
Федеральное государственное автономное образовательное учреждение высшего образования

«Уральский Федеральный Университет

имени первого Президента России Б.Н.Ельцина»

Институт естественных наук и математики

Кафедра алгебры и фундаментальной информатики

На правах рукописи

Давид Фернандо Касас Торрес

ИССЛЕДОВАНИЯ ВПОЛНЕ

ДОСТИЖИМЫХ АВТОМАТОВ

1.2.3 Теоретическая информатика, кибернетика

Диссертация на соискание учёной степени

кандидата физико-математических наук

Научный руководитель

доктор физико-математических наук

профессор Волков Михаил Владимирович

Екатеринбург, 2024

URAL FEDERAL UNIVERSITY

INSTITUTE OF NATURAL SCIENCE AND MATHEMATICS

David Fernando Casas Torres

INVESTIGATIONS

ON COMPLETELY REACHABLE AUTOMATA

1.2.3 — Theoretical Computer Science, Cybernetics

A Thesis Submitted for the Degree

of Candidate of Physical and Mathematical Sciences

Supervisor: Doctor

of Physical and Mathematical

Sciences, Professor M. V. Volkov

Ekaterinburg, 2024

Contents

Introduction 1

1 Basics 17

1.1 Automata and graphs . 17

1.2 Completely reachable automata and bounds of reachability . . 21

1.3 Construction of Rystsov graphs 28

2 Binary completely reachable automata 35

2.1 A necessary condition . 37

2.2 Rystsov graph of a binary automaton 38

2.3 Subgroup sequences for standardized automata 43

3 Binary Completely Reachable Automata and Don’s Conjec-

ture 52

3.1 Expandable subsets . 53

3.2 The restricted orbit digraph 55

3.3 Further discussion . 60

3.4 Additional remarks . 64

4 Completely Reachable Almost Group Automata 67

4.1 The necessary condition . 69

4.2 Rystsov graphs of almost group automata 70

4.3 Intermezzo . 75

4.4 Non-reachability and invariance 76

5 A Characterization of Totally Compatible Automata 79

5.1 Definition and examples . 79

5.2 The characterization . 82

5.3 Decidability, size and synchronization 84

Conclusion 89

Introduction

Relevance of the research

Deterministic Finite Automata (DFAs) are simple but very versatile theo-

retical devices. Their simplicity does not hinder them from being a very

interesting field of research for discrete mathematics and computer science

alike. One of their most widespread applications is as language recognizers.

Thanks to Kleene’s classical theorem it is long known that DFAs are able to

recognize the class of regular languages. In this text this aspect will not be

studied. Nevertheless the interest in DFAs is by no means limited to this.

They can represent how a closed but mutable system changes in the presence

of some inputs. DFAs are studied as (theoretical) machines that constantly

change internal state (and probably output) depending on the different in-

puts they receive. They can model various real life systems: from vending

machines to simple artificial intelligences.

For a better discussion, let us present some informal definitions of key

concepts treated in this work (bear in mind that more detailed definitions will

be made in the following sections.) A DFA, or from now on an automaton, is

usually defined as a triple A = 〈Q,Σ, δ〉 where Q and Σ are finite sets called

the state set and alphabet respectively and δ is a function from Q×Σ to Q.

The set Q represents the possible internal states in which the automaton can

be. The letters of Σ represent all the valid inputs received by the automaton.

The function δ maps all the possible situations, pairs of state and input, the

automaton could be in to the respective output represented as a state. An

automaton can be considered as a machine that receives some inputs, the

letters, and depending on the state it is at the moment it will change to

another (not necessarily different) state. In order to simplify the henceforth

discussion, we use the notation to the right, i.e., for the pair (q, a) ∈ Q × Σ
we represent δ(q, a) as q · a. This allows us to omit the reference to the

function δ when we refer to automata, and hence just consider the state set

and the alphabet, i.e., we writeA = 〈Q,Σ〉. Additionally, we can concatenate

multiple inputs in a word, a finite sequence of letters, and define its action at

1

1 2 3

456

a
b

a

b

a

b

a

b

a

b

a
b

Figure 1: The labelled directed graph of an automaton.

any state. If w = a1a2 · · ·an, we denote by q · w the state at the end of the

sequential action of a1 followed by the action of a2 and so on until reaching

an. As it is usual in the literature, Σ∗ represents the set of all the words that

can be formed using letters of the alphabet Σ. Similar to how we can apply

multiple letters to a single state, we can apply any letter a to a non-empty

subset of states P ⊂ Q. The subset of states obtained by this operation is

denoted by P · a. At this point nothing prevents us to apply a word w to a

subset of states P and obtain P · w.

One of the most useful representations of automata is as a labelled di-

rected graph. The vertices of this graph are the states and the directed edges

are labelled by the letters of its alphabet representing their actions on the

states. More precisely, if A = 〈Q,Σ〉 is an automaton, in the graph repre-

sentation of A there is an edge that connects states p, q ∈ Q, labelled by

the letter a, i.e., p
a−→ q, if and only if p · a = q. Figure 1 shows the graph

representation of an automaton with six states and two letters. Note that

the presence of a loop, at a state, labelled by a represents that the action of

the letter does not change the state.

Synchronization

Every physical system is susceptible to errors or temporal disconnections that

would make the user to lose track of the system’s current state. Because of

this it would be convenient to have a sequence of inputs that, without regard

of the current situation of the system, once finished the user could know

with total certainty in which state the system is. This is one of the different

motivations of the notion of synchronization of automata. In plain words,

2

1

2

3

a, bb

b

a

a 1

2

3

a, bb

b

a

a 1

2

3

a, bb

b

a

a

Figure 2: The representation of an automaton with tokens and the effect

over this tokens of the empty word, a and ab respectively.

a synchronizable automaton allows one to have an input that, no matter

in which state the machine is, will always end in one a priori known state.

The multiple times that this concept was conceived independently through

history is an evidence of how natural it is. At the same time its ubiquity

shows how useful it can be. We give a brief historic discussion not much later

in this section.

Before, let us show a helpful graphic representation of the concept of

synchronization. Given an automaton A = 〈Q,Σ〉 and its graph, there is

a mental image of the effect of a word over a state. It goes as follows: let

q ∈ Q be an arbitrary state. Imagine a token over the vertex q in the

directed graph of A and let w = a1 · · · am ∈ Σ∗ be a word with ai ∈ Σ for

every i = 1, . . . , m. At first move the token from q to the vertex q · a1, and

then to the state (q · a1) · a2 and so on, following the edges indicated by

the word. At the end it is easy to see to which state the word w sends the

state q. With this in mind now imagine the same situation with tokens on

every state of a nonempty subset P ⊆ Q and a word w ∈ Σ∗. Follow the

previously described procedure, but in the case two or more tokens fall in

the same vertex at the same time remove all but one of the tokens in that

vertex and continue the process. In this way the image of P by the word w,

i.e. P ·w, is the set of states with tokens at the end of the process. In Figure

2 we can see a graphic representation of this. The leftmost automaton has

tokens in each of its states; the center automaton represents the situation

after applying the letter a; and the rightmost represents the position of the

tokens after the word ab. If it happens that once finished the procedure there

is just one token left, then it is said that the word w synchronizes the set P .

Suppose that in the previous situation P , is the whole state set, then w is

said to be a synchronizing word (other commonly used name is reset word)

and the automaton is synchronizable.
To put it clear, an automaton A = 〈Q,Σ〉 is synchronizable if there is

3

a word w ∈ Σ∗ such that |Q · w| = 1. The previous definition is the most

common found in the literature. In other terms a synchronizing word sends

every state to an unique state. No matter in which state the computation

begins it will always end in the same place.

One of the proposers of the modern concept of automaton was Edward

F. Moore [29] in 1956. The automata proposed by Moore are essentially the

same as the ones described here, the main difference was that the automata

would return an output depending on the state they are after receiving each

input letter. He proposed this concept as a way to make “thought exper-
iments”(or Gedankenexperiment); to make an experiment is, precisely, to

input a word on an automaton and take note of the output that comes out.

Moore also conceived the automata as black boxes where just the inputs and

outputs are known. A natural problem from this concept is to know if its

possible to create an automaton and an input such that after the execution of

the experiment one can determine with certainty the final state the automa-

ton is in depending on the output received. This without regard of the state

the experiment began. It was from this that Jan Černý took his inspiration

to propose synchronizable machines in [13] (translated to English in [14])

in 1964. Černý considered the case when there is no output words received

from the automata. But this was not the first time the notion was proposed.

Already in 1963, Chung Laung Liu in his dissertation [27], presented to the

MIT, devoted a whole section to, as he called them, “synchronizable” au-

tomata; hence one of the origins of the term. In contrast Černý used the

term “directable”.

There are two main reasons why the notion of synchronizable, or di-

rectable, automata was proposed several times in different places. The first

one was the unavoidable lack of communication present in the pre-internet

era. Černý’s article was published in Slovak and presented in Europe; on the

other hand Liu’s work was made in USA and not published by that time.

Other reason is the wide usefulness and naturalness of synchronization (some

examples of this will be briefly discussed next) making it appear in several

contexts under different appearances.

As a common motivation for this synchronization concept, Černý and Liu

considered the task of recovering the control of an automaton. This means,

that an user can determine without doubt the state in which the automaton

is after introducing a series of inputs; this without consideration the state the

automaton is the moment. This property is useful in situations where the

communication between the automaton and the user is not always assured.

Imagine, for example, a satellite that travels over the dark side of the moon,

where it is impossible to receive or send any signal. Once the operators gain

control over the satellite they do not know in which state the machine is.

4

The input of a reset word would help to retake the control over the satellite

without problem. Another task that motivates synchronization, mentioned

in Liu’s work, is to control several copies of the same automaton that are in

different states. It can be useful the existence of an input that makes them

all to be in the same state, thus synchronizing them.

As a third motivation Liu mentions the interchange of codified messages,

where a possible error could make the receiver to decodify differently the

message (again for some lost connection) and the possibility of recover the

message with a synchronizing input. A codification is the replacement of

characters from an alphabet for words of (possibly) a different alphabet. This

is a very natural thing to do nowadays as all digital information has to be

replaced by strings of bits. A challenge comes at the time of decoding, going

from the replacing alphabet to the original one. The difficulty appears if some

characters are encoded in words of different length, in order to economize

resources at the moment of transmission. There is a possibility that some

encodings are prefixes of others making the communication prone to mistakes.

This can be avoided creating a prefix code, a code such that no word is a prefix

of another in the set of replacements. To decodify a message in a prefix code,

an automaton can be used, the decoder automaton.

If in the coding there is a word z such that when prefixed by any word y,
both words in the same code alphabet, the resultant word yz can be decom-

posed in coding words, then z is called a synchronizing word and the code

synchronized. It is not surprising that the decoder automaton of a synchro-

nized code is synchronizable itself. And this was one of the motivations that

Liu mentioned in his work. For a whole in depth discussion about codes and

their automata we recommend to see [7].

Now, for something completely different, imagine a conveyor belt that

transports industrial pieces. These pieces are all equally shaped but they

can come in different orientations (for simplicity we are going to assume

the number of possible orientations is limited). Furthermore imagine that

it is possible to put some well placed obstacles that change the orientation

to determined positions; some tall and some low obstacles that reorient the

pieces. This behaviour can be modelled as an automaton, where the states

are the positions of the piece and the letters represent the obstacles highness.

Then it would be very convenient said automaton to be synchronizable in

order to have a single sequence of obstacles that let all the passing pieces to

a single determined orientation. A more detailed discussion of this example

is present in [1]. See [30] and [31] for an example of the apparition of the use

of synchronization without the explicit mention of automata.

These are some of the motivations that inspire the research in synchro-

nizable automata. As it is evident the notion is versatile and very useful in

5

different fields.

Once defined the concept of synchronization the next natural question

that arises is: given an arbitrary automaton A, how to decide if it has a reset

word or, what is the same, if it is synchronizable? As it happens in many

situations there is a conceptually easy answer for this that fails once the

time to put it in practice comes. Let us see: let A = 〈Q,Σ〉 be an arbitrary

automaton. Denote the set of all non-empty subsets of Q by P(Q). Note

that every letter sends each non-empty subset to a unique non-empty subset,

thus we can define a new automaton P(A) := 〈P(Q),Σ〉, with the same

alphabet and where its states are the non-empty subsets of the state set of

the original automaton. This new automaton is called the power automaton
of A. Once constructed the power automaton from an arbitrary A, to decide

if there is a reset word for A it is just necessary to find a path from the state

Q to any state that represents a singleton, {q} ⊂ Q. This can be easily done

constructing the graph of P(A) and using a Depth First Search algorithm

to determine if such a path exists. In theory the previous procedure is fairly

simple but its implementation is, to a certain point, impractical. This is due

to the exponential growth of states of the power automaton with respect to

the number of states of the original. If the state set of A has size n, then its

power automata P(A) will have 2n − 1 different states.

Another point of intersection between Liu’s [27] and Černý’s [13] foun-

dational works is a more convenient characterization of synchronizable au-

tomata. An automaton A = 〈Q,Σ〉 has a reset word if and only if there is

a word that synchronizes every subset of size 2, {p, q} ⊂ Q. This is, if for

every pair of different states there is a word that sends them to the same

state. This suggests a more effective algorithm to determine if any given

automaton is synchronizable. Given an automaton A = 〈Q,Σ〉, construct

the graph of the power automaton considering only the subsets of size 2 and

1, and for every pair decide if there is a path that connects it with a single-

ton. If |Q| = n then the amount of pairs is
n(n−1)

2
, therefore the previously

suggested construction requires O(|Q|2 · |Σ|) time, i.e. polynomial in the size

of the original automaton, a much more reasonable time than its exponential

alternative.

The length of reset words

Once decided that an automaton has at least one synchronizing word, it is

convenient to know how long these synchronizing words could be. Our inter-

est is put in looking for the short words. More specifically how long can be

the shortest synchronizing word of a given synchronizable automaton. Recall

that the length of a word is the number of letters, not necessarily different,

6

composing the word, e.g., the word abbbaab is of length 7. For a synchro-

nizable automaton A, denote rt(A), the reset threshold of A, as the length

of its shortest reset words. Once again, at the same time of presenting the

concept of synchronization, Černý proposed the following series of automata

(Cn)n≥2 with Cn = ({1, 2, . . . , n}, {a, b}) where i · a = i + 1 for 1 ≤ i ≤ n− 1
and n · a = 1; 1 · b = 2 and i · b = i for 2 ≤ i ≤ n. See Figure 3.

1

2n

3n− 1 . . .

a, b

aa

a

b

bb

b

Figure 3: The automaton Cn

Then he showed that each Cn is synchronizable and its shortest reset word

is of the form (abn−1)n−2a, thus proving that rt(Cn) = (n− 1)2.
For each natural n ≥ 2 denote C(n) as the maximal reset threshold of all

the synchronizable automata with n states. In other words, given any reset

automaton with n states we can assure that the shortest reset word of this

automaton is not longer than C(n). Černý with his series of automata proved

that:

(n− 1)2 ≤ C(n) ≤ 2n − n− 1.

The upper bound is trivial since it is the number of non-empty subsets of size

bigger than one. Few years later Peter Starke [36] (translated to English in

[37]) improved the upper bound down to 1+ n(n−1)(n−2)
2

and hypothesized for

first time that C(n) = (n−1)2. As is it usual in mathematics this hypothesis

was misnamed as Černý’s Conjecture. This conjecture has been open since

then. The history of this conjecture has showed a lot of interesting and deep

results. We recommend the very complete survey made by Mikhail V. Volkov

in [38] to understand its history.

7

Completely reachable automata

Although Černý’s Conjecture is still open at the time writing for the general

case, it has been proven for several sub-classes of automata. It is worth to

highlight the case of circular automata, where one letter acts as a cyclical

permutation. Louis Dubuc in [16] proved the conjecture for this kind of au-

tomata. This, together with other several examples, suggests it is worthwhile

to focus on some particular classes of synchronizable automata.

