Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

И На правах рукописи

ПАРШАКОВА Мария Александровна

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ КИНЕТИКИ И ДИНАМИКИ СПОНТАННОГО ВСКИПАНИЯ ПЕРЕГРЕТЫХ ЖИДКОСТЕЙ

1.3.14. Теплофизика и теоретическая теплотехника

Автореферат

диссертации на соискание ученой степени кандидата физико-математических наук

Екатеринбург – 2025

Работа выполнена в лаборатории криогеники и энергетики Федерального государственного бюджетного учреждения науки Институт теплофизики Уральского отделения Российской академии наук

Научные руководители –	доктор физико-математических наук, профессор,
	Ермаков Герман Викторович
	кандидат физико-математических наук,
	Липнягов Евгений Владимирович

Официальные оппоненты:

Ивлиев Андрей Дмитриевич, доктор физико-математических наук, профессор, Федеральное государственное автономное образовательное учреждение высшего образования «Уральский государственный педагогический университет», г. Екатеринбург, профессор кафедры математических и естественнонаучных дисциплин;

Левин Анатолий Алексеевич, доктор технических наук, доцент, Федеральное государственное бюджетное учреждение науки Институт систем энергетики им. Л.А. Мелентьева Сибирского отделения Российской академии наук, г. Иркутск, ведущий научный сотрудник отдела теплосиловых систем;

Мелких Алексей Вениаминович, доктор физико-математических наук, доцент, Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», профессор кафедры технической физики

Защита состоится « 6 » июня 2025 г. в 15.00 часов на заседании диссертационного совета УрФУ 1.3.02.06 по адресу: 620062, г. Екатеринбург, ул. Мира, 19, ауд. И-420 (зал Ученого совета).

С диссертацией можно ознакомиться в библиотеке и на сайте ФГАОУ ВПО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», https://dissovet2.urfu.ru/mod/data/view.php?d=12&rid=7101.

~

Автореферат разослан

» апреля 2025 г.

Ученый секретарь диссертационного совета

Ищенко Алексей Владимирович

Общая характеристика работы

Актуальность темы исследования

Кипение жидкости и его начальная стадия – вскипание – физическое явление, относящееся к фазовым переходам I рода [1-5]. Это явление может сопровождаться метастабильным состоянием – перегревом. Оно устойчиво относительно бесконечно малых, но неустойчиво относительно конечных возмущений, и поэтому обладает конечным временем жизни.

В технологических и природных процессах перегревы могут достигать десятки и сотни градусов [1, 2]. Высокие перегревы встречаются в гейзерах и вулканах. Они возникают при вскрытии газоконденсатных месторождений, разгерметизации сосудов высокого давления, охлаждении реакторов, закалки изделий, обработки древесины методом парового взрыва. При глубоком заходе в метастабильную область процесс вскипания протекает взрывообразно, сопровождается гидравлическими ударами и может иметь разрушительные последствия. Информация о явлении перегрева играет важную роль в обеспечении безопасности и надежного функционирования энергоемких технологических устройств, содержащих жидкую фазу в качестве основного компонента.

Подавляющее количество данных по кинетике вскипания перегретых жидкостей получено при высоких перегревах (в диапазоне 20-25°С вблизи теоретической границы достижимого перегрева) и слабых перегревах (вблизи линии насыщения).

Степень разработанности темы исследования

Удобным инструментом для изучения кинетики спонтанного вскипания перегретых жидкостей является чистая пузырьковая камера [1-4]. Она представляет собой устройство, в котором исследуемая жидкость находится в термостатируемой стеклянной трубке и переводится в метастабильное состояние посредством квазистатического снижения давления ниже давления насыщенных паров p_s до заданного значения p_{τ} . В опытах измеряют: температуру *T*, давление $p' = p_{\tau}$, время пребывания жидкости в перегретом состоянии τ . Последняя величина – случайная, поэтому измерения приходится проводить многократно. Метод требует значительных временных затрат, поскольку величина τ может оказаться довольно большой. Быстрый способ изучения границы достижимого перегрева жидкости заключается в непрерывном изменении внешнего параметра до тех пор, пока ожидаемое событие не произойдет. Значение изменяемого параметра, определяемое в момент вскипания жидкости, – случайная величина.

Криогенные и органические жидкости, включая *н*-пентан, хорошо смачивают различные поверхности, что способствует достижению наиболее глубоких заходов в область метастабильных состояний. Для большинства исследованных жидкостей предельные температуры перегрева близки к значениям, рассчитанным по классической теории стационарной гомогенной нуклеации [2], что дало повод для отождествления экспериментальной и теоретической границ достижимого перегрева, хотя некоторые сомнения всегда присутствовали [6, 7].

Наиболее убедительным доводом в пользу этих сомнений являются опыты, проведенные в 2009 г. с использованием скоростной видеосъемки [8]. Авторы исследования воспроизвели полученную ранее температурную зависимость среднего времени жизни перегретых органических жидкостей (*н*-пентана, *н*гексана) с максимальным приближением к гомогенной границе достижимого перегрева и наглядно показали, что на всем протяжении данной кривой число центров парообразования ограничено и они распределены неоднородно. Одно из основных предположений классической гомогенной теории – объемный и однородный характер вскипания – в опыте не подтверждается. Выявление механизма действия флуктуационных центров кипения вблизи границы достижимого перегрева требует дополнительного исследования.

Для систем, обедненных центрами парообразования, характерен так называемый третий кризис кипения (при течении в каналах используется термин кризис кипения 3-го рода) [9]. Он заключается в непосредственном переходе от свободной однофазной конвекции к пленочному кипению, минуя режим развитого пузырькового кипения. Его пороговый механизм напрямую связан с флуктуационными центрами парообразования и имеет термогидродинамическую природу.

Теория гомогенной нуклеации дает надежную верхнюю оценку температуры достижимого перегрева различных жидкостей. Механизмы действия гетерогенных центров вскипания при умеренных и высоких перегревах остаются малоизученными. Это определило направление настоящего исследования. Актуальность таких изысканий обусловлена необходимостью создания инженерных методов для расчета процессов, возникающих при глубоких заходах в метастабильную область.

<u>Цель работы</u> состоит в изучении флуктуационных центров вскипания умеренно и высоко перегретых органических жидкостей на поверхностях, обеднённых центрами парообразования, разработке статистических методов анализа экспериментальных данных по кинетике распада перегретых состояний и высокоскоростной визуализации данного процесса.

Для достижения поставленной цели в работе решены следующие задачи:

1. Разработка и конструирование автоматизированной эксперименталь-

ной установки по исследованию кинетики вскипания перегретых жидкостей методом чистой пузырьковой камеры.

2. Изготовление измерительных ячеек, в которых термостатированы различные части вертикально ориентированных стеклянных трубок с исследуемой жидкостью (запаянный верх, запаянный низ, середина трубки). Создание программ и макросов для обработки большого массива экспериментальных данных, включая данные датчиков давления (частота измерения до 1 кГц).

3. Комплексное экспериментальное исследование кинетики вскипания перегретого *н*-пентана в стеклянных трубках разного внутреннего диаметра (1,4; 2,45; 5,6 мм) с разной областью термостатирования при атмосферном давлении p_{at} и выше в широком диапазоне температур. Скоростная визуализация процесса вскипания.

4. Изучение влияния малых добавок легкокипящей примеси (пара CO₂ <1,5% моль) и других инициирующих факторов.

