения предложенной структуре 28.

Для полученных соединений 28 была также продемонстрирована применимость реакции Боджера (Схема 12).

21

Так, по ранее отработанной процедуре 9-триазинил пирролокумарины **28** в автоклаве с норборнандиеном при 210 °C в о-ДХБ были успешно превращены в пиридинпирролокумарины **29** с хорошими выходами (Схема 12).

Для соединений **27**, **28** не наблюдалось значительного изменения длин волн абсорбции и эмиссии (не более 10 нм) по сравнению с пирролокумаринами **20**, а также характеризовались абсолютными квантовыми выходами менее 0.1 %. Как видно из таблицы 9, замена 1,2,4-триазинового заместителя на пиридин-2-ил в положении С9 пирролокумарина приводит к батохромному сдвигу максимума эмиссии в область 532–547 нм и увеличению квантового выхода для соединений **29а,в**.

		-		1			· · · · · · · · · · · · · · · · · · ·	
№	Соед.	R ¹	R ²	εM, мМ ⁻¹ см ⁻¹	λ_{abs} , HM	λ _{em} , нм	Стоксов сдвиг, нм (см-1)	Φ, %
1	276	Η	C_3H_7	0.8	308	490	182 (12059)	< 0.1
2	286	Η	C_3H_7	0.6	310	502	192 (12337)	< 0.1
3	29a	Me	Me	1.2	332	532	200 (11323)	14
4	296	Η	C_3H_7	2.3	328	554	226 (12437)	58
5	29в	(C	$(H_2)_3$	1.8	337	547	210 (11392)	26

Таблица 9 – Фотофизические свойства соединений 276, 286 и 29а-в

ЗАКЛЮЧЕНИЕ

В результате диссертационной работы была осуществлена разработка простых и эффективных методов синтеза производных кумаринов, в частности пирролоанелированных, 1,2,4-триазинил- и 2-пиридинил- кумаринов, представляющих собой перспективные потенциальные флуорофоры.

Последовательность реакций S_N^H и реакции Боджера была успешно применена для синтеза гибридных пиридин-(пирроло)кумариновых флуоресцентных красителей. синтетический Прелложенный подход открывает простой путь пиридинк (пирроло)кумариновым флуорофорам и позволяет варьировать гибкую конструкцию хромофорных каркасов.

Результаты фотофизических исследований выявили ряд преимуществ (квантовые выходы до 19 %, Стоксовы сдвиги до 13357 см⁻¹, длины волн эмиссии до 475 нм) комбинированных флуорофорных систем 8-(пиридин-2-ил)кумаринов по сравнению с отдельными компонентами такими как кумарины или диарилпиридины, включая ранее описанные 2,5-диарилпиридины с алкоксигруппой в положении C6. Для двух наиболее перспективных флуорофоров продемонстрирован положительный сольватохромизм (до 100 нм), а полученные данные проанализированы с использованием уравнения Липперта-Матага ($R^2 > 0.9$), а также по шкалам Косовера (Z = 58.8-83.6 ккал/мол) и Димрота-Райхардта ($E_T = 30.9-55.4$ ккал/мол) (корреляция максимумов эмиссии в диапазоне от 394 до 430 нм). Кроме того, были получены результаты фотофизических свойств для 8-(2,2'-бипиридин-6-ил)кумаринов, а также обнаружено влияние полярности растворителя (положительный сольватохромизм) и зарегистрирован люминесцентный отклик при титровании солями растворов Al^{3+} , Zn^{2+} (усиление интенсивности в спектрах эмиссии) и Cu^{2+} (уменьшение интенсивности в спектрах эмиссии).

Был предложен новый протокол синтеза производных 4-(1,2,4-триазин-5ил)бензо[с]кумаринов путем одновременной ароматизации дигидротриазиновых и тетрагидробензольных колец под действием DDQ в качестве окислителя. В отличие от DDQ, ароматизация в присутствии TCQ давало исключительно S_N-продукты. Кроме того, был разработан прямой подход для сочетания бензо[с]кумаринов с производными 1,2,4триазинов. Трансформация полученных производных бензо [c]кумарина в их пиридиновые включая 2,2'-производные производные, бипиридинового ряда показала, что аннелирование дополнительного бензокольца к кумариновому фрагменту способствует увеличению квантового выхода люминесценции (до 86 %) и достижению Стоксовых сдвигов до 14000 см⁻¹.

Был получен ряд новых пирролокумаринов по реакции Пехмана с целью изучения их фотофизических свойств. Кроме того, был впервые представлен механохимический подход синтеза пирролоаннелированных производных кумарина в условиях шарового измельчения без растворителя при температуре окружающей среды путем конденсации гидроксиндолов и β-кетоэфиров по Пехману. Низкая загрузка кислотного катализатора также является заметным преимуществом настоящего протокола.