Given an automaton A = 〈Q,Σ〉, we consider a subset of states P ⊂ Q
to be reachable if there is a word w ∈ Σ∗ such that Q ·w = P . If we consider

words as functions from the state set to itself, a subset is reachable if it is the

image of some word. We say an automaton A is completely reachable if every

non-empty subset is reachable. Note that an automaton is synchronizable if

some subset of size one is reachable. That is why complete reachability is a

specialization of the concept of synchronization.

The study of complete reachable automata began, not explicitely, from

the studies of language complexity by Marina Maslennikova [28]. In this work

she studied the state complexity of the languages of synchronizing words of

certain automata. The state complexity of a regular language is the minimum

amount of states that an automaton must have to recognize the language.

Maslennikova proved that the complexity of the language of all reset words of

Černý’s automata grows exponentially with the size of the automata. To be

more precise: She proved that to recognize all the reset words of Cn, one needs

an automaton of no less than 2n−n states. The minimal automaton that she

constructes for this task is the power automaton P(Cn), with all the singleton

subsets collapsed into one. Without explicitly noticing, Maslennikova proved

that Černý’s automata, among others, are completely reachable. Although it

is not the only reason, the fact that the class of completely reachable contains

Černý’s series of automata motivated a further study on automata with this

property.

Bondar and Volkov took the baton in [9] to continue the research of

completely reachable automata. In this initial work, Bondar and Volkov

properly define the concept of complete reachability and embark on the task

of studying these new kind of automata. For this, they pay attention to two

key aspects of a word: its excluded and duplicated states. Consider words

as transformations of the set of states. If the size of the image of a word is

smaller than the size of the whole set of states, this means that there are

states which do not have preimage by this word, and, moreover, that there

are states who have more than one state as preimage. For a given word w (of

a fixed but arbitrary automaton), the former set of states, without preimage,

is called the excluded set of this word; and the latter set of states, with

8

multiple preimages, is called the duplicate set. The size of the excluded set

of a word is also relevant and it is called the defect of the word. From these

terms Bondar and Volkov suggest the construction of a graph that connects

the excluded states with the duplicate ones; this, at first, for words of defect

1. The connectivity of this graph was a sufficient but not necessary condition

for automata being completely reachable.

Although the formulation and use of these graphs to prove complete reach-

ability find their origin in [9], its inspiration can be traced back to Igor

Rystsov’s work, more exactly to his paper [33]. There he considers automata

with two type of transformations: permutations and, what he calls, simple

idempotents. In our terminology, simple idempotents are transformations

of defect 1 such that every state is sent to itself, except for the excluded

state that is sent to the duplicate state. Automata of this kind are called

SI-automata. In his paper Rystsov proves that if an SI-automaton is strongly

connected, then the automaton is sychronizable and, if there are n > 1 states,

there is reset a word of length at most 2(n − 1)2. For this, he uses a graph

that connects all the excluded to the duplicate states of all the idempotent

letters. Then, he rotates these edges using permutations of, each time, bigger

lengths until a strongly connected graph is obtained. Rystsov proves that

permutations of length no more than 2(n − 1) are needed. For this we will

call the graphs defined in [9] and [10] to characterize complete reachability

Rystsov graphs.
In [10], Bondar and Volkov successfully found a characterization of com-

pletely reachable automata. For this, they extended the construction of the

previously mentioned graph to account for words of bigger defect. They pro-

posed a recursive construction of finite series of graphs. Each round has the

strongly connected components of the previously constructed graph as its

vertex set and uses words of bigger defect to connect these vertices. This

construction finishes after a number of iterations bounded by the number of

states of the automata. Using that construction, Bondar and Volkov proved

that a given automaton is completely reachable if and only if the graph, con-

structed after the whole process, is strongly connected. The main argument

of the proof of this is to show that every non-empty subset of states is ex-

pansible, i.e., the preimage by a word is bigger than the set. A revision and

enhanced version of this process and proof appears in [8].

We come back to this particular construction in the following chapter

since it is a core part of this work. There a detailed explanation is given.

From these two works, the study of completely reachable automata as a

defined kind of automata has started.

Before we continue, it is convenient to highlight the work done by Henk

Don in [15]. In this paper Don considers automata 〈Q,Σ〉 such that for

9

every state q ∈ Q there is a word of defect 1 that excludes q. He calls these

automata 1-contracting. Using a different language, Don proves that if a

1-contracting automaton A produces a Rystsov graph with a complete cycle,

then A not only is synchronizable but completely reachable; and every non-

empty subset of states is reachable by a concatenation of words of defect 1.

Additionally, Don proves that if the 1-contracting automaton A has n > 1
states and for every state q there is a word of defect 1 of length at most n
that excludes q, then not only A fulfils Černý’s conjecture but every subset

of size 1 < k < n is reachable by a word of length at most n(n− k).
At the end of this paper Don proposed the conjecture that for an arbitrary

automaton with n > 1 states if a subset of size 1 < k < n is reachable, then

there is a word of length at most n(n−k) that reaches it. This ended to be a

very strong conjecture that would, among others, deduce Černý’s conjecture.

Effectively this conjecture was proven false by Gonze and Jungers in [21].

In this work they showed two series of automata: the first one where for

automata of size n congruent with 3 modulo 4, there are sets of size n − 2
reachable with words no shorter than O(n2); the second series of automata

augments the gap, with subsets of size ⌊n
2
⌋ − 1 (for n > 6) such that the

shortest words that reach them have length of 2n/n. Not only these counter

examples were the contribution of this paper. It is worth to mention the

propose of a quadratic time, on the number of states, algorithm that allows

to calculate the Rystsov graph proposed in [9]; and with this disproved some

conjectures proposed in the same paper.

Deciding if a given automaton is completely reachable is the first natural

problem to solve once the concept has been introduced. The characterization

presented [10] and [8], by the moment, is of little practical help since it is not

known what is the complexity of obtaining all the words of certain defect,

or at least the needed ones to construct the graphs. A great advance in

the determination of the complexity of deciding complete reachability was

made by Ferens and Szyku la in [17] who proposed an algorithm that decides

in polynomial time, on the number of states, whether a given automaton is

completely reachable or not. The idea of the algorithm is to find the largest

subset that is not expandable. Both conditions of being the largest and non-

expandable imply that this subset is not reachable. If the proposed algorithm

does not return any subset, it can be concluded that the automaton given as

input is completely reachable. Following this, Ferens and Szyku la propose

another algorithm to find a short reaching word for any subset of states of

an automaton, given the case, of course, that this subset is reachable. Using

this algorithm it is obtained a partial but important result in regards to

the length of reaching words. Although Ferens and Szyku la do not prove

Don’s conjecture for completely reachable automata, they prove that if the

10

automaton A has n > 1 states and is completely reachable, then for every

subset of size 1 < k < n there is a word that reaches this subset with length

no bigger than 2n(n− k).
There are other considerations about completely reachable automata that

go beyond the algorithmic and the bounding of the reaching words. It is

worth mentioning the works of Stefan Hoffmann in [24] and [23]. In [24]

Hoffmann characterizes primitive groups of degree1 at least 5 as such per-

mutation groups that in the presence of any transformation of defect 1 the

resultant automaton is completely reachable. Moreover he relates the capac-

ity of a permutation group of degree n > 3 to connect every subset of size

1 < k < n (being k-homogeneous) to the behaviour of this group together

with a transformation of rank k. In [23], Hoffmann retakes the subject of

the complexity of the language of synchronization words. There he proves

a sufficient condition for binary automata such that their synchronization

language has maximum complexity; then he proceeds to add examples, to

the already given in [28], of series of automata with maximal synchronization

complexity.

As we have seen, the study of completely reachable automata is a rela-

tively new edge of an old problem. Nevertheless it has proven to be a fertile

field for new and interesting discoveries and problems. In this work we see

some of these new discoveries.

Goals and objectives of the research

The main goal of the work is to further the study of completely reachable

automata. For this we traced the following more specific objectives:

• To find alternative and reliable characteristics and methods to deter-

mine whether an automaton is completely reachable.

• Next, is to study the length of the words reaching each non-empty

subset.

• More precisely, to determine whether or not Don’s conjecture is satisfied

by some kind of automata.

In a transformation from a finite set to itself, i.e., f : Q → Q, we can

consider two sides: the image and the kernel. The kernel is a partition of Q
joining in the same subset states with the same image by f . An additional

1The amount of points the group acts on. In this case the number of states of the

automaton.

11

objective is to study automata where for any possible partition of the set of

states there is a transformation such that its the kernel is the partition.

Scientific novelty of the research

Besides some results stated to contextualize the discussion, for which we give

the respective credit to who deserves it, every result is a new contribution to

the literature of the subject treated in the dissertation.

Theoretical and practical significance of the re-

search

The dissertation work is theoretical in its nature. The results obtained push

further the knowledge not only about the main subject which is completely

reachable automata, but also about its original subject that is synchroniza-

tion of automata. From this, some of the algorithms described run in poly-

nomial time, what it is always a desired characteristic in this area. This

lays a stable background for any practical implementation needed by further

research.

Methodology of research

The research conducted was mostly theoretical. It used knowledge from

several fields of mathematics and theoretical computer science. Among then

we can highlight theory of automata, algorithms, graphs and finite groups.

Overview of the thesis and our contributions

In Chapter 1 we establish the necessary definitions and results to give con-

text to this work. The main part of this section is the explanation of the

construction of Rystsov graphs given in [8]. Since a great part of the work

done here is based on these graphs, to show their construction process helps

to give a better context to the following work. Additionally to the necessary

definitions and statements, we present an algorithm to calculate the Rystsov

graph of an arbitrary automaton. The construction of the Rystsov graph of

any automaton requires the iterative construction of intermediate graphs. In

principle these intermediate steps are not easy to compute in terms of com-

plexity. But we present an scheme to calculate all the necessary components

12

of this intermediate steps. This derive in Theorem 1.5 that tell us we can

construct this intermediate steps in a quasi polynomial time.

In Chapter 2, we focus our attention on binary automata, i.e., those with

only two letters. There we prove that for automata with more than two

states in order to them being completely reachable, one of the letters must

be a cyclic permutation over all the states and the other must have defect

1. But this is not enough, besides that, the letter of defect 1 must not

preserve subsets of states that represent subgroups of the cyclic group of the

same size of the automaton. Proposition 2.1 states that a binary completely

reachable automaton does not preserve the aforementioned subsets. After

that, Proposition 2.5 says that the invariance of these subgroups ensures

complete reachability; while Proposition 2.6 shows what happens when this

condition is not met. The combination of these propositions converge in

Theorem 2.1 that gives a characterization for binary completely reachable

automata. This derives in an almost linear time algorithm to decide complete

reachability for these kind of automata.

We continue the discussion of binary completely reachable automata in

Chapter 3. In this chapter we consider the length of the words reaching

the subsets. Our main result is Theorem 3.1. To prove it we consider the

expansion method. A word properly expands a subset if the word does not

have excluded elements in the subset and the preimage by this words is bigger.

In a completely reachable automaton every subset has a word that properly

expands said subset. The expansion method aims to bound the length of

words that properly expand every subset. With Proposition 3.3 we prove a

linear bound (with respect to the size of the automaton and the subset) for

words that expand subsets of binary completely reachable automata with a

particular condition. Additionally it is shown why this method can not be

used for the general case of binary automata.

For Chapter 4 we extend the results of Chapter 2. We consider automata

with just one letter of defect 1 but where the rest of the letters are permuta-

tions of the state set. These are called almost group automata. We add the

condition that the group generated by the permutation letters is not only

transitive but imprimitive, since in other case (if the group is primitive) it is

already known the automaton is completely reachable.

In this case complete reachability depends on the letter of defect 1 not

preserving the blocks of imprimitivity that contain its excluded state. Simi-

larly to the case of binary automata Proposition 4.1 proves the necessity of

this condition for complete reachability. After that we describe the Rystsov

graphs of these kind of automata; this is done in Proposition 4.2. In com-

parison with the case of binary completely reachable automata, we need an

additional condition to prove that not preserving blocks is sufficient. This is

13

stated in Theorem 4.2.

In Chapter 5 we shift our attention from reachable subsets to partitions

of the state set. Every transformation not only defines a subset of states,

the image, but a partition or equivalence relation on the states set. Roughly

speaking two different states are related by a transformation if they have

the same image. Through all the this work we have focused our attention

on the subset, image, part of transformations and the possibility obtaining

them all. In this chapter we aim to study automata that can realize every

possible partition with a transformation. We name these automata totally
compatible and prove a characterization for them. This characterization is

stated in Theorem 5.1. Again, transformations of defect 1 are the key for

characterizing totally compatible automata. Then we proceed to describe a

simple algorithm with polynomial time complexity to recognize them. At the

end we prove that there is a connection between some kind of these automata

and completely reachable ones.

Publications, seminars and conferences

The main results of this work were published in the following papers:

• Eugenija A. Bondar, David Casas, and Mikhail V. Volkov. Com-

pletely reachable automata: An interplay between automata, graphs,

and trees. International Journal of Foundations of Computer Science,
34(06):655– 690, July 2023.

• David Casas and Mikhail V. Volkov. Binary completely reachable

automata. In LATIN 2022: Theoretical Informatics, pages 345–358.

Springer International Publishing, 2022.

• David Casas. A Characterization of Totally Compatible Automata.

Journal of Automata, Languages and Combinatorics, 27(4), pages 249-

257, 2022.

• David Casas and Mikhail V. Volkov. Don’s conjecture for binary com-

pletely reachable automata: an approach and its limitations. To appear

in Journal of Automata, Languages and Combinatorics, 29(2-4) 2024.

A preprint can be found in: https://arxiv.org/abs/2311.00077.

• David Casas. Completely reachable almost group automata. Ural
Mathematical Journal, Vol. 10, no.2, pp.37-48, 2024.

14

Most of the work presented in this dissertation was made together with

Mikhail V. Volkov. The joint contributions are indistinguishable in the ma-

jority of this dissertation. But the author would like to be more specific in

the case of the work presented in Chapter 1. This definitions and results

presented in this chapter are developed with more detail in [8]. In this case

it is due to attribute the theoretic work to Eugenija A. Bondar and Mikhail

V. Volkov, and the discussion presented in Subsection 1.2 to the author.

Additionally, some of the results of this work were reported in the follow-

ing events:

• Seminars of Algebraic Systems. Institute of Natural Sciences and Math-

ematics. Ural Federal University. Yekaterinburg, Russia.

• International (52-th) Youth School-Conference of Modern problems in

mathematics and its applications, Yekaterinburg, Russia, 2021.

• LATIN 2022: The 15th Latin American Theoretical Informatics Sym-

posium, Guanajuato, Mexico, 2022.

Acknowledgments

There is no sizable work done due to the efforts of a single person, despite

what the title page says. I want to thank Professor Mikhail V. Volkov for

his guidance, patience and teachings. His remarks in several aspects of this

work made it much better than it could be; his wise suggestions and teachings

helped the results here presented to see the light; and his, overall, generosity

allowed this endeavor to bear fruit. I would also like to thank the different

people that I met here and made this experience more pleasant or interesting.

Также я хотел бы поблагодарить Надежду Николаевну. Ее добросо-

вестная работа и усердие очень помогли в нескольких, возможно, недо-

оцененных, но важных случаях.

Le doy mil gracias a la gente que desde lejos me acompañó y apoyó

con sus palabras de ánimo. Le agradezco a mi familia padre, hermano y

especialmente a mi madre, porque aportaron, entre otras muchas cosas, la

tranquilidad y confianza en mı́ mismo que tantas veces faltaron durante este

proceso. A los amigos que con su alegŕıa y compañ́ıa hicieron más calidas las

fŕıas jornadas. Especialmente a Jenny por su generosidad y siempre oportu-

nas palabras. A Angélica que estuvo presente en varios momentos, brindó

su desinteresada ayuda en ocasiones dif́ıciles y sobre todo hizo mi vida un

poco más interesante. A todas las diferentes personas que creyeron en mı́ y

ayudaron en diferentes formas que ni ellos mismos son conscientes.