5. Внедрение современных статистических методов обработки экспериментальных данных типа времен жизни, включая цензурированные справа.

6. Сопоставительный анализ видеоданных начала вскипания перегретой жидкости и статистических характеристик того же процесса.

Научная новизна:

1. Предложена методика по проведению измерений времен жизни метастабильных состояний с ограничением максимальной длительности опыта. Установлено, что наиболее вероятными распределениями времен жизни перегретой жидкости являются: экспоненциальное, Вейбулла, гамма-распределение, смесь экспоненциальных и/ или нормальных распределений.

2. Экспериментально установлено, что малые добавки легкокипящей примеси способствуют приработке наиболее активных центров парообразования. Показана воспроизводимость данных по кинетике гетерогенного вскипания перегретого *н*-пентана при устранении таких центров.

3. Осуществлен мониторинг поверхностного натяжения *н*-пентана дифференциальным вариантом метода капиллярного поднятия. Влияния многократных вскипаний перегретой жидкости на величину поверхностного натяжения не зафиксировано.

4. Обнаружен переход от однофазной конвекции в жидкости (*н*-пентан) к пленочному режиму, минуя развитый пузырьковый режим кипения. Установлено, что фронт вскипания образуется преимущественно на одном случайном центре парообразования. Выполнены оценки линейной скорости распространения фронта вскипания перегретой жидкости.

5

Положения, выносимые на защиту:

1. Совместное рассмотрение вскипания перегретой жидкости как случайного события, так и динамического процесса (кипения), позволяет определить глубину захода в метастабильную область, время жизни перегретой жидкости, место появления первого парового зародыша, а также оценить скорость распространения фронта парообразования.

2. На границе достижимого перегрева *н*-пентана при температурах 130-140°С и атмосферном давлении возникает устойчивая паровая пленка на твердой стенке, которая инициируется при спонтанном появлении парового зародыша (третий кризис кипения). Режим развитого пузырькового кипения при этом отсутствует.

3. Дефекты твердой поверхности, с которой контактирует перегретый *н*пентан, способствуют появлению низкотемпературных границ перегрева. В таких условиях на поверхности парового пузыря, растущего с постоянной скоростью, наблюдаются мелкомасштабные возмущения. Эти возмущения на границе при 100-115°C приводят к образованию вторичных пузырей и сухих пятен, а при 120-125°C – к развитию морфологической неустойчивости на линии трехфазного контакта.

4. Распределение времен жизни перегретой жидкости описывается смесью экспоненциальных и/ или нормальных распределений. Экспоненциальная составляющая смеси связана с влиянием на процесс формирования парового зародыша случайных факторов, а нормальная составляющая – с видимыми дефектами твердой поверхности.

Теоретическая и практическая значимость работы

Данные о кинетике и динамики вскипания перегретых жидкостей необходимы для прогнозирования, предотвращения аварийных ситуаций или же, наоборот, интенсификации технологичных процессов, связанных с перегревами, кризисами кипения, паровыми взрывами.

Методические рекомендации, сделанные по итогам измерений времени жизни перегретой жидкости и статистической обработки этих данных, включая цензурированные справа, могут быть использованы как в рамках натурного, так и компьютерного эксперимента.

Методология и методы диссертационного исследования

В основе диссертационной работы лежит метод чистой пузырьковой камеры. Он включает в себя как метод измерения времен жизни перегретой жидкости, так и метод непрерывного изотермического понижения давления.

Мониторинг поверхностного натяжения жидкость-пар проведен диффе-

ренциальным вариантом метода капиллярного поднятия непосредственно в экспериментальной установке. Метод дополнен учетом временной зависимости высот поднятия менисков жидкости в измерительных капиллярах.

Обработка данных типа времен жизни основана на методах таких разделов статистики, как анализ выживаемости и теория надежности.

Степень достоверности и обоснованности результатов

Достоверность и обоснованность результатов, приведенных в диссертации, обеспечены физической корректностью постановки задач исследования, методов их решения, в том числе применением современного высокоточного измерительного оборудования, современных средств автоматизации в сочетании с компьютерной техникой, воспроизводимостью проведенных измерений, сравнением с данными других исследований, применением современных методов статистической обработки экспериментальных данных.

Соответствие Паспорту научной специальности

Диссертация соответствует паспорту специальности 1.3.14. Теплофизика и теоретическая теплотехника для физико-математических наук, т.к. область исследования соответствует пункту 1. Фундаментальные, теоретические и экспериментальные исследования молекулярных и макросвойств веществ в твердом, жидком и газообразном состоянии для более глубокого понимания явлений, протекающих при тепловых процессах и агрегатных изменениях в физических системах, Паспорта специальности.

Апробация результатов работы

Материалы диссертационной работы были представлены на 12 научных конференциях, в том числе 1 международной: V, VI Российская национальная конференция по теплообмену (РНКТ-5, РНКТ-6, РНКТ-8) (Москва, 2010, 2014, 2020 г.); XVIII, XIX, XXIII Школа-семинар молодых ученых и специалистов под руководством академика РАН А.И. Леонтьева «Физические основы экспериментального и математического моделирования процессов газодинамики и тепломассообмена в энергетических установках» (Звенигород, 2011 г., Орехово-Зуево, 2013 г., Екатеринбург, 2021 г.); XIV Минский международный форум по тепло- и массообмену (Минск, 2012 г.); VIII Всероссийский семинар вузов по теплофизике и энергетике (Екатеринбург, 2013 г.); XVI, XXI, XXII Всероссийская школа–семинара по проблемам физики конденсированного состояния вещества (СПФКС-16, СПФКС-21, СПФКС-22) (Екатеринбург, 2015, 2021, 2022); V, VI Всероссийская научная конференция с элементами школы молодых ученых Теплофизика и физическая гидродинамика (Ялта, 2020 г., Севастополь, 2021 г.).

Публикации и личный вклад автора

Основные результаты опубликованы в 30 печатных работах, включая 15 статей в рецензируемых научных журналах, определенных ВАК РФ и Аттестационным советом УрФУ, включая 9 статей, входящих в международные базы цитирования Scopus и Web of Science, и 15 статей в сборниках докладов и тезисов на российских и международных конференциях.

Представленные в диссертационной работе результаты получены соискателем под руководством д.ф.-м.н. Германа Викторовича Ермакова, а затем к.ф.м.н. Евгения Владимировича Липнягова.

Автором обработано большинство экспериментальных данных по вскипанию перегретой жидкости, сделан их сравнительный анализ; предложен и реализован способ аппроксимации данных по капиллярному поднятию менисков жидкости в двух измерительных капиллярах в зависимости от времени наблюдения. Лично автором разработана методика по проведению измерений времен жизни метастабильных состояний с ограничением максимальной длительности опыта; сформулированы методические рекомендации по статистической обработке данных, включая цензурированные справа; получены статистические характеристики исследуемого процесса.

Основной вклад в разработку и создание экспериментальной установки, включая все её модификации, проведение измерений внес к.ф.-м.н. Евгений Владимирович Липнягов, в автоматизацию установки – ведущий инженер Сергей Алексеевич Перминов. Соискателем написаны некоторые программы и макросы для обработки и визуализации полученных данных. Тексты публикаций подготовлены непосредственно автором.