Результаты фотофизических исследований и DFT-расчетов показали, что изомерные пирролокумарины в качестве донорно-акцепторных (D-A) хромофоров могут генерировать фотоиндуцированные внутримолекулярные состояния переноса заряда между дифенилзамещенным 1*H*-индольным электронодонорным фрагментом (D) и ковалентно связанным (A) 2H-пиран-2-оновым фрагментом. Эмиссия флуорофоров охватывала диапазон от синего до зеленого, с максимумами эмиссии от 420 до 586 нм. Были найдены соединения с высокими квантовыми выходами до 89 % и большими Стоксовыми сдвигами около 14000 см⁻¹. Было отмечено, что введение пиридин-2-ильного в C-9 положение пирроло[3,2-*g*]кумарина приводит к батохромному сдвигу максимумов эмиссии (до 554 нм) и для некоторых примеров к увеличению квантовых выходов.

Перспективы дальнейшей разработки темы

Разработанные в данной работе 1,2,4-триазинилзамещенные, пиридинилзамещенные и пирролоаннелированные производные кумарины могут быть использованы в качестве перспективных флуорофоров (OLED-материалов), хемосенсоров и лекарственных кандидатов благодаря сильному и стабильному флуоресцентному излучению, и простой модификации. Кроме того, подобные аналоги кумаринов нашли широкое применение при разработке флуорофоров в области молекулярного распознавания, молекулярной визуализации, биоорганической химии, аналитической химии, химии материалов, а также в биологии и медицине.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи в рецензируемых научных изданиях, определенных ВАК РФ и Аттестационным советом УрФУ:

1. Шарапов, А. Д. Рентгеноструктурное исследование 8-(пиридин-2-ил)- и 8-([1,2,4]триазин-5-ил)замещенных кумаринов. / П. А. Слепухин, Р. Ф. Фатыхов, А. Д. Шарапов, М. И. Валиева, Е. С. Старновская, И. А. Халымбаджа, Д. С. Копчук, Г. В. Зырянов, О. Н. Чупахин // Журнал общей химии. – 2022. – Т. 92. – № 7. – С. 1125-1130. (0.4 п.л. / 0.07 п.л.)

Sharapov A. D. X-Ray Diffraction Study of 8-(Pyridin-2-yl)- and 8-(1,2,4-Triazin-5-yl)-2H-chromen-2-ones / P. A. Slepukhin, R. F. Fatykhov, A. D. Sharapov, M. I. Valieva, E. S. Starnovskaya, I. A. Khalymbadzha, D. S. Kopchuk, G. V. Zyryanov, O. N. Chupakhin // Russian Journal of General Chemistry. – 2022. – Vol. 92. – № 7. – Р. 1285-1289. (0.4 п.л. / 0.07 п.л.) (*Scopus, Web of Science*).

2. Sharapov A. D. Synthesis of 4-hydroxy and 6-hydroxyindoles: a renaissance of the Bischler reaction / A. D. Sharapov, R. F. Fatykhov, I. A. Khalymbadzha, O. N. Chupakhin, // Chimica Techno Acta. – 2022. – Vol.9(S). – № 201192S2. (0.26 п.л. / 0.09 п.л.) (Scopus).

3. **Sharapov A. D.** Coumarin-pyridine push-pull fluorophores: Synthesis and photophysical studies / R. F. Fatykhov, **A. D. Sharapov**, E. S. Starnovskaya, Y.K. Shtaitz, M. I. Savchuk, D. S. Kopchuk, I. L. Nikonov, G. V. Zyryanov, I. A. Khalymbadzha, O. N. Chupakhin // Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. – 2022. – Vol. 267. – N° 120499. (0.8 п.л. / 0.1 п.л.) (Scopus, Web of Science).

4. **Sharapov A. D.** Mechanochemical synthesis of coumarins via Pechmann condensation under solvent-free conditions: an easy access to coumarins and annulated pyrano[2,3-*f*] and [3,2-*f*]indoles / **A. D. Sharapov**, R. F. Fatykhov, I. A. Khalymbadzha, V. V. Sharutin, S. Santra, G. V. Zyryanov, O. N. Chupakhin, B. C. Ranu // Green Chemistry. – 2022. –Vol. 24(6). – P. 2429-2437. (0.83 п.л. / 0.1 п.л.) (Scopus, Web of Science).

5. **Sharapov A. D.** Fluorescent Pyranoindole Congeners: Synthesis and Photophysical Properties of Pyrano[3,2-*f*], [2,3-*g*], [2,3-*f*], and [2,3-*e*]Indoles. / **A. D. Sharapov**, R. F. Fatykhov, I. A. Khalymbadzha, M. I. Valieva, I. L. Nikonov, O. S. Taniya, D. S. Kopchuk, G. V. Zyryanov, A. P. Potapova, A. S. Novikov, V. V. Sharutin, O. N. Chupakhin // Molecules. – 2022. – Vol. 27(24). – N^o 8867. (1.78 п.л. / 0.3 п.л.) (Scopus, Web of Science).