15

Finally, I want to thank UrFU and its staff for the good work and wel-

coming assistance they have shown these years. I also thank the Ministry of

Science and Higher Education of the Russian Federation for the grant that

allowed me to initiate and finish my studies.

16

Chapter 1

Basics

1.1 Automata and graphs

In this section we give the formal definitions and results needed to understand

this work. First let us introduce our main protagonists:

Definition 1.1. A Deterministic Finite Automaton (DFA), or simply an

automaton, is a triple A = 〈Q,Σ, δ〉, where:

• Q is a finite set, called the set of states,

• Σ is a finite set of letters. The alphabet,

• and δ : Q→ Σ, is the transition function.

For each letter of the automaton’s alphabet a ∈ Σ we can define the

function δa : Q → Q where δa(q) := δ(q, a), whence each letter can be

considered individually as a function of Q to itself or a transformation over Q.

This allows us to not consider the whole transition function but the functions

over Q defined by each of the letters. Thus we can use the following notation:

for every q ∈ Q and a ∈ Σ we will denote δ(q, a) := q · a. According to this,

an automaton can be specified just with its set of states and the action of

each letter in this set; that is why from now on we will define automata as

pairs of the state set and the alphabet, i.e., we write A = 〈Q,Σ〉.
Before we proceed with further definitions related with automata, let us

introduce some vocabulary of graph theory and some notation related to it.

A directed graph Γ is a pair (V,E), where V is a finite set the vertex set
and E ⊆ V × V is the set of directed edges. Since in this dissertation we

consider only directed graphs, from now we omit the word “directed”. For

reference, the first and second components of an edge are called the source

17

and target respectively. More often than not we consider labelled graphs.

A labelling of a graph Γ = (V,E) is a function λ : L → E where L is a

finite set. We denote an edge (s, t) ∈ E labelled with w ∈ L as s
w−→ t.

This definition emulates the existence of “parallel” edges, in the sense of one

edge with multiple labels represents different edges with the same source and

target. A path of a graph is a set of edges e1, e2, . . . , em, with m ≥ 1, such

that for every 1 ≤ i < m, the target of ei is the same as the source of ei+1.

Vertices p, q ∈ V (Γ) are strongly connected if there is a path from p to q
and from q to p. We consider each vertex as strongly connected with itself.

A strongly connected component of a graph is a maximal subset of vertices

such that every vertex is strongly connected to each other. At the same time

a graph is called strongly connected if there is only one strongly connected

component,i.e., the vertex set.

An automaton 〈Q,Σ〉 can be represented as a labelled graph, where the

vertex set is Q and for each state p ∈ Q and letter a ∈ Σ, there is a labelled

edge p
a−→ p · a. This is the underlying graph of the automaton.

To a better understanding of the previous definitions and further discus-

sion a graphical representation is of great help. With this in mind consider

the following automaton: C4 = ({1, 2, 3, 4}, {a, b}), the action of the letters

are defined in the following way:

q 1 2 3 4

q · a 1 2 3 1
,

q 1 2 3 4

q · b 2 3 4 1
.

The underlying graph of this automaton is represented in the Figure 1.1.

The elements of Σ are called input letters and finite sequences of letters

are called words over Σ. The empty sequence, without any letter, is also

treated as a word, called the empty word and denoted by ε. Let Σ∗ be the

set of all words of the alphabet Σ. The action of a word w ∈ Σ∗ over every

state q ∈ Q can be defined recursively: q · ε := q; and if w = va with v ∈ Σ∗

and a ∈ Σ, then q · w := (q · v) · a. Note that any word w ∈ Σ∗ produces a

transformation over the set of states, this is, the consecutive composition of

the transformations defined by each letter of w.

The set T (A) of all transformations induced this way is called the tran-
sition monoid of A; this is the submonoid generated by the transformations

q 7→ q · a, with a ∈ Σ, in the monoid of all transformations of Q. An au-

tomaton B = 〈Q,Θ〉 with the same state set as A is said to be syntactically
equivalent to A if T (B) = T (A).

18

1 2

34

a, b

a

a

a

b

b

b

Figure 1.1: Example of the graph of the automaton C4

The action of words can be applied to subsets of states: if P ⊆ Q and

w ∈ Σ∗, then P · w := {p · w | for every p ∈ P}.
Given an automatonA = 〈Q,Σ〉 and a word w ∈ Σ∗, the image of w is the

set Q ·w and the excluded set of w, denoted by excl(w), is the complement

of the image, i.e., Q\Q ·w. The number |excl(w)| is called the defect of w. If

a word w has defect 1, its excluded set consists of a unique state called the

excluded state for w. Further, for any w ∈ Σ∗, the set

{p ∈ Q | p = q1 ·w = q2 ·w for some q1 6= q2}

is called the duplicate set of w and is denoted by dupl(w). If w has defect 1,

its duplicate set consists of an unique state called the duplicate state for w.

We identify singleton sets with their elements, and therefore, for a word w
of defect 1, excl(w) and dupl(w) stand for its excluded and, resp., duplicate

states.

For any v ∈ Σ∗, q ∈ Q, let q · v−1 := {p ∈ Q | p · v = q}. Then for all

u, v ∈ Σ∗,

excl(uv) = {q ∈ Q | q · v−1 ⊆ excl(u)}, (1.1)

dupl(uv) = {q ∈ Q | q · v−1 ∩ dupl(u) 6= ∅ or |q · v−1\excl(u)| ≥ 2}. (1.2)

The equalities (1.1) and (1.2) become clear as soon as the definitions of

excl() and dupl() are deciphered. Figure 1.2 illustrates the meaning of these

equalities.

Given a transformation or, which is the same, a word w over Σ, consider

the following relation:

ker(w) := {(p, q) ∈ Q×Q | p · w = q · w}.

19

u v

excl(u)
excl(uv)

dupl(uv)

Figure 1.2: An illustration of equalities (1.1) and (1.2)

It is easy to see that this is an equivalence relation, which is called the

kernel of the transformation w. The equivalence relation that produces an

unique class (all the states are related) and the one that produces one class

for each state (each element is related just with itself) are called the trivial

equivalence relations. Additionally, for the case of words of defect 1 we know

that exactly two states must have the same image; we will call this pair of

states the collapsed set of the word, denoted by coll().
Some transformations over a set of states Q can be bijective, or what

is called permutations. Thanks to this we can use some terminology of the

theory of permutation groups. Recall that the set of all the bijective transfor-

mations of a finite set Q to itself is denoted by SQ, also called the symmetric
group of Q. Let G ⊂ SQ be a group of permutations. This group is said to

be transitive if for every pair of states q, p ∈ Q there is a permutation g ∈ G
such that p · g = q. A non-empty subset B ⊆ Q is said to be a block of

the group if and only if for every g ∈ G either B · g = B or B · g ∩ B = ∅.
The singletons and Q itself are, always, blocks, these are called trivial. A

permutation group G ⊆ SQ is said to be primitive if it is transitive and

the only blocks are the trivial ones; otherwise the group is said to be im-
primitive. When we talk about a block of imprimitivity in the present work,

unless stated the contrary, it will always be non-trivial. If a transitive group

G ⊂ SQ has a block of imprimitivity B ⊆ Q, the images of B by G are also

blocks of imprimitivity and form a partition of Q. This collection of sets, the

partition, is called a system of imprimitivity of the group G.

20

The following definition is illustrative and useful in key parts of our work1.

Definition 1.2. Let G be an arbitrary group and X be a subset of G. The

(right) Cayley digraph of G with respect to X is a graph with G as its vertex

set and

{(g, gx) | g ∈ G, x ∈ X}
as its edge set. It is denoted by Cay(G,X),

Additionally to the definition the next property of Cayley digraphs of

finite groups is folklore; this property is useful for the purposes of Chapters

2 and 3.

Lemma 1.1. Let G be a finite group, X a subset of G, and H the subgroup of
G generated by X. The strongly connected components of the Cayley digraph
Cay(G,X) have the left cosets gH, g ∈ G, as their vertex sets, and each
strongly connected component is isomorphic to Cay(H,X).

Although synchronization of automata is not the main concern of this

work, it is, indeed, the context from which all this work comes from; therefore

it is useful to have at hand some of the formal definitions from this subject.

Definition 1.3. Let A = 〈Q,Σ〉 be an automaton. If there is a word w ∈ Σ∗

such that for every pair of states p, q ∈ Q it happens p · w = q · w, then it is

said that the automaton A is synchronizable and that w is a synchronizing
or a reset word of A.

Definition 1.4. Let A = 〈Q,Σ〉 be an automaton and P(Q) the set of all

the subsets of Q. Define P(A) := 〈P(Q),Σ〉 the power automaton of A,

where for every a ∈ Σ and P ∈ P(Q)

P · a := {p · a | a ∈ P}.

1.2 Completely reachable automata and bounds

of reachability

Let A = 〈Q,Σ〉 be an automaton, a non-empty subset of states P ⊆ Q is

said to be reachable if there is a word (not necessarily unique) wP ∈ Σ∗ such

that its image is P , i.e., Q · wP = P . An automaton is called completely
reachable if every non-empty subset of states is reachable. Note that if an

1In fact, our definition is the semigroup version of the notion of a Cayley digraph, but

this makes no difference since in a finite group, every subsemigroup is a subgroup.

21

automaton is completely reachable, then it is synchronizable; but the other

way around is not necessarily true.

Recall the series of automata proposed by Černy (see Subsection); in [28]

Maslennikova proved that every Černý automaton is completely reachable,

adding another nice property to these series of automata.

It is natural to relate reachability with synchronization since the former

is a specialization of the latter, hence statements about reachability can be

used for synchronization, as we will see later.

Once defined the concept of complete reachability, the first question to

comes to mind is: given an automaton, how to decide whether or not it is
completely reachable? That is the subject of our next discussion.

Rystsov graphs

Let A = 〈Q,Σ〉 be an automaton. In order for A to be completely reachable,

there must be words that reach the subsets of states of size one minus than

the whole state set, i.e., words of defect 1. If w ∈ Σ∗ is a word of defect 1,

recall the definitions of excl(w), as the single state that does not have pre-

image; and of dupl(w) as the unique state with two pre-images. Note that

for any word w its defect does not decrease when letters are concatenated to

the word. From this fact we can conclude that there must be at least one

letter of defect 1 in Σ. For A define Γ1(A) as the graph with vertex set Q
and the edge set:

E : = {(excl(w), dupl(w)) | w is a 1-defect word}.

For the edge (excl(w), dupl(w)) ∈ E we say that the word w enforces it. This

graph is what Rystsov used in [33] as the main tool for his results. We call

these together with the extensions presented in the next subsection Rystsov
graphs. Recall that a graph is strongly connected (or simply connected) if for

any pair of vertices there is a path from one to the other and way back.

These are the necessary definitions to state the following theorem:

Theorem 1.1 ([9]). Let A = 〈Q,Σ〉 be an automaton, if Γ1(A) is strongly
connected then A is completely reachable.

The main idea of the proof is to work by induction, not in the size of the

subsets but in size of their complements. Let P ⊆ Q be a subset of states,

the induction goes on k = |Q| − |P |. The base case, k = 1, comes from the

fact that to Γ1(A) being strongly connected, thus every vertex, or state, must

have an outgoing edge, what makes any set with one state absent reachable.

After that, suppose the induction hypothesis for some k ≥ 1, if P is such

22

that |Q| − |P | = k + 1, the condition of strong connectivity also allows to

imply an edge going from outside to inside P . This makes possible to reach

P from a subset bigger by one, such that its difference has size exactly k, the

induction hypothesis makes this bigger subset reachable and hence P too.

It is natural to question if this condition is also necessary. This is not the

case. Figure 1.3 shows the graph of the automaton E3, and the graph Γ1(E3).
It can be directly calculated that E3 is completely reachable meanwhile Γ1(E3)
is not strongly connected.

3

1 2a[2], a[3]

a[1]

a[1,2]

a[1]
a[2], a[3]

a[1,2]

a[1], a[2], a[1,2]

a[3]
3

1 2

Figure 1.3: The automaton E3 and its graph Γ1(E3).

The proof of Theorem 1.1 suggests why the converse of the statement is

false. Since all the edges represent words of defect 1, in reality what was

proven in the theorem is that if the graph Γ1(A) is strongly connected every

subset can be reached by a word made of certain number of subwords of

defect 1; something that may not be always true. Nevertheless it would be

natural to conjecture that if this is the case, any subset is reachable by a

product of words of defect 1, then the graph of the automaton is strongly

connected. This conjecture was proven false in [21]. The counter example

is the automaton P4 with six states ({1, 2, 3, 4, 5, 6}) and six letters 1-defect

({a, b, c, d, e, f}) described in Table 1.1.

There it was proven that this automaton is completely reachable and its

graph Γ1(P4) is not strongly connected.

With this, the question that is left is: under which conditions is the graph
Γ1(A) of an automaton strongly connected? An automaton A = 〈Q,Σ〉
is perfectly reachable if each subset with k > 0 states is reachable in A
by a product of |Q| − k words of defect 1. The following characterization

of perfectly reachable automata, stated in [12], answers our question. The

Rystsov graph Γ1(A) is strongly connected if and only if the automaton is

perfectly reachable. The proof comes from a combination of two results in

23

a b c d e f

1 2 4 1 1 1 1

2 3 6 2 2 2 5

3 4 5 5 3 3 3

4 5 1 6 6 4 4

5 6 3 4 5 6 2

6 2 3 4 5 6 2

Table 1.1: Tabular description of P4.

6 5

4

32

1

Figure 1.4: The graph Γ1(P4)

the literature.

Proposition 1.1. An automaton is perfectly reachable if and only if its
Rystsov graph is strongly connected.

Proof. The proof of [9, Theorem 1] shows that an automaton A is perfectly

reachable whenever the graph Γ1(A) is strongly connected. The converse

follows from [21, Theorem 20].

A sufficient and necessary condition

The last section presented a construction, the Rystsov graph Γ1(), together

with a condition, strong connectivity, which together imply complete reach-

ability. It is desirable to have a condition that unequivocally indicates that

an automaton is complete reachable. This condition was presented in [10].

There the construction of the graph Γ was extended recursively and from

this extension a condition sufficient and necessary for complete reachability

was proved.

Now let us proceed to describe the process to extend the construction of

the graph. Given a automaton A = 〈Q,Σ〉 first construct the graph Γ1(A).

24

Then test if this graph is strongly connected; in case it is, set Γ(A) = Γ1(A)
and finish with a SUCCESS. In other case verify the size of the strongly

connected components. If all are singletons, then also set Γ(A) = Γ1(A), but

in this case finish with FAILURE. In other case continue with the process.

The construction of the total graph goes recursively depending on the

previously constructed graphs. For k ≥ 1 the vertices of the graph Γk+1(A),
if it makes sense to construct it, are the strongly connected components of

Γk(A). We denote the different vertex sets by Qk. That is, for k = 2, the

vertices in Q2 are subsets of Q; and if we can continue, then the vertices of

Q3 are collections of subsets of Q and so on. This forms a tree structure

where a vertex C in Γk(A) is the child of a vertex D in Γk+1(A) if C ∈ D.

From this observation we define the foliage of a vertex as follows: for every

C ∈ Q2 its foliage, denoted by leaf(C), is the set of states itself; and for

k ≥ 2, the foliage of C ∈ Qk+1 is

leaf(C) :=
⋃

D∈C

leaf(D).

From this recursive definition we can see that the foliage of a vertex in any

level is a subset of states of the automaton.