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институт теплофизики Уральского отделения Российской академии наук в лаборатории свойств веществ и сверхпроводящих материалов (СВ и СПМ), а затем в лаборатории криогеники и энергетики (К и Э) согласно планам института при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов: № 10-08-00540 а, 14-08-00956 а, 20-08-00270 а), гранта Президента РФ «Ведущие научные школы» (№ НШ-5491.2010.8), программы совместных исследований Уральского и Дальневосточного отделений РАН (№ 12-с-2-1013), комплексной программы фундаментальных исследований Уральского отделения РАН (№ 15-1-2-6).

Структура диссертации

Диссертация содержит оглавление, введение, четыре главы, заключение, список используемой литературы и три приложения.

Работа изложена на 166 страницах текста формата A4, содержит 48 рисунков, 8 таблиц, список цитируемой литературы из 301 наименований.

Основное содержание работы

Во введении обоснована актуальность работы, определены цели и задачи исследования, сформулированы основные результаты работы, их научная новизна, научная и практическая значимость.

В первой главе приведены основные сведения о метастабильных состояниях, изложены теоретические и экспериментальные методы изучения кинетики вскипания перегретых жидкостей, представлены основные результаты, полученные с их помощью, а также данные по динамике исследуемого процесса.

Теория гомогенной нуклеации определяет частоту спонтанного возникновения жизнеспособных зародышей новой фазы *J* в единицу времени в единице объема следующим образом [1, 2]:

$$J = B_* n_0 \exp(-W_* / (k_B T)),$$
(1)

где n_0 – числовая плотность вероятных центров нуклеации, отождествляемая с числовой плотностью молекул в исходной фазе, B_* – кинетический множитель, определяющий динамику перехода через седловую точку, k_B – постоянная Больцмана, T – температура. Работа образования критического зародыша W_* является минимальной работой, которую совершает система при создании жизнеспособного пузыря. Приведены два выражения для кинетического множителя: предложенное Каганом [2] ($B_* \cong 10^{10} \, \text{с}^{-1}$ вблизи границы достижимого перегрева) и полученное в рамках решения многомерного уравнения Фоккера-Планка Куни с сотрудниками [10] ($B_* \cong 10^8 \cdot 10^9 \, \text{с}^{-1}$). Частота *J* связана со средним временем жизни перегретой жидкости простым выражением $\overline{\tau} = (JV_0)^{-1}$.

Во второй главе подробно описана методика эксперимента, отображены особенности ряда модификаций экспериментальной установки, представлен дифференциальный вариант метода капиллярного поднятия, с помощью которого реализован мониторинг поверхностного натяжения жидкость-пар.

Для создания перегрева использована чистая пузырьковая камера, снабженная скоростными видеокамерами и быстродействующими датчиками давления. На Рисунке 1 представлена одна из модификаций автоматизированной экспериментальной установки, включая фотографию термостатирующей ячейки 2. Заполнение трубки 1, находящейся при комнатной температуре, парами дегазированного *н*-пентана с последующей их конденсацией происходит за счет разницы давлений в резервуаре 7 и трубке 1. Для этого используется охлажде-

9

ние резервуара 7 до -80°С криостатом 8, последующее вакуумирование до -0,095 МПа форвакуумным насосом 11 (при открытых вентилях 10, 13, 14) и возврат к комнатной температуре нагревательными элементами резервуара 7 (при закрытом вентиле 10).

Трубка 1 ориентирована вертикально, один её конец запаян. Часть трубки, заполненной *н*-пентаном, помещена в ячейку 2 с теплоносителем от проточного термостата 3. Исследуемая жидкость вне ячейки 2 находится при комнатной температуре окружающей среды. Давление создается при помощи баллона с сжатым газом 18, передается на жидкость через разделительный сильфон 16. Запорные игольчатые краны 19, 22 предназначены для регулировки скорости

Фотография термостатирующей ячейки

Рисунок 1 – Блок-схема экспериментальной установки: 1 – стеклянная трубка с нпентаном $(n-C_5H_{12});$ 2 _ термостатирующая ячейка с теплоносителем (полиметилсилоксан ПМС-20); 3 – термостат Huber CC-208B; 4 – светодиодные осветители; 5 – две видеокамеры Fastvideo-250 (C1, 2185 к/с) и Sony DSC-RX0M2 (C2, 1000 к/с) для видеосъемки в двух проекциях; 6 – измеритель температуры многоканальный прецизионный МИТ-8; 7 – резервуар с нагревательными элементами, заполненный *н*-пентаном; 8 – криостат; 9 – катетометр КМ-6 с цифровой видеокамерой A4TECH PK-836MJ; 10, 13, 14, 19, 22, 23 – запорные игольчатые краны; 11 – форвакуумный насос, контролируемый вакуумметром *p_{vc}*; 12 – система контроля и управления давлением с датчиками давления в жидкой (*p*) и газовой (*p_a*) фазах; 15 – компьютер; 16 – сильфон разделительный; 17 – редуктор с выходным давлением p_0 ; 18 – баллон с двуокисью углерода (СО₂); 20, 21 – электромагнитные клапана.

понижения давления. Перевод в метастабильное состояние и возврат в исходное состояние ($p_0 = 1,5-2,0$ МПа) осуществляется автоматически при помощи электромагнитных клапанов 20, 21. Максимальное охлаждение жидкости из-за понижения давления не превышает 1°С. Точность измерения давления составляет ±0,01 МПа, точность поддержания температуры в ячейке $2 - \pm 0,1$ °С. Момент вскипания регистрируется автоматически по импульсу давления, а также по скачкообразному изменению оптической плотности изображения ячейки 2 посредством одной из видеокамер 5 (С1). Для измерения вертикальных отрезков используется катетометр КМ-6 9, оборудованный цифровой видеокамерой. Она передает данные отсчетного микроскопа на компьютер 16 и позволяет фиксировать не только масштабную сетку, но и время измерения.

Опыты проведены при атмосферном давлении и выше в широком диапазоне температур как в чистых условиях, так и в присутствие инициирующих факторов. К ним относятся малые добавки легкокипящей примеси (пара CO₂ <1,5 % моль), дефекты стекла. В Таблице 1 приведены основные характеристики изучаемой системы, а именно давление вскипания p', геометрические размеры термостатируемой области: ее длина (L_0), объем (V_0), внутренний диаметр трубки (D_0). Там же приведены скорости видеосъемки FPS.

В опытах 1-3, 5-8 (см. Таблицу 1) термостатирована часть трубки вместе с запаянным концом. В опытах 4, 9 термостатирована её середина с целью исключения дефектов стекла, расположенных вблизи запаянного конца трубки. В опытах 5-9 использована одна и та же трубка. В опытах 4 модификация экспериментальной установки предусматривала возможность фиксации давления выше атмосферного. В опытах 5, 6 впервые добавлена возможность измерения капиллярной постоянной дифференциальным вариантом метода капиллярного поднятия непосредственно в экспериментальной установке. В опытах 5 метод реализован при помощи стационарного блока, состоящего из двух капилляров разного внутреннего диаметра, соединенных фторопластом. В опытах 6 стационарный блок был преобразован в выдвижной при помощи кольцевого постоянного магнита и ферромагнитного держателя. Перед опытами 8 он демонтирован. Начиная с опытов 6 впервые добавлен мониторинг давления при помощи датчика давления непрерывного действия СДВ «STANDARD» (с частотой измерений 5 Гц), а в опытах 9 – еще и при помощи второго быстродействующего датчика Keller PAA-M5 (1 кГц), контролируемого через модуль АЦП-ЦАП LCard E-140. Это позволило комплексно изучать кинетику вскипания: методами измерения времен жизни перегретой жидкости (по изобарам) и непрерывного изотермического понижения давления.