6. Sharapov A. D. Expedient synthesis of 1,2,4-triazinyl substituted benzo[*c*]coumarins via double oxidation strategy / R. F. Fatykhov, I. A. Khalymbadzha, A. D. Sharapov, A. P. Potapova, E. S. Starnovskaya, D. S. Kopchuk, O. N. Chupakhin // Chimica Techno Acta. – 2023. – Vol. 10(2). – № 202310205. (0.78 п.л. / 0.2 п.л) (Scopus).

7. **Sharapov A. D.** Conjugates of 8-[2,2'-bipyridinyl]coumarins as potential chemosensors for Al³⁺, Cu²⁺, Cd²⁺, Zn²⁺ ions: synthesis and photophysical properties / **A. D. Sharapov**, R. F Fatykhov, I. A. Khalymbadzha, D. S. Kopchuk, I. L. Nikonov, A. P. Potapova, Y. K. Shtaitz, P. A. Slepukhin // Chimica Techno Acta. – 2023. – Vol. 10(4). – № 202310417. (0.6 п.л. / 0.1 п.л.) (Scopus).

Патенты:

8. Патент 2799566 РФ. Механохимический способ синтеза кумаринов / А. Д. Шарапов, Р. Ф. Фатыхов, И. А. Халымбаджа, О. Н. Чупахин // заявители и патентообладатели Урал. фед. ун-т. – № 2022112695; заявл. 12.05.22; опубл. 06.07.23, Бюл. № 19. – (0.80 п.л. / 0.08 п.л.)

Тезисы докладов и материалы конференции:

9. Шарапов А. Д. Синтез 4-гидрокси и 6-гидроксииндолов: Ренессанс реакции Бишлера / А. Д. Шарапов, Р. Ф. Фатыхов, И. А. Халымбаджа, О. Н. Чупахин // 5-я Международная научно-практическая конференция «Современные синтетические методологии для создания лекарственных препаратов и функциональных материалов» (MOSM2021): сборник тезисов / г. Екатеринбург (8-12 ноября 2021 г.). – Екатеринбург, 2022. – С. 322. (0.06 п.л. / 0.01 п.л.).

10. Шарапов А. Д. Синтез, фотофизические и хемосенсорные свойства 8-([2,2'бипиридин]-6-ил)-5,7-диметоксикумаринов / А. Д. Шарапов, Р. Ф. Фатыхов, И. А. Халымбаджа, А. П. Потапова, И. Л. Никонов, Д. С. Копчук // 7-я Международная научнопрактическая конференция «Современные синтетические методологии для создания лекарственных препаратов и функциональных материалов» (MOSM2023) : сборник тезисов / г. Екатеринбург (10-16 сентября 2023 г.). – Екатеринбург, 2023. – С. 350. (0.06 п.л. / 0.01 п.л.)

11. **Sharapov A. D.** Fluorescent pyrrolocoumarin congeners: synthesis and photophysical properties of pyrano[3,2-*f*], [2,3-*g*], [2,3-*f*] and [2,3-*e*]indoles / **A. D. Sharapov**, I. A. Khalymbadzha, R. F. Fatykhov, O. N. Chupakhin, M. I. Savchuk, I. L. Nikonov, D. S. Kopchuk, G. V. Zyryanov, A. S. Novikov // VI Северо-Кавказский Симпозиум по органической химии: сборник тезисов / г. Ставрополь (18-22 апреля 2022 г.) – Ставрополь: СКФУ, 2022. – 273 с. (0.06 п.л. / 0.01 п.л.)

12. **Sharapov A. D.** 4-Triazinyl derivatives of benzo[*c*]chromene-6-ones / А. Р. Potapova, R. F. Fatykhov, I. A. Khalymbadzha, **A. D. Sharapov**, O. N. Chupakhin // VI Северо-Кавказский Симпозиум по органической химии: сборник тезисов / г. Ставрополь (18-22 апреля 2022 г.) – Ставрополь: СКФУ, 2022. – 273 с. (0.06 п.л. / 0.01 п.л.)

13. **Sharapov A. D.** Pyrrolocoumarin-based fluorophores: synthesis and photophysical properties / **A. D. Sharapov**, I. A. Khalymbadzha, R. F. Fatykhov // 26th International Conference on Physical Organic Chemistry (26th ICPOC): Book of Abstracts / Tsinghua University, Beijing, China (August 18-22, 2024). – Beijing, 2024. – N 22. (0.06 п.л./0.01 п.л.)