Now let us continue with the recursive construction of the graph Γ(A).
Suppose that the graph Γk(A) with k > 1 has been constructed. If this

graph is strongly connected, then finish the process with a SUCCESS and

set Γ(A) = Γk(A). In other case find its strongly connected components.

These will be the vertices in Qk+1. But before this we need to verify the

size of each of the foliages of the new vertices. If all are smaller than k + 1,

then, also, set Γ(A) = Γk(A) and finish with FAILURE. If this is not the

case, there is at least one strongly connected component with a foliage of size

larger than k + 1, we continue the construction of Γk+1(A) with the vertex

set Qk+1. For k ≥ 1 define Wk(A) as the set of all words in Σ∗ with defect

k. The edges will be those in Ek connecting vertices in Qk+1 together with

the following set:

Ek+1 := {C w−→ D ∈ Qk+1 ×Qk+1 | C 6= D, there is a w ∈ Wk+1(A),

excl(w) ⊆ leaf(C), dupl(w) ∩ leaf(D) 6= ∅}.

In this case we extend the previous terms and say that the word w enforces
the edge C

w−→ D. In this point an example is due. Consider the automaton

25

E5 with the set state {1, 2, 3, 4, 5} and the following transition table:

a[1] a[2] a[3] a[4] a[5] a[1,2] a[4,5] a[1,3]
1 2 1 1 1 1 3 1 4
2 2 1 1 2 2 3 1 4
3 3 3 2 3 3 3 2 4
4 4 4 4 5 4 4 3 5
5 5 4 5 5 4 5 3 5

Figure 1.5 shows the iterative construction of the graph Γ(E5).
For an automaton A with n states and a graph Γk(A) not strongly con-

nected the maximum size of any foliage is n−1 what implies that the process

will stop, either in SUCCESS or FAILURE, in at most n− 1 steps.

Now it is possible to state the two theorems that characterize completely

reachable automata:

Theorem 1.2 ([10]). If an automaton A = 〈Q,Σ〉 is such that the graph
Γ(A) is strongly connected and Γ(A) = Γk(A), then A is completely reach-
able; more precisely, for every non-empty subset P ⊆ Q, there is a product
w of words of defect at most k such that P = Q · w.

The proof of Theorem 1.2 uses the same idea that in Theorem 1.1: in-

duction in the size of the difference Q \P , for any non-empty subset P ⊆ Q.

The difference here is that the useful edge does not necessarily come from an

excluded state.

This theorem is an extension of the sufficient condition presented in The-

orem 1.1. It tell us that if the process of constructing Γ(A) ends with SUC-

CESS then the automaton is completely reachable. Now it is time to see

what happens in the case of FAILURE.

Theorem 1.3 ([10]). If an automaton A = 〈Q,Σ〉 is such that the graph
Γ(A) is not strongly connected, then A is not completely reachable; more
precisely, if Γ(A) = Γk(A) and it is not strongly connected, then some subset
in Q with at least |Q| − k states is not reachable in A.

If a graph fails to be strongly connected then in it there is at least one

strongly connected component without entering edges from outside (a min-

imal strongly connected component). Using the hypothesis that this is the

case for A let D be the foliage of one minimal strongly connected component

of Γ(A) the proof considers P = Q\D. It shows that this set has the proper

size (at least |Q| − k) and by contradiction shows that P is unreachable.

The combination of Theorem 1.2 and Theorem 1.3 allows to state:

26

2 1 3 4 5

Γ1(E5)

3

{1, 2}

{4, 5}

Γ2(E5)

{1, 2, 3} {4, 5}

Γ3(E5)

Figure 1.5: The construction of graph Γ(E5)

Theorem 1.4. An automaton A is completely reachable if and only if the
graph Γ(A) is strongly connected.

This theorem gives a theoretical condition when considering completely

reachable automata. But Theorems 1.2 and 1.3 give more information and

open more considerations than their combination. The first question is if

their strict converses are true. For Theorem 1.2 this means to know if having

a completely reachable automaton such that any subset of states can be

reached with words of defect at most k implies that the graph Γk is strongly

connected. We know from the automaton P4 given in [21] that this is not the

case for k = 1, but for bigger values the question is open. In the other case,

for Theorem 1.3 it is known a series of automata with n > 2 states such that

there is a not reachable subset of size n− 1 and the construction of Γ takes

n− 1 steps.

Bondar and Volkov in [10] show two series of automata En,k and E ′n,kwith

n states such that for both the construction of their respective graphs Γ takes

k steps and with one the process ends in SUCCESS and with the other in

27

FAILURE. For both series the alphabet grows with n and k, it is still open

if the same thing can be done with a series of automata with fixed alphabet

size.

1.3 Construction of Rystsov graphs

Thanks to Ferens and Szyku la’s results in [17] it is possible to decide whether

a given automaton is completely reachable in polynomial time. Their algo-

rithm does not make use of Rystsov graphs. Nevertheless it is natural to

ask about the practicality of the construction of these graphs. Not only for

theoretical purposes, but also because these graphs can provide useful infor-

mation about the length of the words reaching the corresponding subsets.

For instance, the proof of Theorem 1.2 make use of the set of words that

enforce the edges present in Rystsov graphs. Also, in Chapter 3 we show

how knowing a subset of enforcing words help us to bound the length of the

reaching words in a specific case.

From the rest of this section we consider an arbitrary but fixed automaton

A = 〈Q,Σ〉. Recall that Wk(A), for k ≥ 1, is the set of all the words of defect

k of A. In principle the construction of Γk(A) requires to consider all words

in Wk(A). This presents a challenge, since for k ≥ 1 there are 2

{

n

n− k

}

(n− k)!

possible transformations of defect k from a set of n > 1 elements to itself.

This implies that to consider the whole set Wk(A) could have an exponential

complexity. Even the seemingly simpler problem of constructing Γ1(A) by

this way is, at first sight, impractical.

As previously mentioned, Gonze and Jungers in [21] proposed an algo-

rithm such that given an arbitrary automaton A with n ≥ 1 states it con-

structs the graph Γ1(A) in O(n2) time. The key observation in their work

is that for two words w and v of defect 1 where excl(w) = excl(v) and

dupl(w) = dupl(v), if u is a word such that wu has defect 1, then vu also will

have defect 1 and moreover excl(wu) = excl(vu) and dupl(wu) = dupl(vu).
This allows to make a Breadth First Search in the set of the words of defect

1, knowing that once no new words are added then there will be no new

edges.

In this section we extend their idea with bigger defects.

2Where
{

n

i

}

is the Stirling number of second kind and it represents the number of ways

to partition a set of n elements in i non-empty sets.

28

The key is, instead of working with the words, we consider the excluded

and duplicate sets that this words have. For k ≥ 1 we define the following

set of pairs of subsets:

XDk(A) := {(X,D) | X = excl(w) and D = dupl(w) for some w ∈ Wk(A)}.

For the case of k = 1, for each edge in the graph Γ1(A) there is a unique

pair in XD1(A). In the case of k > 1 it is easy to calculate the edges in

Γk(A) from the pairs in XDk(A). A pair (X,D) defines an edge in Γk(A)
if there are C,D ∈ Qk−1 such that X ⊆ leaf(C) and D ∩ leaf(D) 6= ∅. We

shift from working with words, or transformations, to working with pairs of

subsets. Let us show a bound to the amount of pairs in XDk(A) given a

fixed k to see this is a significant change.

There are
(

n

k

)

possible sets of size k. This accounts for all the possible

subsets X. The subsets D must be contained in Q \ X, the latter of size

(n − k); besides that, its size ranges from 1 to min{k, n − k}. With this

considerations at hand we can deduce that

|XDk(A)| ≤
(

n

k

)

·
min{k,n−k}

∑

d=1

(

n− k

d

)

.

In order to give a more precise bound first consider the case when k ≥
n− k. The second factor of the product is equals to 2n−k− 1 < 2k. Thus the

bound is <
(

n

k

)

· 2k, which is a polynomial in n with exponent k. The case

when k ≤ n − k is more complicated. We will show by induction on k that

the second factor is less than
(

n

k

)

. In the case of k = 1:

(

n− 1

1

)

= n− 1 < n =

(

n

1

)

.

Now suppose that 1 < k < n− k, then

k
∑

d=1

(

n− k

d

)

=
k−1
∑

d=1

(

(n− 1)− (k − 1)

d

)

+

(

n− k

k

)

.

The addends of the first sum in the right member of the equality are obtained

by adding and subtracting 1 from the top argument n − k. Thus, applying

the induction hypothesis with n− 1 in the role of n we have that

k
∑

d=1

(

n− k

d

)

<

(

n− 1

k − 1

)

+

(

n− k

k

)

<

(

n− 1

k − 1

)

+

(

n− 1

k

)

=

(

n

k

)

.

29

We use the fact that binomial coefficient increments when so does its top

argument and Pascal’s rule. Hence we obtain that in this second case

|XDk(A)| ≤
(

n

k

)2

.

From the previous considerations we can state the following.

Lemma 1.2. For any automata A and any fixed k < n the cardinality of the
set XDk(A) is upper bounded by a polynomial in n of degree 2k.

Although we have successfully diminished the amount of objects to con-

sider, they are still linked to words of the automaton. We need an effective

form to calculate the words that produces the aforementioned pairs.

Recall that the prefix of a word w is any word v such that w = vu. This

is, a prefix is an initial sequence of letters. A subset of words L is prefix-closed
if for each w ∈ L, every prefix of w is also in L. For reasons that will be

apparent shortly ahead in this section our next step is to prove the existence,

for each k ≥ 1, of a prefix-closed set of words that generates all the pairs in

XDk(A).
For this it is necessary to ensure that for a fixed v the pair (excl(uv), dupl(uv))

does not depend on the particular prefix u. One can say this more explicitly

with the next lemma.

Lemma 1.3. For all words u, u′, v ∈ Σ∗ if

(excl(u), dupl(u)) = (excl(u′), dupl(u′)),

then
(excl(uv), dupl(uv)) = (excl(u′v), dupl(u′v)).

The previous lemma is a direct consequence of equalities (1.1) and (1.2)

in Section 1.1.

Let us fix a linear order≺ on the alphabet Σ, this order can be extended to

the shortlex order in Σ∗. For w, v ∈ Σ∗ it happens that w ≺ v if |w| < |v| or in

the case |w| = |v| then w = u aw′, v = u b v′ for some a, b ∈ Σ such that a ≺ b.
For us it is interesting that (Σ∗,≺) is a well-ordered set, every pair of words

can be compared, and this order respects concatenation to left and right, if

w ≺ w′ then uw v ≺ uw′ v for any u, v ∈ Σ∗. This order eases the definition

of our looked for prefix-closed set. For every pair (X,D) ∈ XDk(A) let

wX,D be the least shortlex word such that (X,D) = (excl(wX,D), dupl(wX,D)).
Moreover, for each k ≥ 1 let W k be the set of all wX,D words of corresponding

30

defect; for convenience W 0 contains only the empty word. Additionally we

define the subset

W≤k :=
k
⋃

ℓ=0

W ℓ.

Let us show this last set is prefix-closed.

Lemma 1.4. If u is a prefix of a word in W k and has defect ℓ ≤ k then
u ∈ W ℓ.

Proof. Suppose u is a prefix of a word w ∈ W k, the defect of u is ℓ ≤ k but

u /∈ W ℓ. There is a word u′ ∈ W ℓ such that

(excl(u), dupl(u)) = (excl(u′), dupl(u′))

and, by definition of the set W ℓ, this means u′ ≺ u. The fact that u is a

prefix of w of lesser defect implies there is a non-empty word v such that

w = uv. Thus, by Lemma 1.3

(excl(w), dupl(w)) = (excl(u′v), dupl(u′v)).

Recall that ≺ respects concatenation, in our case u′v ≺ uv = w. What

contradicts the definition of w being the least shortlex word who defines the

pair (excl(w), dupl(w)).

Note that the map (X,D) → wX,D is a bijection from XDk(A) to W k,

hence the cardinals of these sets are equal. This makes |W k| bounded by a

polynomial in n. We can conclude the same of |W≤k| since is the disjoint

finite union of sets with polynomially bounded cardinals. What we need now

is an efficient way to obtain W≤k.

A convenient scheme

Now it is time to describe a scheme to generate a prefix-closed set of

words with a certain property using Breadth-First Search (BFS). This scheme

is fairly known but we have not found a concrete reference to it, thus for

convenience we will describe it with some detail. We will work with lists of

words. These are finite collections whose elements are in a linear order or in

some way indexed; we use square brackets [] to distinguish them from sets.

Besides this distinction we make use of the two following operations. Given

two lists L = [α, β, . . .] and L′ = [α′, β ′, . . .] we denote the concatenation of

them by

L ⊔ L′ = [α, β, . . . , α′, β ′, . . .].

31

And for any list L and a word w, we append w to L by making w the last

element of L.

Given an linearly ordered alphabet Σ and a property R of the words in

Σ∗, let WR be the set of words that satisfy R. In the case WR is finite and

prefix-closed we can use the procedure described in Algorithm 1 to compute

WR.

Algorithm 1 Process to compute a list of words that satisfy a property R.

Input: An ordered alphabet Σ.

Output: The subset WR ⊆ Σ∗ of words that satisfy R.

1: if ε does not satisfy R then

2: W ← []
3: else

4: W ← [ε]
5: I ← []
6: for a ∈ Σ do

7: if a satisfies R then

8: append a to W
9: append a to I

10: while I 6= [] do

11: S ← []
12: for w ∈ I do

13: for a ∈ Σ do

14: if wa satisfies R then

15: append wa to S
16: W ←W ⊔ S
17: I ← S
18: return W

Proposition 1.2. Let Σ be a linearly ordered alphabet with m letters. Let R
be a property of the words in Σ such that:

1. to check whether an arbitrary word w ∈ Σ∗ satisfies R takes time ≤ T ;

2. the subset WR ⊆ Σ∗ of words satisfying R is prefix-closed and

3. |WR| ≤ N , for a positive integer N .

The procedure described in Algorithm 1 returns the list WR in ascending
shortlex order in time ≤ mNT .

32

Proof. First we prove that the set of words returned by Algorithm 1 is short-

lex ordered. The words produced on the ℓ round of the while are of the

form wa for w ∈ I and a ∈ Σ. The word w is produced in the round ℓ− 1.

An argument by induction on ℓ allows us to conclude that all the words ap-

pended to S have the same length, this is ℓ. Now, suppose that in a certain

round the words w,w′ ∈ I are processed, moreover suppose that w ≺ w′. For

any a ∈ Σ the word wa is processed before w′a, even more if a, b ∈ Σ and

a ≺ b, the word wa is processed before than wb. Altogether, this allows us

to conclude that the list W is constructed in shortlex order.

Second, we prove Algorithm 1 returns exactly WR. The fact that the

returned set W is a subset of WR comes from the definition of the algorithm.

We need to prove that if w ∈ WR then is added eventually to W . We do

it by induction on length |w|. If ε satisfies R we know it is included in W .

If not, at least one letter satisfies the property thus the words of length 1

are included. In the extreme case WR = [] the algorithm still returns the

correct set. Recall the condition of being prefix-closed, thus every w ∈ WR

with |w| > 1 has the form w′a with a ∈ Σ and w′ ∈ WR. By the induction

hypothesis w′ ∈ W , hence w is appended to W in the round |w|.
Finally, the procedure verifies whether or not wa satisfies R for every pair

(w, a) ∈ WR×Σ. There are ≤ Nm of these pairs. Additionally the procedure

takes ≤ T time to check each pair. Hence the time is ≤ mNT .

The computation of the graph

Once described the general scheme to compute a set of words we are set

to finally compute the Rystsov graph as it was our initial intention. First

order the alphabet by defect of the letters, with an arbitrary order among

letters with the same defect. In our case the property to use in Algorithm

1 is “w ∈ W≤k” or, in other words “ w is the least shortlex word such that
(excl(w), dupl(w)) ∈ XDℓ(A) for ℓ ≤ k.” Lemma 1.4 tells us W≤k is prefix

closed and we already know its cardinal is O(n2k) bounded.