$\mathcal{N}_{\underline{o}}$	<i>н</i> -пентан	<i>р'</i> , МПа	<i>D</i> ₀ , мм	<i>L</i> 0, мм	$V_0 \times 10^8,$ M ³	запаян	FPS, кадр/с		
1 [8]	марки Ч	0,10	1,4	66	10,2	НИЗ	5000		
2	марки Ч	0,10	2,45	30	13,5	НИЗ	4200		
3	марки Ч	0,10	2,45	15	7,0	НИЗ	2400		
4	Panreac	0,10; 0,29; 0,78; 1,28	2,45	28	13,2	НИЗ	7000		
5	Panreac	0,10	5,6	120	296	верх	2400		
6	Panreac	≥0,10	5,6	114	280	верх	2050		
7	Panreac +CO ₂	≥0,10	5,6	114	280	верх	2050		
8	Panreac	≥0,10	5,6	114,6	282	верх	2050		
9	Panreac	≥0,10	5,6	82,8	204	верх	2185 и 1000		
в опытах других авторов									
10 [1]	марки Ч	0,10; 0,49; 0,88; 1,28	1,0	60	3,0	верх	-		
11 [11]	марки Ч	0,10; 1,10	7,0	70	270	верх	-		
12 [12]	марки Ч	0,10	1,2	-	6,0	НИЗ	-		

Таблица 1 – Основные характеристики изучаемой системы

В третьей главе особое внимание уделено параметрическим и непараметрическим методам статистической обработки экспериментальных данных. К первым относится метод моментов, метод максимального правдоподобия, ко вторым – метод гистограмм, оценки Каплана-Мейера, Нельсона-Аалена. Обсуждаются основные статистические модели: экспоненциальное, Вейбулла, гамма-, нормальное распределение, смесь этих распределений. Предложена методика проведения эксперимента по измерению времен жизни метастабильных систем с ограничением максимальной длительности опыта. Представлен метод ядерной оценки плотности Парзена-Розенблата как способ непараметрической оценки распределения мест появления первого пузыря в перегретой жидкости по площади видимого изображения измерительной ячейки.

Трудоемкость измерений τ в области умеренных перегревов обусловлена как особыми требованиями к чистоте исследуемой системы, характерными для метода в целом, так и ростом максимальной длительности опыта t_{max} . В связи с этим предложено ограничить величину t_{max} . В таком эксперименте, согласно теории надежности, реализуется правостороннее цензурирование I типа [13].

Методы обработки данных типа времен жизни, в том числе цензурированных справа, представлены в анализе выживаемости и теории надежности [13, 14]. Традиционная методика статистической обработки данных основана на экспоненциальном (показательном) распределении измеряемой величины т.

При описании случайного процесса, инициированного конкурирующими факторами, может возникнуть ситуация, когда экспериментальные данные не удается описать каким-либо одним распределением. Тогда можно воспользоваться конечной смесью вероятностных распределений [15]. Например, смесь нормального и экспоненциального распределений используют в теории надежности в ситуациях, когда имеют место и внезапные (экспоненциальные), и износовые (нормальные) отказы технических устройств. Ее можно представить следующим образом:

$$S_{MIX}(\tau,\Theta) = 1 - \pi_1 F_1(\tau,\mu,\sigma) + \pi_2 F_2(\tau,\theta), \qquad (2)$$

$$F_{1}(\tau,\mu,\sigma) = \frac{1}{\sigma(2\pi)^{1/2}} \int_{-\infty}^{\tau} e^{-\frac{(t-\mu)^{2}}{2\sigma^{2}}} dt, \ F_{2}(\tau,\theta) = 1 - e^{-\frac{\tau}{\theta}}, \ \pi_{1} + \pi_{2} = 1,$$
(3)

Рисунок 2 – Распределение времен жизни перегретого *н*-пентана при T = 125,3 °C и $p' = p_{al}$: (a), (b) – гистограммы вскипаний на дефекте стекла и случайных центрах, соответственно; (c) – функция выживаемости; 1 – непараметрическая оценка Каплана-Мейера; 2 - 95% доверительные интервалы; 3 – смесь вероятностных распределений (см. ур. (2), (3)); Δn – число ожидаемых событий, попадающих в интервал (τ , τ + $\Delta \tau$].

Рисунок 3 – Плотность распределения мест вскипания по площади изображения измерительной ячейки при $p' = p_{at}$: (*a*) *н*-пентан, опыты 6 (см. Таблицу 1); (*b*) *н*-пентан +CO₂ (< 1,5 % моль), опыты 7; (*c*) *н*-пентан, опыты 8. Координаты мест вскипания (*x*, *h*) даны в процентном отношении от характерных размеров наблюдаемой области.

где $F_1(\tau,\mu,\sigma)$, $F_2(\tau,\theta)$ – функции распределения нормальной и экспоненциальной компоненты (субпопуляции) с априорной вероятностью π_1 и π_2 , соответственно, $\Theta = \{\pi_1, \pi_2, \mu, \sigma, \theta\}$ – параметры смеси.

На Рисунке 2 приведено распределение времен жизни перегретого *н*пентана, полученное в опытах 6 (см. Таблицу 1) на границе достижимого перегрева. В 30 из 43 измерений т вскипание происходило на одном активном центре (дефекте стекла), в 13 - на случайных центрах парообразования. Смесь экспоненциального распределения (для случайных центров кипения) и нормального распределения (для дефекта стекла) хорошо описывает эти данные.

Результаты, полученные методом ядерной оценки плотности в опытах 6-8 (см. Таблицу 1), приведены на Рисунке 3. На нем показано распределение мест появления первого пузырька в перегретой жидкости по площади видимого изображения измерительной ячейки f(x, h). Из рисунка следует, что подавляющее число ожидаемых событий происходит на дефектах стекла. Малые добавки легкокипящей примеси (пара $CO_2 < 1,5$ % моль) способствуют приработке таких центров.

Часть экспериментальных данных по кинетике вскипания перегретого *н*пентана получена при помощи цензурирования. Установлено, что в тех случаях, когда эта процедура актуальна, распределение времен жизни перегретого состояния можно считать экспоненциальным. В других случаях распределение величины т хорошо описывается экспоненциальным, Вейбулла, гаммараспределением, смесью нормальных и/ или экспоненциальных распределений.

В четвертой главе представлены экспериментальные результаты иссле-

Рисунок 4 – Температурная зависимость среднего времени жизни перегретого *н*-пентана в стеклянной трубке при разных давлениях: точки – эксперимент; линии – расчет по теории гомогенной нуклеации для 9-12 [10]; 1-4 – опыты 10 [1] (см. Таблицу 1); 5-12 [12]; 6-1 [8]; 7-2; 8-3; 9-12-4; 1, 5-9-p'=0,10 МПа; 2-0,49 МПа; 3-0,88 МПа; 4, 12-1,28 МПа; 10-0,29 МПа; 11-0,78 МПа.

дования кинетики и динамики вскипания перегретого *н*-пентана. Приведены некоторые визуальные и статистические характеристики этого процесса, дан их сравнительный анализ.