What is left is to bound the time T needed check our property. In order

to make this we need to make some minor modifications and considerations

to the scheme. In our case the lists involved will not contain just mere

words but triplets of the form (w, excl(w), dupl(w)). An appropriate data

structure for storing the lists will helps us to reduce the time of look-up and

insertion tasks; in this case self-balancing binary search trees allow these

operations to be made in a logarithmic time with respect to the size of the

lists. Thus, the checking of the property will be made in two phases for each

(w, excl(w), dupl(w)) ∈ I and a ∈ Σ:

33

(A) Compute X := excl(wa) and D := dupl(wa) to form the triplet

(wa, excl(wa), dupl(wa)).

(B) Verify if the part (X,D) is not already present in a triplet in W or S.

For (A) we make use of equalities (1.1) and (1.2) in Subsection 1.1. They

just require to know excl(w), dupl(w) and q · a−1 for q ∈ Q; the first two

already given and the latter can be computed beforehand once, for every

a ∈ Σ, and adequately stored to be used when it is necessary. Recall that

the sizes of the excluded and duplicate sets are at most k ≤ n, then this

operation can be done in O(log (n)) time.

The execution of (B) requires a look-up in lists of size at most O(n2k),
and as we already established this can be done in logarithmic time of this

size, thus we still require O(log (n)). To verify (B) is enough to determine

if wa satisfies our looked for property. Proposition 1.2 and its proof tell us

the lists are created in ascending shortlex order. Thus, if the sets (X,D)
are not part of any triplet in W , then wa is the shortest word such that

(excl(wa), dupl(wa)) = (X,D). Furthermore, since the concatenation of the

letters is done in the linear order, if for two letters a, b ∈ Σ with a ≺ b it

happens that excl(wa) = excl(wb) and dupl(wa) = dupl(wb), the word wa
will be added to S before and wa ≺ wb as we wanted.

Now we have all the components to assemble the Rystsov graph Γk(A);
assuming we have the vertex set Qk−1. Once obtained the list W from Algo-

rithm 1, we extract the triplets (w,X,D) such that |X| = k. As we explained

before we can construct the edges of Γk(A) from these pairs. The process

of verifying that X ⊂ leaf(C) and D ∩ leaf(C ′) 6= ∅ for a pair of vertex

C,C ′ ∈ Qk−1 can be done in time O(log (n)) since k is fixed. And we need to

check this at most |XDk(A)| = O(n2k) times. Hence the computation of the

edges is done in time O(n2k log (n)). In conclusion we can summarize this as

follows.

Theorem 1.5. Let A be an automaton with n states and m input letters.
For each k < n, there exists an algorithm that builds the graph Γk(A) in time
O(mn2k log (n)).

34

Chapter 2

Binary completely reachable

automata

Here we study completely reachable automata with two input letters; for

brevity, we call these kind of automata binary. Our main results provide a

new characterization of binary completely reachable automata, and the char-

acterization leads to a quasilinear time algorithm for recognizing complete

reachability for binary automata. This chapter was based on [11].

The main question of this chapter is: under which conditions is a binary
automaton completely reachable? The rest of the section presents a series

of reductions showing that to answer this question, it suffices to analyse

automata of a specific form.

Let A = 〈Q, {a, b}〉 be a binary automaton with n > 1 states. If neither

a nor b has defect 1, no subset of size n − 1 is reachable in A. Therefore,

when looking for binary completely reachable automata, we must focus on

automata possessing a letter of defect 1. From now on we will denote the

necessary letter of defect 1 as a.
The image of every non-empty word over {a, b} is contained in either Q · a

or Q · b. If the defect of b is greater than or equal to 1, then at most two

subsets of size n − 1 are reachable (namely, Q · a and Q · b), whence A can

only be completely reachable provided that n = 2. The automaton A is then

nothing but the classical flip-flop, see Figure 2.1.

Having isolated this exception, we assume from now on that n ≥ 2 and

the letter b has defect 0, which means that b acts as a permutation of Q. The

following fact was first stated in [9] without proof.

Lemma 2.1. If A = 〈Q, {a, b}〉 is a completely reachable automaton in which
the letter b acts as a permutation of Q, then b acts as a cyclic permutation.

Proof. The argument will be by contradiction. Suppose that the cyclic de-

35

0 1

b

a

a b

Figure 2.1: The flip-flop automaton.

composition of the permutation b has k ≥ 2 cycles π1, . . . , πk. For each

1 ≤ i ≤ k denote by Qi the set of states moved by πi. Note that this collec-

tion of subsets is a partition of Q, because they are disjoint from each other

and Q =
⋃k

i=1Qi. Since a is of defect 1, there is exactly one Qi such that

Qi 6⊂ Q·a. The automaton A is completely reachable, therefore there is a

word w ∈ {a, b}∗ such that Q · w = Qi. The subset Qi 6= Q, thus |w| > 0.

Additionally, we will choose the word w to be the shortest that reaches Qi.

Now consider the rightmost letter of w. First suppose that w = w′b for some

w′ ∈ {a, b}∗. If m ≥ 1 is the least common multiple of the lengths of the

cycles π1, . . . , πk, then bm is the identity transformation. We use this fact

when applying bm−1 to the equality

Q · w = Q · w′b = Qi,

obtaining

Q · wbm−1 = Q · w′ = Qib
m−1.

Applying bm−1 to Qi lets the subset unchanged, thus we get Q · w′ = Qi.

The last equality contradicts our choice of w being the shortest to reach Qi,

therefore b can not be the last letter of w. Then, the last letter of w is a.
Note that Q · w ⊆ Q · a, what contradicts the fact that Qi 6⊆ Q · a. This

contradiction came from assuming the cyclic decomposition of b has more

than 1 cycle.

Taking Lemma 2.1 into account, we restrict our further considerations to

automata with n > 2 states and two input letters a and b such that a has

defect 1 and b acts as a cyclic permutation of Q. Without any loss, we will

additionally assume that these automata have the set Zn = {0, 1, . . . , n− 1}
of all residues modulo n as their state set and the action of b at any state

merely adds 1 modulo n. Let us also agree that whenever we deal with

elements of Zn the signs ⊕ and ⊖ mean addition and subtraction modulo n
and the signs + and − the usual addition and subtraction.

Further, we will assume that 0 = excl(a) as it does not matter from which

origin the cyclic count of the states start.

36

Since b is a permutation, for each k ∈ Zn, the transformations q 7→ q · bka
and q 7→ q · b generate the same submonoid in the monoid of all transforma-

tions of Zn as do the transformations q 7→ q · a and q 7→ q · b. This means

that if one treats the word bka as a new letter ak, say, one gets the automa-

ton Ak = 〈Zn, {ak, b}〉 that is syntactically equivalent to A. Therefore, A
is completely reachable if and only if so is Ak for some (and hence for all)

k. Hence we may choose k as we wish and study the automaton Ak for the

specified value of k instead of A.

What can we achieve using this? From (1.1) we have excl(bka) = excl(a) =
0. Further, let q1 6= q2 be such that q1 · a = q2 · a = dupl(a). Choosing

k = q1 (or k = q2), we get 0 · bka = dupl(a). Thus, we will assume that

0 · a = dupl(a).
Summarizing, we will consider automata 〈Zn, {a, b}〉 such that:

• the letter a has defect 1, excl(a) = 0, and 0 · a = dupl(a);

• q · b = q ⊕ 1 for each q ∈ Zn.

We call such automata standardized. For the purpose of complexity consid-

erations at the end of Sect. 2.3, observe that given a binary automaton A
in which one letter acts as a cyclic permutation while the other has defect

1, one can ‘standardize’ the automaton, that is, construct a standardized

automaton syntactically equivalent to A, in linear time with respect to the

size of A. However this change is not innocuous. In Chapter 3 we see how

in order to bound the length of the reaching words of proper subsets there is

a difference whether the automaton is standardized or not.

2.1 A necessary condition

Let 〈Zn, {a, b}〉 be a standardized automaton and w ∈ {a, b}∗. A subset

S ⊆ Zn is said to be w-invariant if S ·w ⊆ S.

Proposition 2.1. If 〈Zn, {a, b}〉 is a completely reachable standardized au-
tomaton, then no proper subgroup of (Zn,⊕) is a-invariant.

Proof. Arguing by contradiction, assume that H $ Zn is a subgroup such

that H · a ⊆ H . Let d stand for the index of the subgroup H in the group

(Zn,⊕). The set Zn is then partitioned into the d cosets

H0 = H, H1 = H · b = H ⊕ 1, . . . , Hd−1 = H · bd−1 = H ⊕ d− 1.

For i = 0, 1, . . . , d− 1, let Ti be the complement of the coset Hi in Zn. Then

we have Ti = ∪j 6=iHj and Ti · b = Ti⊕1(mod d) for each i = 0, 1, . . . , d− 1.

37

Since A is completely reachable, each subset Ti is reachable. Take a word

w of minimum length among words with the image equal to one of the subsets

T0, T1, . . . , Td−1. Write w as w = w′c for some letter c ∈ {a, b}.
If c = b, then for some i ∈ {0, 1, . . . , d− 1}, we have

Zn ·w′b = Ti = Ti−1 (mod d) · b.

Since bn acts as the identity mapping, applying the word bn−1 to this equality

yields Zn ·w′ = Ti−1(mod d) whence the image of w′ is also equal to one of the

subsets T0, T1, . . . , Td−1. This contradicts the choice of w.

Thus, c = a, whence the set Zn ·w is contained in Zn · a. The only Ti

that is contained in Zn · a is T0 because each Ti with i 6= 0 contains H0,

and H0 = H contains 0, the excluded state of a. Hence, Zn ·w = T0, that

is, Zn ·w′a = T0. For each state q ∈ Zn ·w′, we have q · a ∈ T0, and this

implies q ∈ T0 since H0, the complement of T0, is a-invariant. We see that

Zn ·w′ ⊆ T0 and the inclusion cannot be strict because T0 cannot be the image

of its proper subset. However, the equality Zn ·w′ = T0 again contradicts the

choice of w.

We will show that the condition of Proposition 2.1 is not only necessary

but also sufficient for complete reachability of a standardized automaton.

The proof of sufficiency will make use of Rystsov graphs. We describe the

structure of these graphs in the following sections.

2.2 Rystsov graph of a binary automaton

Recall that given a (not necessarily binary) automaton A = 〈Q,Σ〉, W1(A)
stand for the set of all words in Σ∗ that have defect 1 in A. Also recall the

digraph Γ1(A) with the vertex set Q and the edge set

E := {(excl(w), dupl(w)) | w ∈ W1(A)}.

The sufficient condition for complete reachability from [9] stated in Theorem

1.1 tell us that A is completely reachable if Γ1(A). In the same article was

shown that the condition of Theorem 1.1 is not necessary for complete reach-

ability, but it was conjectured that the condition might characterize binary

completely reachable automata. However, this conjecture has been refuted

in [8, Example 2] by exhibiting a binary completely reachable automaton with

12 states whose Rystsov graph is not strongly connected. Here we include a

similar example which we will use to illustrate some of our results.

Consider the standardized DFA E ′12 = 〈Z12, {a, b}〉 where the action of

the letter a is specified as follows:

38

q 0 1 2 3 4 5 6 7 8 9 10 11

q · a 10 1 2 8 4 5 10 9 3 7 6 11
.

(The automaton E ′12 only slightly differs from the automaton E12 used in [8,

Example 2], hence the notation.) The automaton E ′12 is shown in Figure 2.2,

in which we have replaced edges that should have been labeled a and b with

solid and, resp., dashed edges.

8 5

6

4

3
2

1

0

11

10

79

Figure 2.2: The automaton E ′12; solid and dashed edges show the action of a
and, resp., b

We postpone the description of the digraph Γ1(E ′12) and the proof that

the automaton E ′12 is completely reachable until we develop suitable tools

that make the description and the proof easy.

We start with a characterization of Rystsov graphs of standardized au-

tomata. Let A = 〈Zn, {a, b}〉 be such a automaton. It readily follows from

(1.1) and (1.2) that excl(w) · b = excl(wb) and dupl(w) · b = dupl(wb) for

every word w ∈ W1(A). Therefore, the edge set E of the digraph Γ1(A)
is closed under the translation (q, p) 7→ (q · b, p · b) = (q ⊕ 1, p ⊕ 1). As a

consequence, for any edge (q, p) ∈ E and any k ∈ Zn, the pair (q ⊕ k, p⊕ k)
also constitutes an edge in E.

Denote by D1(A) the set of ends of edges of Γ1(A) that start at 0, that

is,

D1(A) := {p ∈ Zn | 0→ p ∈ E}.
We call D1(A) the difference set of A. Our first observation shows how to

recover all edges of Γ1(A), knowing D1(A).

39

Lemma 2.2. Let A = 〈Zn, {a, b}〉 be a standardized automaton. A pair
(q, p) ∈ Zn × Zn forms an edge in the digraph Γ1(A) if and only if p ⊖ q ∈
D1(A).

Proof. If p⊖ q ∈ D1(A), the pair (0, p⊖ q) is an edge in E, and therefore, so

is the pair (0 ⊕ q, (p⊖ q)⊕ q) = (q, p). Conversely, if (q, p) is an edge in E,

then so is (q ⊕ (n⊖ q), p⊕ (n⊖ q)) = (0, p⊖ q), whence p⊖ q ∈ D1(A).

By Lemma 2.2, the presence or absence of an edge in Γ1(A) depends only

on the difference modulo n of two vertex numbers. This means that Γ1(A) is

a circulant digraph, that is, the Cayley digraph of the cyclic group (Zn,⊕)
with respect to some subset of Zn. Recall the notion of Cayley digraph
presented in Definition 1.2. Let H1(A) stand for the subgroup of the group

(Zn,⊕) generated by the difference set D1(A). Specializing Lemma 1.1 to

this case, we get the following description for Rystsov graphs of standardized

automata. Even more we get a sure way to determine beforehand if we will

get a strongly connected graph Γ1(A).

Proposition 2.2. Let A = 〈Zn, {a, b}〉 be a standardized automaton. The
digraph Γ1(A) is isomorphic to the Cayley digraph Cay(Zn, D1(A)). The
strongly connected components of Γ1(A) have the cosets of the subgroup H1(A)
as their vertex sets, and each strongly connected component is isomorphic to
the Cayley digraph Cay(H1(A), D1(A)). In particular, the digraph Γ1(A) is
strongly connected if and only if the set D1(A) generates (Zn,⊕) or, equiv-
alently, if and only if the greatest common divisor of D1(A) is coprime to
n.

Proposition 2.2 shows that structure of the Rystsov graph of a stan-

dardized automaton A crucially depends on its difference set D1(A). The

definition of the edge set of Γ1(A) describes D1(A) as the set of duplicate

states for all words w of defect 1 whose excluded state is 0, that is,

D1(A) = {dupl(w) | excl(w) = 0}.

Thus, understanding of difference sets amounts to a classification of transfor-

mations caused by words of defect 1. It is such a classification that is behind

the handy description of difference sets stated in Proposition 2.3. But before

this, we need the following lemma. It allows us find the exact transformations

that preserve the image of the letter a.

Lemma 2.3. Let A = 〈Zn, {a, b}〉 be a standardized automaton. Denote by
N the image of the letter a, i.e., N := Zn\{0}. Thus both the transformations
bra and a act as permutations on the set N .

40

Proof. If q · a = p for some q ∈ Zn and p ∈ N , then, clearly, (q⊖ r) · bra = p.
Hence the only state in N that has a preimage of size 2 under the actions of

both a and bra is

dupl(a) =

{

0 · a = r · a,
(n⊖ r) · bra = 0 · bra,

and in both cases 0 belongs to the preimage. Thus, the preimage of every

p ∈ N under both a and bra contains a unique state in N , which means that

both a and bra act on the set N as permutations.

Proposition 2.3. Let A = 〈Zn, {a, b}〉 be a standardized automaton. Let
r 6= 0 be such that r · a = dupl(a). Then

D1(A) = {dupl(a) · v | v ∈ {a, bra}∗}. (2.1)

Proof. Denote by N the image of the letter a. Lemma 2.3 states that every

word v ∈ {a, bra}∗ acts as a permutation on N . Then the word av has defect

1 and excl(av) = 0. Applying the equality (1.2) with a in the role of u, we

derive that dupl(av) = dupl(a) · v. Thus, denoting the right-hand side of

(2.1) by D, we see that every state in D is the duplicate state of some word

whose only excluded state is 0. This means that D1(A) ⊇ D.

To verify the converse inclusion, take an arbitrary state p ∈ D1(A) and

let w be a word of defect 1 such that excl(w) = 0 and dupl(w) = p. Since

excl(w) = 0, the word w ends with the letter a1. We prove that p lies in D by

induction on the number of occurrences of a in w. If a occurs in w once, then

w = bka for some k ∈ Zn. We have p = dupl(w) = dupl(bka) = dupl(a) ∈ D.

If a occurs in w at least twice, write w = w′bka where w′ ends with a. Then

the word w′ has defect 1 and excl(w′) = 0. As w′ has fewer occurrences of a,
the inductive assumption applies and yields dupl(w′) ∈ D. If dupl(w′) := p′,
we have p = p′ · bka. If we prove that k ∈ {0, r}, we are done since the

set D is both a-invariant and bra-invariant by its definition. Arguing by

contradiction, assume k /∈ {0, r}. Let ℓ = k · a; then k is the only state in

ℓa−1. Hence ℓa−1 = excl(w′bk), and the equality (1.1) (with u = w′bk and

v = a) shows that ℓ ∈ excl(w′bka) = excl(w). Clearly, ℓ 6= 0 as ℓ lies in the

image of a. Therefore the conclusion ℓ ∈ excl(w) contradicts the assumption

excl(w) = 0.

For an illustration, we apply (2.1) to compute the difference set for the

automaton E ′12 shown in Fig. 2.2. In E ′12, we have r = 6 and dupl(a) = 10.

1It could also happen that w = w′a(bn)i with i ≥ 1, w′a of defect 1 and dupl(w′a) = p.

But, since bn acts as the identity in Zn it is not worthy to consider this case.

41

Acting by a and b6a gives 10 · a = 6 and 10 · b6a = (10 ⊕ 6) · a = 4 · a = 4.

Thus, 4, 6 ∈ D1(E ′12). Acting by a or b6a at 4 and 6 does not produce

anything new: 4 · a = 4 and 4 · b6a = (4 ⊕ 6) · a = 10 · a = 6 while 6 · a = 10
and 6 · b6a = (6 ⊕ 6) · a = 0 · a = 10. We conclude that D1(E ′12) = {4, 6, 10}.
Since 2, the greatest common divisor of {4, 6, 10}, divides 12, we see that the

digraph Γ1(E ′12) is not strongly connected. The subgroup H1(E ′12) consists of

even residues modulo 12 and has index 2. Hence the digraph Γ1(E ′12) has two

strongly connected components whose vertex sets are {0, 2, 4, 6, 8, 10} and

{1, 3, 5, 7, 9, 11}, and for each q ∈ Z12, it has the edges (q, q ⊕ 4), (q, q ⊕ 6),
and (q, q ⊕ 10).

In fact, formula (2.1) leads to a straightforward algorithm that computes

the difference set of any standardized automaton A in time linear in n. This,

together with Proposition 2.2, gives an efficient way to compute the Rystsov

graph of A.

Let D0
1(A) = D1(A) ∪ {0}. It turns out that D0

1(A) is always a union of

cosets of a nontrivial subgroup.

Proposition 2.4. Let A = 〈Zn, {a, b}〉 be a standardized automaton. Let
r 6= 0 be such that r · a = dupl(a). Then the set D0

1(A) is a union of cosets
of the subgroup generated by r in the group H1(A).

Proof. It is easy to see that the claim is equivalent to the following implica-

tion: if d ∈ D0
1(A), then d⊕r ∈ D0

1(A). This clearly holds if d⊕r = 0. Thus,

assume that d ∈ D0
1(A) is such that d ⊕ r 6= 0. Then (d ⊕ r) · a ∈ D1(A).

Indeed, if d = 0, then (d ⊕ r) · a = r · a = dupl(a) ∈ D1(A). If d 6= 0, then

d ∈ D1(A), whence (d⊕r) · a = d · bra ∈ D1(A) as formula (2.1) ensures that

the set D1(A) is closed under the action of the word bra.
Thanks to Lemma 2.3 we know that a acts on the set N = Zn\{0} as a

permutation. Hence for some k, the word ak acts on N as the identity map.

Then d⊕ r = (d⊕ r) · ak = ((d⊕ r) · a) · ak−1 ∈ D1(A) since we have already

shown that (d⊕ r) · a ∈ D1(A) and formula (2.1) ensures that the set D1(A)
is a-invariant.

In our running example E ′12, r = 6 and the set D0
1(E ′12) = {0, 4, 6, 10} is

the union of the subgroup {0, 6} with its coset {4, 10} in the group H1(E ′12).
Let A = 〈Zn, {a, b}〉 be a standardized automaton. Proposition 2.4 shows

that then the set D0
1(A) is situated between the subgroup H1(A) and the

subgroup R generated by r 6= 0 such that r · a = dupl(a):

R ⊆ D0
1(A) ⊆ H1(A). (2.2)

42

Formula (2.1) implies that the difference set D1(A) is a-invariant, and so

is the set D0
1(A) since 0 · a = dupl(a) ∈ D1(A). By Proposition 2.1, if the

automaton A is completely reachable, then either H1(A) = Zn or H1(A) is

a proper subgroup and both inclusions in (2.2) are strict. Recall that by

Proposition 2.2 H1(A) = Zn if and only if the digraph Γ1(A) is strongly

connected. In the other case, n must be a product of at least three (not

necessarily distinct) prime numbers. Indeed, the subgroups of (Zn,⊕) or-

dered by inclusion are in a 1-1 correspondence to the divisors of n ordered

by division, and no product of only two primes can have two different proper

divisors d1 and d2 such that d1 divides d2. We thus arrive at the following

conclusion.

Corollary 2.1. A binary automaton A with n states where n is a product
of two prime numbers is completely reachable if and only if one of its letters
acts as a cyclic permutation of the state set, the other letter has defect 1, and
the digraph Γ1(A) is strongly connected.

Corollary 2.1 allows one to show that the number of states in a binary

completely reachable automata whose Rystsov graph is not strongly con-

nected is at least 12. (Thus, our examples of such automata (E12 from [8,

Example 2] and E ′12) are of minimum possible size.) Indeed, Corollary 2.1

excludes all sizes less than 12 except 8. If a standardized automaton A has

8 states and the digraph Γ1(A) is not strongly connected, then the group

H1(A) has size at most 4 and its subgroup R generated by the non-zero state

in dupl(a)a−1 has size at least 2. By Proposition 2.4 the set D0
1(A) is a union

of cosets of the subgroup R in the group H1(A), whence either D0(A) = R or

D0(A) = H1(A). In either case, we get a proper a-invariant subgroup, and

Proposition 2.1 implies that the automaton A is not completely reachable.

2.3 Subgroup sequences for standardized au-

tomata

As we previously stated, in [10, 8] Theorem 1.1 is generalized in the following

way. A sequence of digraphs Γ1(A), Γ2(A), . . . , Γk(A), . . . is assigned to an

arbitrary (not necessarily binary) automaton A, where Γ1(A) is the Rystsov

graph of A while the ‘higher level’ digraphs Γ2(A), . . . , Γk(A), . . . are defined

via words that have defect 2, . . . , k, . . . in A. The length of the sequence

is less than the number of states of A, and A is completely reachable if and

only if the final digraph in the sequence is strongly connected.

For the case when A is a standardized automaton, Proposition 2.2 shows

that the Rystsov graph Γ1(A) is completely determined by the difference set

43

D1(A) and the subgroup H1(A) that D1(A) generates. This suggests that for

binary automata, one may substitute the ‘higher level’ digraphs of [10, 8] by

suitably chosen ‘higher level’ difference sets and their generated subgroups.

Take a standardized automaton A = 〈Zn, {a, b}〉 and for each k > 1,

inductively define the set Dk(A) and the subgroup Hk(A):

Dk(A) = {p ∈ Zn | p ∈ dupl(w) for some w ∈ {a, b}∗
such that 0 ∈ excl(w) ⊆ Hk−1(A), |excl(w)| ≤ k}, (2.3)

Hk(A) is the subgroup of (Zn,⊕) generated by Dk(A).

Observe that if we let H0(A) = {0}, the definition (2.3) makes sense also for

k = 1 and leads to exactly the same D1(A) and H1(A) as defined in Sect. 2.2.

Using the definition (2.3), it is easy to prove by induction that Dk(A) ⊆
Dk+1(A) and Hk(A) ⊆ Hk+1(A) for all k.

Proposition 2.5. If A = 〈Zn, {a, b}〉 is a standardized automaton and
Hℓ(A) = Zn for some ℓ, then A is a completely reachable automaton.

Proof. AsA is fixed, we write Dk and Hk instead of Dk(A) and, resp., Hk(A).
Take any non-empty subset S ⊆ Zn. We prove that S is reachable in A

by induction on n− |S|. If n− |S| = 0, there is nothing to prove as S = Zn

is reachable via the empty word. Now let S be a proper subset of Zn. We

aim to find a subset T ⊆ Zn such that S = T · v for some word v ∈ {a, b}∗
and |T | > |S|. Since n− |T | < n− |S|, the induction assumption applies to

the subset T whence T = Zn ·u for some word u ∈ {a, b}∗. Then S = Zn ·uv
is reachable as required.

Thus, fix a non-empty subset S $ Zn. Since cosets of the trivial subgroup

H0 are singletons, S is a union of cosets of H0. On the other hand, since

Hℓ = Zn, the only coset of Hℓ strictly contains S, and so S is not a union of

cosets of Hℓ. Now choose k ≥ 1 to be the maximal number for which S is a

union of cosets of the subgroup Hk−1. The subgroup Hk already has a coset,

say, Hk ⊕ t being neither contained in S nor disjoint with S; in other words,

∅ 6= S ∩ (Hk ⊕ t) $ Hk ⊕ t.
By Lemma 1.1, the coset Hk ⊕ t serves as the vertex set of a strongly

connected component of the Cayley digraph Cay(Zn, Dk). Therefore, some

edge of Cay(Zn, Dk) connects (Hk ⊕ t) \ S with S ∩ (Hk ⊕ t) in this strongly

connected component, that is, the source q of this edge lies in (Hk ⊕ t) \ S
while its target p belongs to S∩(Hk⊕ t). Figure 2.3 illustrates this situation,

the shaded area represents the subset S.

Let p′ = p⊖ q; then p′ ∈ Dk by the definition of the Cayley digraph. By

(2.3) there exists a word w ∈ {a, b}∗ such that p′ ∈ dupl(w) and excl(w) ⊆

44

Hk Hk + 1 . . . Hk + t . . .

S

p

q

Figure 2.3: The position of the subset S (shaded), and the edge q → p
relative to the cosets of Hk.

Hk−1. Then

p = p′ ⊕ q = p′ · bq ∈ dupl(w) · bq = dupl(wbq)

and

excl(wbq) = excl(w) · bq = excl(w)⊕ q ⊆ Hk−1 ⊕ q.

From p ∈ dupl(wbq) we conclude that there exist p1, p2 ∈ Zn such that

p = p1 ·wbq = p2 ·wbq. Since S is a union of cosets of the subgroup Hk−1, the

fact that q /∈ S implies that the whole coset Hk−1⊕ q is disjoint with S, and

the inclusion excl(wbq) ⊆ Hk−1 ⊕ q ensures that S is disjoint with excl(wbq).
A representation of this situation can be seen in Figure 2.4. Therefore, for

every s ∈ S \ {p}, there exists a state s′ ∈ Zn such that s′ ·wbq = s. Now

letting T = {p1, p2} ∪
{

s′ | s ∈ S\{p}
}

, we conclude that S = T ·wbq and

|T | = |S|+ 1.

For an illustration, return one last time to the automaton E ′12 shown in

Figure 2.2. We have seen that the subgroup H1(E ′12) consists of even residues

modulo 12. Inspecting the word ab3a gives excl(ab3a) = {0, 8} ⊆ H1(E ′12) and

1 ∈ dupl(ab3a), whence 1 ∈ D2(E ′12). Therefore the subgroup H2(E ′12) gener-

ated by D2(E ′12) is equal to Z12, and E ′12 is a completely reachable automaton

by Proposition 2.5.

45

H
k
−
1

. . .

H
k
−
1
⊕
q

. . .

S

p

q

p′

excl(w)

w

w
b q

Figure 2.4: The position of the subset S (shaded) with respect to the cosets

of Hk−1 which are shown as triangles.

To illustrate the next level of the construction (2.3), consider the stan-

dardized automaton E48 = 〈Z48, {a, b}〉 shown in Figure 2.5. We have re-

placed edges that should have been labeled a and b with solid and, resp.,

dashed edges and omitted all loops to lighten the picture. The action of a
in E48 is defined by 0 · a = 24 · a = 18, 13 · a = 14, 14 · a = 13, 18 · a = 24,

30 · a = 32, 32 · a = 30, and k · a = k for all other k ∈ Z48.

One can calculate that D1(E48) = {18, 24, 42}whence the subgroup H1(E48)
consists of all residues divisible by 6. Computing D2(E48), one sees that this

set consists of even residues and contains 2 (due to the word ab32a that has

excl(ab32a) = {0, 30} ⊆ H1(E48) and dupl(ab32a) = {2, 18}). Hence the sub-

group H2(E48) consists of all even residues. Finally, the word ab24ab12ab8

has {0, 8, 20} ⊆ H1(E48) as its excluded set while its duplicate set contains

13. Hence 13 ∈ D3(E48) and the subgroup H3(E48) coincides with Z48. We

conclude that the automaton E48 is completely reachable by Proposition 2.5.

As mentioned, the subgroups of (Zn,⊕) ordered by inclusion correspond

to the divisors of n ordered by division. Hence, for any standardized automa-

ton A with n states the number of different subgroups of the form Hk(A)
is O(logn). Therefore, if the subgroup sequence H0(A) ⊆ H1(A) ⊆ · · · ⊆
Hk(A) ⊆ . . . strictly grows at each step, then it reaches Zn after at most

O(logn) steps, and by Proposition 2.5 A is a completely reachable automa-

ton. What happens if the sequence stabilizes earlier? Our next result answers

this question.

46

2

4

6

8
101214

16

18

20

22

24

26

28

30

32
34 36 38

40

42

44

46

1

3

5

7

9
1113

15

17

19

21

23

25

27

29

31

33
35 37

39

41

43

45

47

0

Figure 2.5: The automaton E48 = 〈Z48, {a, b}〉 with H2(E48) 6= Z48. Solid and

dashed edges show the action of a and, resp., b; loops are not shown

Proposition 2.6. If for a standardized automaton A = 〈Zn, {a, b}〉, there
exists ℓ such that Hℓ(A) = Hℓ+1(A) $ Zn, then A is not completely reachable.

Proof. As in the proof of Proposition 2.5, we use Dk and Hk instead of Dk(A)
and, resp., Hk(A) in our arguments.

It suffices to prove the following claim:

Claim: the equality Hℓ = Hℓ+1 implies that the subgroup Hℓ is a-invariant.
Indeed, since Hℓ $ Zn, we get a proper a-invariant subgroup, and Propo-

sition 2.1 then shows that A is not completely reachable.