На Рисунке 4 показаны результаты опытов 1-4 с *н*-пентаном в трубках с внутренним диаметром до 2,45 мм и литературные данные 10, 12 (см. Таблицу 1). Зависимость $\overline{\tau}(T)$ имеет классический вид: 1-2 «плато» и спадающие участки, включая границу достижимого перегрева. Уровни «плато» (порядка 10^3 , 20 и 5 с) характерны для других опытов по перегреву *н*-пентана в стеклянных трубках. Их принято объяснять воздействием фонового излучения. Характер вскипания имеет статистическую природу. Общее количество активных центров парообразования ограничено, и они распределены неоднородно. С увеличением температуры перегрева наблюдается последовательная смена режимов кипения: от пузырькового к переходному, а затем и пленочному кипению. Условия, при которых возникает тот или иной режим, коррелируют с характерными участками зависимости среднего времени жизни перегретого *н*-пентана от температуры.

На Рисунке 5 представлены результаты опытов 6-9 (см. Таблицу 1) с *н*пентаном, находящимся в одной и той же трубке с внутренним диаметром 5,6 мм, но разной областью термостатирования. Вскипание фиксировано как при установившемся атмосферном давлении $p' = p_{at}$, так и в процессе понижения

Рисунок 5 – (*a*) Температурная зависимость среднего времени жизни перегретого *н*пентана в стеклянной трубке ($D_0 = 5,6$ мм) при $p' = p_{at}$ и (*b*) средней глубины захода в метастабильную область ($p_s - p'$) при $p' > p_{at}$: 1-5 – эксперимент; 1 – опыты 6 (см. Таблицу 1); 2 – 7 (*n*-C₅H₁₂+CO₂); 3 – 8; 4 – 9; 5 – 11 [11]; 6 – расчет границы достижимого перегрева по теории гомогенной нуклеации [10].

давления $p' > p_{at}$. На Рисунке 5*a* показаны характерные уровни «плато» (порядка 500, 200, 20, 5 с). Из него следует, что изобарические температурные зависимости среднего времени жизни перегретой жидкости, полученные в схожих условиях, имеют пороговые значения при температурах 100–115, 120–125 и 130–140°С. Путем исключения видимых дефектов внутренней поверхности стекла (см. рис. 2 и 3) из области термостатирования трубки можно добиться воспроизводимости данных по кинетике вскипания *н*-пентана, что является нетривиальным результатом в области умеренных перегревов.

Из Рисунка 5*b* следует, что средние значения глубины захода в метастабильную область ($p_s - p'$) ограничены либо постоянными значениями давления p', при которых сброс давления ускоряется,

$$p_{cr1} = p_{at}e^{-1}, \ p_{cr2} = p_{at}e^{-1/2},$$
 (4)

либо постоянными (модальными) значениями $(p_s - p') \sim 0,43$; 0,57 МПа и 0,79 МПа. Для опытов 7 (*н*-пентан+CO₂) значения величины $(p_s - p')$ при температурах 130°C и выше лежат в диапазоне ~ 0,71-0,97 МПа.

На Рисунке 6 представлены данные по линейной скорости распространения фронта вскипания перегретого *н*-пентана $V_f = d(\Delta h)/dt$, полученные в опытах 8. Величина V_f лежит в диапазоне 0,30-2,23 м/с, растет с глубиной захода в метастабильную область и зависит от конфигурации межфазной поверхности жидкость-пар. Выявлены режимы двухфазного потока, при которых ско-

Рисунок 6 – (*a*)-(*c*) Видеокадры начала вскипания перегретого *н*-пентана в стеклянной трубке и (*d*) зависимость скорости распространения фронта вскипания от глубины захода в метастабильную область ($p_s - p'$): (*a*) $T = 105,3^{\circ}$ C, p' = 0,10 МПа; (*b*) 122,3°C, 0,10 МПа; (*c*) 115,3°C, 0,32 МПа; 1, $2 - p' > p_{at}$; 3, $4 - p' = p_{at}$. Основные режимы двухфазного потока: 1 - снарядно-пробковый (режим слитных пузырьков); 2 - дисперсно-кольцевой; 3 - снарядно-кольцевой без вторичных пузырьков в жидкой пленке; 4 - кольцевой с вторичными пузырьками. Время между кадрами: (*a*), (*b*) 1,95 мс; (*c*) 15,6 мс. Температуры (°C) на рисунке соответствуют условию $p' = p_{at}$.

рость V_f линейно зависит от глубины захода в метастабильную область ($p_s - p'$).

Возмущения на поверхности первичного пузыря приводят к появлению вторичных пузырьков, сухих пятен и, как следствие, к увеличению скорости распространения фронта испарения. С приближением к границе достижимого перегрева зафиксирован резкий рост величины V_f , связанный с нарушением пиннинга на верхней трехфазной границе раздела фаз по типу «вязких пальцев», возникающих из-за морфологической неустойчивости Саффмана-Тейлора. Похожая картина наблюдается при быстром вытеснении газом жидкости из пористой среды [16]. Структуры с «вязкими пальцами» имеют фрактальную природу и успешно описываются в рамках теории перколяции (просачивания) как геометрический фазовый переход [17]. Ниже порогового перегрева значения V_f не превышают 1,9 м/с. В ряде случаев скорость распространения фронта испарения не зависит от ($p_s - p'$) и составляет $V_f \sim 1$ или 1,4 м/с.

В опытах 9 (см. Таблицу 1) термостатирована середина трубки. Это сделано для устранения видимых дефектов стекла, что позволило достичь максимальной температуры перегрева 137,3°С. Для неё характерно экспоненциальное распределение величины т (ср. с Рисунком 2). На Рисунке 8 представлены вы-

Рисунок 7 – Временные зависимости разности высот Δh (5, 6), синхронизированные с данными датчика давления Keller PAA-M5 (1кГц) (3, 4) и фрагментами раскадровок начала вскипания перегретого *н*-пентана в стеклянной трубке (1, 2), при $p' = p_{at}$ и разных температурах: (*a*) взрывной рост; (*b*) паровая пленка; t – аппроксимации участков зависимостью $\Delta h \sim t V_f$ (см. Таблицу 2). Время между кадрами – 3,57 мс.

борочные данные по динамике вскипания в опытах 9 (см. также Таблицу 2). Из них следует, что взрывной рост изначально гладкого пузыря (T > 120 °C) и формирование паровой пленки (T > 125 °C) сопровождается сильным скачком давления, за которым следуют колебания, затухающие с приближением к давлению p_s . Структура фронта вскипания говорит о возможности формирования конвективных ячеек в тонком пристеночном слое жидкости (самоорганизации). Третий кризис кипения, при котором паровая пленка формируется без стадии развитого пузырькового кипения, характерен для температур T > 130 °C.

Рисунок 7	<i>T</i> , ℃	<i>p</i> _s , МПа	τ, c	<i>V_f</i> , м/с
a (1, 3, 5)	124,0	0,98	69,8	1,01 (1,30)
a (2, 4, 6)	125,0	1,00	27,1	1,19 (1,78)
<i>b</i> (<i>1</i> , <i>3</i> , <i>5</i>)	128,0	1,06	17,0	2,39
b (2, 4, 6)	137,0	1,26	1,79	3,07

Таблица 2 – Параметры опытов и линейных аппроксимаций некоторых участков зависимости $\Delta h(t)$, представленных на Рисунке 7 (см. также Таблицу 1, опыты 9).

Природа центров кипения может быть связана с метастабильной ликвацией молибденового стекла, из которого состоят трубки, используемые в такого рода экспериментах.

В заключении представлены основные результаты работы:

1. Проведено совместное исследование кинетики и динамики спонтанного вскипания умеренно и высоко перегретой жидкости в стеклянных трубках разного внутреннего диаметра. Показана воспроизводимость данных по кинетике гетерогенного вскипания перегретой жидкости при устранении наиболее активных центров парообразования.

2. Предложена методика проведения измерений времен жизни метастабильных жидкостей с ограничением максимальной длительности опыта. Выполнены параметрические и непараметрические оценки статистических характеристик вскипания перегретого *н*-пентана. Установлено, что наиболее вероятными распределениями времен жизни перегретой жидкости являются: экспоненциальное, Вейбулла, гамма-распределение, смесь экспоненциальных и / или нормальных распределений.

3. Обнаружено, что при атмосферном давлении в диапазоне температур 120,0-130,0°С наблюдается взрывной рост парового пузыря, который является предвестником третьего кризиса кипения, возникающего при температурах, близких к 130,0°С. Фронт вскипания – с постоянной скоростью распространения – образуется преимущественно на единственном случайном центре парообразования.

4. Установлен закон понижения давления в проводимых опытах, его связь с разными режимами истечения газа (CO₂), при помощи которого создается давление в системе. Показано, что наиболее вероятные значения глубины захода в метастабильную область ($p_s - p'$) ограничены либо постоянными значениями давления p', при которых закон сброса меняется (1,65 и 0,27-0,30 МПа), либо постоянными значениями величины ($p_s - p'$): 0,43; 0,57 и 0,79 МПа.

5. Обнаружено, что малые добавки легкокипящей примеси (пара CO_2 <1,5% моль) позволяют достичь более высоких перегревов в трубке с дефектами внутренней поверхности стекла. После дегазации температура 125,3°С является предельной для чистого *н*-пентана, причем распределение времен жизни перегретой жидкости можно описать смесью экспоненциального распределения для случайных центров кипения и нормального распределения для дефекта стекла. Полученный результат свидетельствует о достижении порога перколяции (просачивания) для такой системы.

6. Определен динамический краевой угол смачивания в диапазоне температур 105,3-125,3°С. Установлено, что эта величина колеблется в пределах 20-60° и в среднем составляет ~ 40° при числе капиллярности Са ~ 10², что согласуется с данными по капиллярному поднятию жидкостей в условиях хорошего смачивания.

19

7. Обнаружено, что линейная скорость распространения фронта вскипания перегретого *н*-пентана составляет 0,30-3,07 м/с в диапазоне значений величины (*p_s* – *p'*) 0,24-1,16 МПа, зависит от конфигурации межфазной поверхности жидкость-пар и растет с глубиной захода в метастабильную область.

8. Измерена капиллярная постоянная *н*-пентана непосредственно в экспериментальной установке в диапазоне температур 60,9-169,4°С до и после опытов по перегреву, рассчитан коэффициент поверхностного натяжения жидкость-пар. Выявлено, что эта величина не зависит от числа вскипаний перегретой жидкости и находится в хорошем согласии со справочными данными.

Перспективы дальнейшей разработки темы

Разработанный метод экспериментального исследования кинетики и динамики вскипания перегретых жидкостей будет направлен на выявление механизма образования третьего кризиса кипения, возникающего при переходе от конвективного теплообмена к пленочному кипению, минуя стадию развитого пузырькового кипения. Опыты будут проведены при непрерывном понижении давления жидкости до значений выше и ниже атмосферного. Новые данные позволят разработать приближенную модель третьего кризиса кипения, на основе которой будут получены расчетные соотношения для предсказания критической плотности теплового потока.

Список цитируемой литературы

- 1. Скрипов, В.П. Метастабильная жидкость / В.П. Скрипов. М: Наука, 1972. 312 с.
- Скрипов, В.П. Теплофизические свойства жидкостей в метастабильном состоянии / В.П. Скрипов, Е.Н. Синицын, П.А. Павлов, Г.В. Ермаков, Г.Н. Муратов, Н.В. Буланов, В.Г. Байдаков. – М: Атомиздат, 1980. – 208 с.
- 3. Ермаков, Г.В. Термодинамические свойства и кинетика вскипания перегретых жидкостей / Г.В. Ермаков. Екатеринбург: УрО РАН, 2002. 272 с.
- 4. Baidakov, V.G. Explosive Boiling of Superheated Cryogenic Liquids / V.G. Baidakov. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2007 352 p.
- 5. Павлов, П.А. Динамика вскипания сильно перегретых жидкостей / П.А. Павлов. Свердловск: УрО АН СССР, 1988. 244 с.
- 6. Синицын, Е.Н. О вскипании перегретых жидкостей в стеклянных капиллярах / Е.Н. Синицын. // ТВТ. 1984. Т.22, №2. С. 400-402.
- Ермаков, Г.В. Гетерогенное вскипание жидкости вблизи границы достижимого перегрева / Г.В. Ермаков, Б.М. Смоляк. // Доклады АН СССР. – 1986. – Т. 286, № 5. – С. 1159-1162.
- 8. Липнягов, Е.В. Экспериментальная проверка гомогенности вскипания жидкостей вблизи границы достижимого перегрева / Е.В. Липнягов, С.А. Перминов, Г.В. Ермаков, Б.М. Смоляк. // Теплофизика и аэромеханика. 2009. Т. 16, № 3. С. 471-484.
- 9. Кутателадзе, С.С. Тепломассообмен и волны в газожидкостных системах / С.С.

Кутателадзе, В.Е. Накоряков. – Новосибирск: Наука, 1984. – 301 с.

- Ковариантная формулировка многомерной кинетической теории фазовых переходов первого рода / Ф.М. Куни, А.А. Мелихов, Т.Ю. Новожилов, И.А. Терентьев. // Теоретическая и математическая физика. – 1990. – Т.83, №2. – С.274-289.
- Синицын, Е.Н. Вскипание перегретого н-пентана и н-гексана под действием α-частиц / Е.Н. Синицын, В.С. Усков. // В сб.: Термодинамические исследования метастабильных жидкостей. - Свердловск: УНЦ АН СССР – 1986. – С. 59-62.
- Падерин, И.М. Кинетика вскипания перегретой жидкости в присутствии пористой и гладкой поверхностей / И.М. Падерин, В.С. Усков, Г.В. Ермаков. // ТВТ. – 1994. – Т.34, №6. – С. 863-866.
- Аронов, И.З. Надежность и эффективность в технике: справочник в 10 томах. Т.6.
 Экспериментальная отработка и испытания, Гл. 8; под ред. В.С. Авдуевского / И.З.
 Аронов, Б.В. Бодин, В.А. Лапица и др. М.: Машиностроение, 1989. 376 с.
- 14. Гайдышев И.П. Моделирование стохастических и детерминированных систем: Руководство пользователя программы AtteStat [Электронный ресурс] / И.П. Гайдышев. – Курган, 2015. – 484 с. – Режим доступа: http://биостатистика.pd/files/AtteStat_Manual_15.pdf.
- 15. Everitt, B. S. Finite Mixture Distributions / B. S. Everitt, D. J. Hand. New York: Chapman and Hall, 1981. 149 p.
- Ершов, А.П. Неустойчивость "невязкого пальца" в регулярных моделях пористой среды А.П. Ершов, А.Я. Даммер, А.Л. Куперштох // Прикладная механика и техническая физика. 2001. – Т. 42, № 2. – С. 129-140.
- 17. Смирнов, Б.М. Физика фрактальных кластеров / Б.М. Смирнов. М.: Наука, 1991. 133 с.