Technically, it is more convenient to show that if Hℓ = Hℓ+1, then Hk · a ⊆
Hℓ for every k = 0, 1, . . . , ℓ. We induct on k. The base k = 0 is clear since

H0 = {0} and 0 · a = dupl(a) ∈ D1 ⊆ H1 ⊆ Hℓ.

Let k < ℓ and assume Hk · a ⊆ Hℓ; we aim to verify that p · a ∈ Hℓ for

47

every p ∈ Hk+1. Since the subgroup Hk+1 is generated by Dk+1 and contains

Hk, we may choose a representation of p as the sum

p = q ⊕ d1 ⊕ · · · ⊕ dm, q ∈ Hk, d1, . . . , dm ∈ Dk+1 \Hk,

with the least number m of summands from Dk+1 \ Hk. We show that

p · a ∈ Hℓ by induction on m. If m = 0, we have p = q ∈ Hk and p · a ∈ Hℓ

since Hk · a ⊆ Hℓ.

If m > 0, we write p as p = d1⊕ s where s = q⊕ d2⊕ · · · ⊕ dm. By (2.3),

there exists a word w ∈ {a, b}∗ such that d1 ∈ dupl(w), 0 ∈ excl(w) ⊆ Hk

and |excl(w)| ≤ k + 1. Consider the word wbsa. We have

p · a = (d1 ⊕ s) · a = d1 · bsa,
and the equality (1.2) gives p · a ∈ dupl(wbsa). From the equality (1.1), we

get excl(wbsa) = (excl(w) ⊕ s) · a ∪ {0} if dupl(a)a−1 is either contained in

or disjoint with excl(w)⊕ s, and

excl(wbsa) =
(

(excl(w)⊕ s) \ dupl(a)a−1
)

· a ∪ {0}
if |dupl(a)a−1 ∩ (excl(w)⊕ s)| = 1. In any case, we have the inclusion

excl(wbsa) ⊆ (excl(w)⊕ s) · a ∪ {0} (2.4)

and the inequality

|excl(wbsa)| ≤ |(excl(w)⊕s) · a|+1 ≤ |excl(w)|+1 ≤ (k+1)+1 ≤ ℓ+1. (2.5)

For any t ∈ excl(w) ⊆ Hk, the number of summands from Dk+1 \Hk in the

sum

t⊕ s = t⊕ q ⊕ d2 ⊕ · · · ⊕ dm

is less than m. By the induction assumption, we have (t⊕s) · a ∈ Hℓ. Hence,

(excl(w)⊕ s) · a ⊆ Hℓ, and since 0 also lies in the subgroup Hℓ, we conclude

from (2.4) that excl(wbsa) ⊆ Hℓ. From this and the inequality (2.5), we see

that the word wbsa satisfies the conditions of the definition of Dℓ+1 (cf. (2.3))

whence every state in dupl(wbsa) belongs to Dℓ+1. We have observed that

p · a ∈ dupl(wbsa). Hence p · a ∈ Dℓ+1 ⊆ Hℓ+1. Since Hℓ = Hℓ+1, we have

p · a ∈ Hℓ, as required.

Now we deduce a criterion for complete reachability of binary automata.

Theorem 2.1. A binary automaton A with n states is completely reachable
if and only if either n = 2 and A is the flip-flop or one of the letters of A
acts as a cyclic permutation of the state set, the other letter has defect 1, and
in the standardized automaton 〈Zn, {a, b}〉 syntactically equivalent to A, no
proper subgroup of (Zn,⊕) is a-invariant.

48

Proof. Necessity follows from the considerations made at the beginning of

this chapter and Proposition 2.1.

For sufficiency, we can assume that A = 〈Zn, {a, b}〉 is standardized. If

no proper subgroup of (Zn,⊕) is a-invariant, then the claim from the proof

of Proposition 2.6 implies that the sequence

H0(A) ⊆ H1(A) ⊆ · · · ⊆ Hk(A) ⊆ . . .

strictly grows as long as the subgroup Hk(A) remains proper. Hence, Hℓ(A) =
Zn for some ℓ and A is a completely reachable automaton by Proposi-

tion 2.5.

Remark 2.1. The proof of Theorem 2.1 shows that only subgroups that con-
tain H1(A) matter. Therefore, one can combine Theorem 1.1, Proposition 2.2
and Theorem 2.1 as follows: a standardized automaton A = 〈Zn, {a, b}〉 is

completely reachable if and only if either H1(A) = Zn or no proper subgroup

of (Zn,⊕) containing the subgroup H1(A) is a-invariant.

For completeness sake, we state the main theorem for the non-standardized

case highlighting the transformations for which the proper subgroups should

not be invariant.

Theorem 2.2. A binary automaton A = 〈Q, {a, b}〉 with n > 2 states is
completely reachable if and only if

• one of the letters of A acts as a cyclic permutation of the state set, the
other letter has defect 1, b and a respectively;

• if coll(a) = {q1, q2} and 0 ≤ k1, k2 ≤ n are such that excl(a) · bk1 = q1
and excl(a) · bk2 = q2, then no proper subgroup of (Zn,⊕) is invariant
either for the transformation bk1a or bk2a.

The condition of Theorem 2.1 can be verified in low polynomial time.

We show how to do this in Algorithm 2. At first, given a binary automaton

A with n states, we first check if n = 2 and A is the flip-flop. If yes, A is

completely reachable. If not, we check whether one of the letters of A acts as

a cyclic permutation of the state set while the other letter has defect 1. This is

done in line 3; in order to simplify we do not ask for the verification of this in

the other way, but it is implicit. If not, A is not completely reachable. If yes,

we pass to the standardized automaton 〈Zn, {a, b}〉 syntactically equivalent

to A. As a preprocessing, we compute and store the set {(k, k · a) | k ∈ Zn}.
The rest of the algorithm can be stated in purely arithmetical terms.

Call a positive integer d a nontrivial divisor of n if d divides n and d 6= 1, n.

49

We compute all nontrivial divisors of n by checking through all integers

d = 2, . . . , ⌊√n⌋: if such d divides n, we store d and n
d
. If for some nontrivial

divisor d of n, all numbers (td) · a with t = 0, 1, . . . , n
d
− 1 are divisible by

d, then d generates a proper a-invariant subgroup in (Zn,⊕) and A is not

completely reachable. If for every nontrivial divisor d of n, there exists

t ∈ {0, 1, . . . , n
d
− 1} such that (td) · a is not divisible by d, then no proper

subgroup of (Zn,⊕) is a-invariant and A is completely reachable.

Algorithm 2 Decide Complete Reachability for Binary Automata

Input: A binary automaton A = 〈Q, {a, b}〉 with n ≥ 2 states.

1: if n = 2 and A is the flip-flop then

2: return true

3: if not (|Q · a| = n− 1 and

b acts as a cyclic permutation) then

4: return false

5: Standardize A.

6: for d = 2, . . . ,
√
n do

7: if d|n then

8: for t = 0, . . . , n
d
− 1 do

9: dividesAllImages ← true

10: if not d|(td) · a then

11: dividesAllImages ← false

12: break //There is no need to keep testing.

13: if dividesAllImages then

14: return false

15: //We repeat the same process with n
d
.

16: for t = 0, . . . , d− 1 do

17: dividesAllImages ← true

18: if not n
d
|(tn

d
) · a then

19: dividesAllImages ← false

20: break

21: if dividesAllImages then

22: return false

23: return true

50

To estimate the time complexity of the described procedure, observe that

one has to check at most n
d

numbers for each nontrivial divisor d of n. Clearly,

∑

1<d<n
d|n

n

d
=

∑

1<d<n
d|n

d = σ(n)− n− 1,

where σ(n) stands for the sum of all divisors of n, a well-studied function in

the theory of numbers; see, e.g., [22, Chapters XVI–XVIII]. It is known that

lim sup σ(n)
n log logn

= eγ where γ is the Euler–Mascheroni constant [22, Theorem

323]; this implies that the number of checks in our procedure is O(n log log n).
The total complexity depends on the time spent for verifying the divisibility

condition. If one uses the transdichotomous model [18], assuming constant

time for division, the whole procedure can be implemented in O(n log log n)
time. One can speed up the above algorithm, using Remark 2.1, which

implies that only the divisors d > 1 of the g.c.d. of n and 0 · a have to be

checked. However, the improvement only reduces the constant behind the

O() notation.

51

Chapter 3

Binary Completely Reachable

Automata and Don’s Conjecture

Once we have a characterization of completely reachable automata with two

letters, the next natural problem to solve is to bound the length of the words

that reach the subsets of states. We discussed before that it was Don who

proposed a first conjecture on this issue in [15]. The bound he proposed was

proved in the same article for binary completely reachable automata with a

specific property. Let A = 〈Q, {a, b}〉 be a binary automaton with n > 2
states and completely reachable. In this particular case A does not need to

be standardized. Let d > 1 be the distance in the cycle determined by b from

excl(a) to dupl(a); this means that excl(a) · bd = dupl(a). In [15, Proposition

15] Don proved that if d and n are coprime then for every subset of size k ≥ 1
there is a word of length n(n− k) that reaches it.

Although Don’s conjecture have been proved false in the general case, a

work to be done is to find classes of automata where the suggested bound

is true. Ferens and Szyku la, in [17], proved a not so weaker bound for all

completely reachable automata, the double of the bound proposed by Don.

Since the original suggested bound came from a kind of binary automata, it

would make sense to try to generalize the result to all binary automata. But

this is not the case. In [39] Yinfeng Zhu presents a series of binary automata

for which Don’s proposed bound does not hold. For every even n ≥ 12, let

Zn = 〈Zn, {a, b}〉 be a binary automaton such that the letter a, of defect 1,

fixes all states except for 0, 1, n
2
, n − 4, n − 3, n − 2 and n − 1 and acts on

these states as shown in Figure 3.1.

Zhu proves that the shortest word to reach the subset Zn \ {n2 − 1, n− 1}
has a length of at least 5

2
n− 3.

Note that this series of automata are not standardized. After standard-

ization the obtained series comply with Don’s bound. At the moment of

52

0 n− 3 1 n− 2 n/2

n− 4

n− 1

Figure 3.1: The action of the letter a in Zhu’s series of counter examples.

writing Don’s conjecture is open for binary completely reachable automata

in the standardized form. Nevertheless, some partial results have been ob-

tained. For example, Don [15, Proposition 15] proved the following proposi-

tion, stated using the concepts used in this work for simplicity’s sake:

Proposition 3.1. Let A = 〈Zn, {a, b}〉 be a binary standardized automaton
such that b is the cyclical permutation of Zn and the letter a has defect 1. If
d = dupl(w) is coprime with n, then every subset of Zn of size k > 1 can be
reached by a word of length at most n(n− k).

Denote the state 0 · a by d and let r stand for the state such that r 6= 0 and

r · a = d. The letter a acts as a permutation on the set {1, . . . , n−1}(Lemma

2.3). Therefore, acting by a suitable power of the letter a at the state d, one

gets the state r, that is, r = d · aℓ−1 for some positive integer ℓ. Let ℓ be

the least positive integer with this property, and for each s = 0, 1, . . . , ℓ− 1,

let ds := d · as so that d0 = d, dℓ−1 = r, and all states d0, d1, . . . , dℓ−1 are

distinct. We denote the set {d0, d1, . . . , dℓ−1} by orb(d) and call it the orbit
of the automaton 〈Zn, {a, b}〉. The subgroup of (Zn,⊕) generated by orb(d)
is called the orbit subgroup of the automaton.

The main result of this chapter is the following:

Theorem 3.1. Every standardized automaton 〈Zn, {a, b}〉 whose orbit sub-
group coincides with the group (Zn,⊕) fulfils Don’s conjecture.

Theorem 3.1 generalizes Don’s result([15, Proposition 15]) for standard-

ized automata.

3.1 Expandable subsets

The two results collected in this section are basically known as their versions

have been scattered over the literature; see, e.g., [15, 17, 8]. We believe it

is more convenient for the reader to see direct arguments rather than follow

53

references to various sources where similar ideas might have appeared under

different terminology and notation. Therefore, we have included complete

proofs without claiming any originality.

Let A = 〈Q,Σ〉 be an automaton. We say that a word w ∈ Σ∗ expands
a proper non-empty subset S ⊂ Q if there exists a subset P ⊆ Q such that

|P | > |S| and P ·w = S. The following easy observation connects this notion

with the concepts of excluded and duplicated sets.

Lemma 3.1. Let A = 〈Q,Σ〉 be an automaton. A word w ∈ Σ∗ expands
a proper non-empty subset S ⊂ Q if and only if excl(w) ∩ S = ∅ while
dupl(w) ∩ S 6= ∅.

Proof. For the ‘only if’ part, let P be a subset of Q with |P | > |S| and

P · w = S. Since S = P · w ⊆ Q · w, we get S ∩ (Q\Q · w) = ∅, that is,

excl(w) ∩ S = ∅. Since |P | > |P · w|, there exist some p, p′ ∈ P such that

p 6= p′ but p · w coincides with p′ · w. Then p · w ∈ dupl(w) ∩ S whence

dupl(w) ∩ S 6= ∅.
Conversely, for the ‘if’ part, let w ∈ Σ∗ be a word with excl(w) ∩ S = ∅

and dupl(w) ∩ S 6= ∅. Since excl(w) = Q\Q · w is disjoint from S, we have

S ⊆ Q ·w. Hence for every state s ∈ S, its preimage sw−1 := {q ∈ Q | q ·w =
s} is non-empty. Let P :=

⋃

s∈S

sw−1. Then P · w = S and |P | > |S| since

the subsets sw−1 are disjoint and for each p ∈ dupl(w) ∩ S, the set pw−1 is

non-singleton.

Given an automatonA = 〈Q,Σ〉 with |Q| = n, a proper non-empty subset

of Q is said to be n-expandable if it can be expanded by a word of length at

most n.

Lemma 3.2. If in an automaton with n states, every proper non-empty
subset is n-expandable, then every subset with k > 0 states is reachable by a
word of length ≤ n(n− k).

Proof. Let an automaton A = 〈Q,Σ〉 satisfy the premise so that |Q| = n.

We prove that for any k with 0 < k ≤ n, every subset S ⊆ Q with k states

is reachable by a word of length ≤ n(n− k) by induction on n− k.

If n− k = 0, then S = Q and the claim holds since Q is reachable by the

empty word whose length is 0.

Now let n − k > 0 so that S is a proper subset of Q. Then S is n-

expandable so that there exist a word w ∈ Σ∗ of length at most n and a

subset P ⊆ Q such that |P | > |S| and P · w = S. Since |P | > |S| = k, we

have n − |P | < n − k, and the induction assumption applies to the subset

P . Hence, P = Q · v for some word v ∈ Σ∗ of length ≤ n(n− k − 1). Then

54

S = P · w = (Q · v) · w = Q · vw and the length of the word vw does not

exceed n(n− k − 1) + n = n(n− k) as required.

Lemmas 3.1 and 3.2 imply that an automaton A = 〈Q,Σ〉 satisfies Don’s

conjecture whenever for each proper non-empty subset S ⊂ Q, one can find

a word w of length at most |Q| with excl(w) ∩ S = ∅ and dupl(w) ∩ S 6= ∅.
One caveat seems to be in order: our notion of expandability should not

be confused with extensibility, a similar but different concept widely used in

the theory of synchronizable automata. We discuss this in some detail later

in this chapter.

3.2 The restricted orbit digraph

In this part recall the definition of the Cayley graph of a group presented in

Definition 1.2, together with Lemma 1.1 that describes the structure of its

strongly connected components. The orbit digraph O(A) of a standardized

automaton A = 〈Zn, {a, b}〉 is the Cayley digraph Cay(Zn, orb(d)). Denote

the orbit subgroup of A by H0. Thus, each edge of O(A) is of the form

q → q ⊕ ds, where q ∈ Zn and ds ∈ orb(d), and the strongly connected

components of O(A) have the cosets q ⊕H0, q ∈ Zn, as their vertex sets.