Основные результаты диссертации изложены в следующих работах:

Статьи, опубликованные в рецензируемых научных журналах и изданиях, определенных ВАК РФ и Аттестационным советом УрФУ:

- 1. Паршакова, М.А. Многомерная кинетика зародышеобразования в системах жидкостьпар / М.А. Паршакова // Теплофизика высоких температур. – 2004. – Т. 42, № 4. – С. 608–617; 1,14 п.л.
- Липнягов, Е.В. Изучение центров парообразования н-пентана в стеклянном капилляре вблизи границы достижимого перегрева с помощью скоростной видеосъемки / Е.В. Липнягов, М.А. Паршакова, С.А. Перминов, Г.В. Ермаков. // Тепловые процессы в технике. – 2013. – Т. 5, № 1. – С. 7-11; 0,34 п.л./ 0,09 п.л.
- Липнягов, Е.В. Изучение центров вскипания н-пентана с помощью скоростной видеосъемки в двух взаимно перпендикулярных направлениях / Е.В. Липнягов, М.А. Паршакова, Г.В. Ермаков. // Теплофизика и аэромеханика. – 2013. – Т. 20, № 5. – С. 605-614; 0,61 п.л./ 0,24 п.л.
- Lipnyagov, E.V. The visualization of boiling-up onset of superheated n-pentane in a glass capillary at atmospheric pressure by high-speed video / E.V. Lipnyagov, M.A. Parshakova, S.A. Perminov, and G.V. Ermakov. // Int. J. Heat Mass Transf. 2013. Vol. 60, No 1. P. 612–615; 0,29 п.л./ 0,08 п.л. (Scopus, WoS).

- 5. Липнягов, Е.В. Визуализация вскипания сильно перегретого н-пентана в стеклянном капилляре при давлениях выше атмосферного / Е.В. Липнягов, С.А. Перминов, М.А. Паршакова, М.С. Захаров. // Тепловые процессы в технике 2015. Т.7, № 5. С. 199-203; 0,31 п.л./ 0,09 п.л.
- Паршакова, М.А. Методика эксперимента по изучению кинетики спонтанного вскипания перегретой жидкости с использованием правостороннего цензурирования / М.А. Паршакова, Е.В. Липнягов, С.А. Перминов // Тепловые процессы в технике. – 2016. – Т. 8, № 8. – С. 361-368; 0,59 п.л./ 0,23 п.л.
- Lipnyagov, E.V. The study of boiling-up onset of highly superheated n-pentane in a glass capillary at different pressures with the use of high-speed video. I. Visualization and nucleation sites / E.V. Lipnyagov, M.A. Parshakova, S.A. Perminov. // Int. J. Heat Mass Transf. 2017. Vol. 104. P. 1353-1361; 0,79 п.л./ 0,31 п.л. (Scopus, WoS).
- Lipnyagov, E.V. The study of boiling-up onset of highly superheated n-pentane in a glass capillary at different pressures with the use of high-speed video. II. Data processing / E.V. Lipnyagov, M.A. Parshakova, S.A. Perminov. // Int. J. Heat Mass Transf. 2017. Vol. 104. P. 1362–1371; 1,11 п.л./ 0,43 п.л. (Scopus, WoS).
- 9. Липнягов, Е.В. Экспериментальное исследование фронта испарения перегретого нпентана в стеклянном капилляре / М.А. Паршакова, Е.В. Липнягов // Тепловые процессы в технике. – 2021. – Т. 13, № 12. – С. 561–570; 0,95 п.л./ 0,47 п.л.
- Perminov, S.A. Influence of microadditive of carbon dioxide on the kinetics of boiling-up of superheated n-pentane / S.A. Perminov, E.V. Lipnyagov, M.A. Parshakova // J. Phys.: Conf. Ser. – 2021. – V. 2039, No. 1. – 012027; 0,35 п.л./ 0,13 п.л. (Scopus).
- 11. Паршакова, М.А. Изучение влияния наиболее вероятных центров парообразования на кинетику спонтанного вскипания перегретого н-пентана / М.А. Паршакова, Е.В. Липнягов // Изв. РАН. Сер. физ. 2022. Т. 86, № 2. С. 215–220; Parshakova, М.А. Effect of most probable vaporization centers on the kinetics of the spontaneous boiling-up of superheated n-pentane / M.A. Parshakova, E.V. Lipnyagov // Bull. Russ. Acad. Sci. Phys. 2022. V. 86, No. 2. Р. 158-163; 0,48 п.л./ 0,24 п.л. (Scopus).
- Липнягов, Е.В. Исследование кинетики вскипания перегретого н-пентана при разных скоростях понижения давления / Е.В. Липнягов, М.А. Паршакова. // Изв. РАН. Сер. физ. 2022. Т. 86, № 2. С. 221–227; Lipnyagov, E.V. Study of the kinetics of the boiling-up of superheated n-pentane at different rates of pressure release / Е.V. Lipnyagov, М.А. Parshakova. // Bull. Russ. Acad. Sci. Phys. 2022. –V. 86, No. 2. Р. 164-169; 0,50 п.л./ 0,25 п.л. (Scopus).
- Lipnyagov, E.V. Investigation of the kinetics of spontaneous boiling-up of superheated npentane in a glass tube with defects of the inner surface. I. Monitoring the liquid-vapor surface tension / E.V. Lipnyagov, M.A. Parshakova. // Int. J. Heat Mass Transf. – 2022. – V. 196. – 123254; 0,95 п.л./ 0,48 п.л. (Scopus, WoS).
- 14. Паршакова, М.А. Термодинамический кризис при спонтанном вскипании перегретого н-пентана в вертикальной стеклянной трубке / Паршакова М.А., Липнягов Е.В. // Изв. РАН. Сер. физ. – 2023. – Т. 87, № 11. – С. 1554-1561; Parshakova, М.А. The Thermodynamic Crisis under Spontaneous Boiling-Up of Superheated n-Pentane in a Vertical Glass Tube / M.A. Parshakova, E.V. Lipnyagov. // Bull. Russ. Acad. Sci. Phys. – 2023. – V. 87, No. 11. – P. 1586-1593; 0,76 п.л./ 0,38 п.л. (Scopus).

 Lipnyagov, E.V. Investigation of the kinetics of spontaneous boiling-up of superheated npentane in a glass tube with defects of the inner surface. II. Evaporation front / E.V. Lipnyagov, M.A. Parshakova. // Int. J. Heat Mass Trans. – 2024. – V. 218. – 124811; 0,85 п.л./ 0,43 п.л. (Scopus, WoS, K1).

Статьи в других научных изданиях:

- 16. Ермаков, Г.В. Динамика роста околокритического пузырька на стенке сосуда / Г.В. Ермаков, Е.В. Липнягов, М.А. Паршакова // Труды РНКТ-5 (Москва, 2010). М: Изд-во МЭИ, 2010. Т.4. С. 135–138; 0,41 п.л./ 0,16 п.л.
- 17. Липнягов, Е.В. Скоростная видеосъемка вскипания перегретой жидкости в стеклянных капиллярах / Е.В. Липнягов, М.А. Паршакова // Тезисы докладов XVIII Школысеминара молодых ученых и специалистов «Проблемы газодинамики и тепломассообмена в новых энергетических технологиях», Звенигород. – М.: Издательство МЭИ, 2011. – С. 193-194; 0,05 п.л./ 0,03 п.л.
- 18. Липнягов, Е.В. Изучение вскипания перегретого н-пентана в стеклянном капилляре в зависимости от температуры по данным скоростной видеосъемки / Е.В. Липнягов, М.А. Паршакова, Г.В. Ермаков; [Труды [Электронный ресурс]. 1 электрон. опт. диск (CD-ROM). Секция 2. Доклад 48] // Тезисы докладов и сообщений XIV Минского межд. форума по тепло- и массообмену, Минск. Минск: Изд-во ИТМО, 2012. Т. 1, Ч. 2. С. 537-540; 0,28 п.л./ 0,11 п.л. (доклад); 0,12 п.л./ 0,05 п.л. (тезисы).
- 19. Липнягов, Е.В. Скоростная видеосъемка вскипания перегретого н-пентана при атмосферном давлении в двух взаимно перпендикулярных направлениях / Е.В. Липнягов, М.А. Паршакова, Г.В. Ермаков; [Труды [Электронный ресурс]. 1 электрон. опт. диск (CD-ROM). Секция 2. Доклад 47] // Тезисы докладов и сообщений XIV Минского межд. форума по тепло- и массообмену, Минск. Минск: Изд-во ИТМО, 2012. Т. 1, Ч. 2. С. 540-542; 0,33 п.л./ 0,13 п.л. (доклад); 0,17 п.л. / 0,07 п.л. (тезисы).
- 20. Липнягов, Е.В. Скоростная видеосъемка вскипаний сильно перегретой жидкости на поверхностных центрах чистой стеклянной ячейки / Е.В. Липнягов, М.А. Паршакова, С.А. Перминов; [Тезисы. С. 99]. // Труды VIII Всероссийского семинара вузов по теплофизике и энергетике, Екатеринбург. Екатеринбург: УрФУ, 2013. С. 331-339; 0,30 п.л./ 0,12 п.л. (доклад); 0,06 п.л. / 0,02 п.л. (тезисы).
- 21. Паршакова, М.А. Статистическая обработка экспериментальных данных по изучению вскипания перегретых жидкостей методом пузырьковой камеры / М.А. Паршакова, Е.В. Липнягов, С.А. Перминов; [Труды [Электронный ресурс]. Режим доступа: https://elibrary.ru/vdjadd]. // Тезисы РНКТ-6, Москва. М.: Изд-во МЭИ, 2014 Т. 2. С. 76-77; 0,40 п.л./ 0,16 п.л. (доклад); 0,10 п.л. / 0,04 п.л. (тезисы).
- 22. Липнягов, Е.В. Визуализация вскипания сильно перегретого н-пентана в стеклянном капилляре при давлениях выше атмосферного / Е.В. Липнягов, С.А. Перминов, М.А. Паршакова, М.С. Захаров; [Труды [Электронный ресурс]. Режим доступа: https://elibrary.ru/vdjabf]. // Тезисы РНКТ-6, Москва. М.: Изд-во МЭИ, 2014 Т. 2. С. 66-67; 0,24 п.л./ 0,07 п.л. (доклад); 0,10 п.л. / 0,03 п.л. (тезисы).
- 23. Паршакова, М.А. Статистическая обработка цензурированных данных по гетерогенному вскипанию перегретых жидкостей / М.А. Паршакова, Е.В. Липнягов, С.А. Перминов. // Тезисы докладов XVI Всероссийской школы–семинара по проблемам физики конденсированного состояния вещества (СПФКС-16), Екатеринбург –

Екатеринбург: ИФМ УрО РАН, 2015. – С. 140; 0,08 п.л./ 0,03 п.л.

- 24. Паршакова, М.А. Изучение гетерогенной нуклеации в перегретом н-пентане при разных скоростях понижения давления / М.А. Паршакова, Е.В. Липнягов. // Сборник тезисов V Всероссийской научной конференции с элементами школы молодых ученых Теплофизика и физическая гидродинамика, Ялта. – Новосибирск: ИТФ СО РАН, 2020. – С. 105; 0,07 п.л./ 0,04 п.л.
- 25. Перминов, С.А. Влияние микродобавки углекислого газа на кинетику вскипания перегретого н-пентана / С.А. Перминов, Е.В. Липнягов, **М.А. Паршакова**. // Тезисы докладов XXIII Школы-семинара молодых ученых и специалистов под руководством академика РАН А.И. Леонтьева, Екатеринбург. Екатеринбург: ИТФ УрО РАН, 2021. С. 92; 0,09 п.л./ 0,04 п.л.
- 26. Паршакова М.А. Расчет скорости фронта испарения и динамического угла смачивания перегретого н-пентана в стеклянном капилляре / М.А. Паршакова, Е.В. Липнягов // Сборник тезисов VI Всероссийской научной конференции «Теплофизика и физическая гидродинамика с элементами школы молодых учёных», Севастополь. – Новосибирск: ИТФ СО РАН, 2021. – С. 132; 0,09 п.л./ 0,05 п.л.
- 27. Паршакова, М.А. Изучение влияния наиболее вероятных центров парообразования на кинетику спонтанного вскипания перегретого н-пентана / М.А. Паршакова, Е.В. Липнягов. // Тезисы докладов XXI Всероссийской школы–семинара по проблемам физики конденсированного состояния вещества (СПФКС-21), Екатеринбург. – Екатеринбург: ИФМ УрО РАН, 2021. – С. 230; 0,06 п.л./ 0,03 п.л.
- 28. Липнягов, Е.В. Экспериментальное исследование фронта испарения перегретого нпентана в стеклянном капилляре при вскипании в процессе непрерывного понижения давления / Е.В. Липнягов, М.А. Паршакова; [Материалы [Электронный ресурс]. – Режим доступа: https://elibrary.ru/item.asp?id=49826901]. // Материалы РНКТ-8, Москва. – М.: Изд-во МЭИ, 2022. – Т. 1. – С. 298-299; 0,20 п.л./ 0,10 п.л.
- 29. Липнягов, Е.В. Изучение фронта испарения перегретого н-пентана в стеклянном капилляре при помощи скоростной видеосъемки в двух взаимно перпендикулярных направлениях и быстродействующего датчика давления / Е.В. Липнягов, М.А. Паршакова // XXII Всероссийская школа-семинар по проблемам физики конденсированного вещества состояния памяти М.И. Куркина (СПФКС-22), Екатеринбург. – Екатеринбург: ИФМ УрО РАН, 2022 – С. 209; 0,06 п.л./ 0,03 п.л.
- 30. Паршакова, М.А. Изучение кинетики вскипания перегретого н-пентана в стеклянной трубке при помощи скоростной видеосъемки в двух взаимно перпендикулярных направлениях / М.А. Паршакова, Е.В. Липнягов // ХХІІ Всероссийская школа-семинар по проблемам физики конденсированного состояния вещества памяти М.И. Куркина (СПФКС-22), Екатеринбург. Екатеринбург: ИФМ УрО РАН, 2022 С. 210; 0,06 п.л./ 0,03 п.л.