The edge q → q⊕ ds is called long if q + s ≥ n and short otherwise. The

restricted orbit digraph R(A) is the spanning subgraph of the orbit digraph

obtained by removing all long edges from the latter digraph. We aim to show

that what was connected in the orbit digraph remains so in the restricted

orbit digraph. Before that let us state a technical lemma that aid us in the

proof of the proposition

Lemma 3.3. Let d0, d1, . . . , ds−1 be distinct positive integers less than n.
Then the greatest common divisor of d0, d1, . . . , ds−1, n does not exceed n

s+1
.

Proof. Let c0, c1, . . . , cs−1 be the numbers d0, d1, . . . , ds−1 arranged in the

ascending order. Denoting the greatest common divisor of d0, d1, . . . , ds−1, n
by g, we get c0 ≥ g, c1 ≥ 2g, . . . , cs−1 ≥ sg, and finally, n ≥ (s + 1)g since

each of the numbers c0, c1, . . . , cs−1, n is a multiple of g and all these numbers

are distinct. Hence, g ≤ n
s+1

.

Proposition 3.2. Let A = 〈Zn, {a, b}〉 be a standardized automaton, and H0

the subgroup of (Zn,⊕) generated by orb(d). The strongly connected compo-
nents of the restricted orbit digraph R(A) have the cosets of the subgroup H0

as their vertex sets.

55

Proof. For a state p ∈ Zn, denote by 〈p〉 the subgroup of (Zn,⊕) generated

by p. Let orb(d) = {d0, d1, . . . , dℓ−1}, and for each s = 0, 1, . . . , ℓ− 1, let gs
stand for the greatest common divisor of the numbers d0, d1, . . . , ds, n. We

then have that g0 is a multiple of g1, which is a multiple of g2, and so on.

Inducting on s, we will establish the following:

Claim: For each s = 0, 1, . . . , ℓ − 1, the restricted orbit digraph R(A)
has a spanning subgraph Γ(s) whose strongly connected components have
the cosets of the subgroup 〈gs〉 as their vertex sets.

Proof of the claim. For s = 0, consider the following n edges in O(A):

0→ d0, 1→ d0 ⊕ 1, . . . , n− 1→ d0 ⊕ (n− 1).

They all are short and easily seen to form g0 directed cycles whose vertex

sets are the cosets of the subgroup 〈g0〉. Thus, the spanning subgraph with

these n edges can be taken as Γ(0).

Now let s > 0. Construct a new spanning subgraph Γ of the graph O(A)
by adding to the digraph Γ(s−1) the following gs−1 edges:

0→ ds, 1→ ds ⊕ 1, . . . , gs−1 − 1→ ds ⊕ (gs−1 − 1).

First, we verify that each of these edges is short. For this, it suffices to show

that s+ (gs−1− 1) < n, that is, gs−1 + s ≤ n. We can conclude this with the

aid of Lemma 3.3. Indeed,

n− gs−1 − s ≥ n− n

s + 1
− s by Lemma 3.3

= n

(

1− 1

s + 1

)

− s

≥ (s + 1)

(

1− 1

s + 1

)

− s since n > ℓ ≥ s

= (s + 1)− 1− s = 0.

Back to the construction of the spanning subgraph Γ, we have to analyze

its strongly connected components.

It readily follows from the definition of the greatest common divisor that

gs is the greatest common divisor of gs−1 and ds. Hence gs−1 = mgs and

ds = kgs for some coprime m and k. The subgroup 〈gs〉 is equal to the union

of the m cosets of the subgroup 〈gs−1〉 that are contained in 〈gs〉; these m
cosets are

〈gs−1〉, gs ⊕ 〈gs−1〉, . . . , (m− 1)gs ⊕ 〈gs−1〉. (3.1)

56

We have ds ∈ kgs⊕ 〈gs−1〉, where k is the residue of k modulo m. There-

fore, in the subgraph Γ, the newly added edge 0→ ds connects the strongly

connected components 〈gs−1〉 and kgs⊕〈gs−1〉 of the subgraph Γ(s−1). In the

same way, the edge kgs → ds ⊕ kgs connects the strongly connected compo-

nents kgs ⊕ 〈gs−1〉 and 2k ⊕ 〈gs−1〉, where 2k is the residue of 2k modulo m,

etc. Since m and k are coprime, the m edges

0→ ds, kgs → ds⊕kgs, 2kgs → ds⊕2kgs, . . . , (m− 1)kgs → ds⊕(m− 1)kgs

cyclically connect all m cosets in (3.1). By the induction assumption, each

of these cosets is the vertex set of a strongly connected component of the

digraph Γ(s−1). Hence, all states in the subgroup 〈gs〉 are mutually reachable

in the digraph Γ.

In the same way, for each i = 1, . . . , gs − 1, the m edges

i→ ds ⊕ i, kgs ⊕ i→ ds ⊕ kgs ⊕ i, 2kgs ⊕ i→ ds ⊕ 2kgs ⊕ i, . . . ,

(m− 1)kgs ⊕ i→ ds ⊕ (m− 1)kgs ⊕ i

cyclically connect the m cosets

i⊕ 〈gs−1〉, i⊕ gs ⊕ 〈gs−1〉, . . . , i⊕ (m− 1)gs ⊕ 〈gs−1〉.

As above, using the induction assumption, we conclude that all states in the

coset i ⊕ 〈gs〉 also are mutually reachable in the digraph Γ. Since no more

edges were added when constructing the graph Γ, the gs cosets i⊕ 〈gs〉 with

i = 0, 1, . . . , gs−1 form the vertex sets of the strongly connected components

of Γ.

We have verified that the spanning subgraph Γ fulfils all requirements

we need, and thus, can be taken as Γ(s). This completes the proof of the

inductive step, and hence, the proof of the claim.

Remark 3.1. It may happen that gs−1 divides ds, in which case gs−1 = gs.
In this situation the above construction of the spanning subgraph Γ(s) still
works fine (with m = 1), because each newly added edge connects vertices
within a strongly connected component of Γ(s−1). Thus, while having more
edges, the graph Γ(s) has the same strongly connected components as Γ(s−1).

The proof of Proposition 3.2 is now immediate since the subgroup 〈gℓ−1〉
coincides with the subgroup H0.

For the rest of this chapter we use the following notation: Let Zn be the

cyclic group of n elements, and 1 ≤ m ≤ n an arbitrary element of the group.

The cyclic subgroup of Zn generated by m, i.e., {0, m, 2m, . . . }, is denoted

57

by mZn. As expected, for any element 1 ≤ q ≤ n, the coset of mZn who

contains q is denoted by q ⊕mZn.

For an illustration, we trace the inductive construction in the proof of

Proposition 3.2 on the 48-state automaton E ′48 = 〈Z48, {a, b}〉 shown in Fig-

ure 3.2 below. In E ′48, we have d = 24, and the orbit of E ′48 consists of d = d0
and r = d1 = 18 so that ℓ = 2.

2

4

6

8
101214

16

18

20

22

24

26

28

30

32
34 36 38

40

42

44

46

1

3

5

7

9
1113

15

17

19

21

23

25

27

29

31

33
35 37

39

41

43

45

47

0

Figure 3.2: The automaton E ′48 = 〈Z48, {a, b}〉. Solid and dashed edges

show the action of a and, resp., b; if a fixes a state, the corresponding loop

is omitted to improve readability.

We have g0 = d0 = 24. Therefore, we begin the construction with the

spanning subgraph Γ(0) that consists of the 24 directed cycles

i i⊕ 24

58

with i = 0, 1, . . . , 23, having the 24 cosets of the 2-element subgroup (24Z48,⊕)
as the vertex sets. All edges in Γ(0) are short.

To get the next spanning subgraph Γ(1), we add to Γ(0) the following 24

edges:

0→ 18, 1→ 19, 2→ 20, . . . , 23→ 41.

which are all short. The greatest common divisor g1 of the numbers d0 = 24,

d1 = 18 and 48 is 6. We have m =
g0
g1

= 4 and k =
d1
g1

= 3. The 8-element

subgroup 〈gs〉 = (6Z48,⊕) is the union of the following four cosets of the

group (24Z48,⊕):

24Z48, 6⊕ 24Z48, 12⊕ 24Z48, 18⊕ 24Z48.

The newly added edges 0→ 18, 18→ 36, 6→ 24, 12→ 30 cyclically connect

these four cosets, producing a strongly connected component of Γ(1) as shown

in Figure 3.3. The three other strongly connected components of the digraph

Γ(1) are constructed in the same way.

0 24

618 30

1236

42

Figure 3.3: One of the strongly connected components of the digraph Γ(1)

constructed for the automaton E ′48 from Figure 2.5. The solid edges are

inherited from Γ(0); the dashed edges are newly added.

As an application of Proposition 3.2, we infer that certain proper non-

empty subsets in standardized automata are n-expandable.

Proposition 3.3. Let A = 〈Zn, {a, b}〉 be a standardized automaton and H0

its orbit subgroup. Every non-empty subset of Zn which is not a union of
H0-cosets is n-expandable.

59

Proof. If a non-empty subset S of Zn is not a union of H0-cosets, then there

exists a coset C which is neither contained in S nor disjoint from S. Then

there exist a state p ∈ C\S and a state p′ ∈ C ∩ S. Proposition 3.2 implies

that any two states in C are connected in the restricted orbit digraph R(A);
in particular, there is a sequence p = p0, p1, . . . , pt = p′ of states in C such

that pi−1 → pi is an edge in R(A) for each i = 1, . . . , t. If j is the maximal

index such that pj ∈ C\S, then j < t and pj+1 ∈ C ∩ S. Renaming pj and

pj+1 to q and q′, respectively, we conclude that the edge q → q′ of R(A) is

such that q /∈ S and q′ ∈ S.

Let orb(d) = {d0, d1, . . . , dℓ−1}. By the construction of the restricted orbit

digraph, q → q′ being its edge means that q → q′ is a short edge in the orbit

digraph O(A). Unfolding the definitions of O(A) and of being short, we see

that q′ = q ⊕ ds for some s ∈ {0, 1, . . . , ℓ− 1} and q + s < n. Now consider

the word as+1bq of length q + s + 1 ≤ n. Since

0 · as+1bq

r · as+1bq

}

= d · asbq = ds · bq = ds ⊕ q = q′,

the duplicate set of as+1bq contains q′. On the other hand, the only excluded

state of as+1 is 0 whence excl(as+1bq) = {q}. Thus, we have excl(as+1bq)∩S =
∅ while dupl(as+1bq) ∩ S 6= ∅. Lemma 3.1 then implies that the word as+1bq

expands S. Since the length of this word does not exceed n, the subset S is

n-expandable.

Now we can easily deduce Theorem 3.1.

Proof of Theorem 3.1. Let A = 〈Zn, {a, b}〉 be a standardized automaton

whose orbit subgroup H0 coincides with (Zn,⊕). Then no non-empty proper

subset of Zn can be a union of H0-cosets, whence each non-empty proper

subset of Zn is n-expandable by Proposition 3.3. Now Lemma 3.2 implies that

every subset with k > 0 states is reachable by a word of length ≤ n(n− k).
Thus, the automaton A fulfills Don’s conjecture.

3.3 Further discussion

Analysing the above proof of Theorem 3.1, we see that a stronger statement

has actually been proved: in every standardized automaton A = 〈Zn, {a, b}〉
whose orbit subgroup H0 coincides with (Zn,⊕), each subset with k > 0
states is reachable by a product of n− k words of the form ai+1bj where 0 ≤
i, j ≤ n−1 and i+ j ≤ n. Each word of the form ai+1bj with 0 ≤ i, j ≤ n−1
has a unique excluded state (namely, excl(ai+1bj) = {j}). For any word w,

its defect is defined as the cardinality of the set excl(w). Thus, under the

60

premise of Theorem 3.1, each subset with k > 0 states is reachable by a

product of n− k words of defect 1 and length ≤ n.

Recall from Section 1.2 that an automaton is perfectly reachable if each

subset with k > 0 states is reachable in A by a product of |Q| − k words of

defect 1.

Turning back to binary automata, observe that for any standardized au-

tomaton A = 〈Zn, {a, b}〉, its orbit graph is a spanning subgraph of the

Rystsov graph Γ1(A). Indeed, the edges of the orbit digraph are of the form

q → q ⊕ ds, where q ∈ Zn and ds ∈ orb(d). The word ws,q := asbq has defect

1 and excl(ws,q) = q while dupl(ws,q) = q ⊕ ds. Hence the edge q → q ⊕ ds
occurs in the Rystsov digraph as the edge forced by ws,q. By Lemma 1.1,

automata satisfying the premise of Theorem 3.1 are precisely standardized

automata with strongly connected orbit graphs. Hence, such automata are

perfectly reachable by Proposition 1.1.

Attempting to extend our approach to arbitrary, perfectly reachable stan-

dardized automata, one may define restricted versions of Rystsov graphs

parallel to restricted orbit graphs of Subsection 3.2. Namely, the restricted
Rystsov digraph of A = 〈Zn, {a, b}〉 is the spanning subgraph of Γ1(A) in

which one retains only edges forced by words of length at most n. In order

to transfer the arguments of Subsection 3.2 to perfectly reachable standard-

ized automata, one needs to establish an analog of Proposition 3.2, that is, to

show that what was connected in Γ1(A) remains so in the restricted Rystsov

graph. However, as the following example demonstrates, this is not true in

general.

Example 3.1. Consider the standardized automaton E12 = 〈Z12, {a, b}〉
shown in Figure 3.4. Observe that 0 · a = 10 = 10 · a in E12 so that for this

automaton, both parameters d and r are equal to 10 and the orbit orb(d)
reduces to the singleton {10}. Therefore, the orbit digraph of E12 has two

strongly connected components; they have as the vertex sets the subgroup

(2Z12,⊕) of all even residues modulo 12 and its coset 1⊕2Z12 consisting of all

odd residues. In contrast, the Rystsov digraph Γ1(E12) is strongly connected.

This claim can be verified by either brute force successive checking through

all words of defect 1 or invoking Propositions 2 and 3 of [11] that characterize

Γ1(E12) as the Cayley digraph Cay(Z12, D) where

D = {d · v | v ∈ {a, bra}∗} = {10 · v | v ∈ {a, b10a}∗}.

Going either way, one eventually finds the word (ab10)4a of length 45 that

has defect 1 and forces the edge 0 → 1 of Γ1(E12). The word (ab10)4ab also

has defect 1 and forces the edge 1→ 2 in Γ1(E12). The two edges 0→ 1 and

1 → 2 connect the strongly connected components of the orbit digraph of

61

0
1

2

3

4

5
6

7

8

9

10

11

Figure 3.4: The automaton E12 = 〈Z12, {a, b}〉. Solid and dashed edges show

the action of a and, resp., b.

E12, and thus, ensure strong connectivity of Γ1(E12). By Proposition 1.1 the

automaton E12 is perfectly reachable.

Computing all words of defect 1 and length at most 12, one gets the

restricted Rystsov digraph of E12 shown in Figure 3.5. This graph is not

strongly connected.

Thus, the method we used to prove Theorem 3.1 cannot be directly ex-

tended to show that Don’s conjecture holds for perfectly reachable standard-

ized automata. Of course, this does not disprove the conjecture. In partic-

ular, the automaton E12 is not a counterexample to Don’s conjecture. By

Lemma 3.2, to justify the latter claim, it suffices to show that every proper

non-empty subset of Z12 is 12-expandable in E12. Proposition 3.3 ensures this

for all subsets except for 2Z12 and 1⊕ 2Z12, and one easily verifies that the

word aba expands 1⊕ 2Z12 while the word (ab)2 does the job for 2Z12. (The

words aba and (ab)2 have defect 2, and therefore, they do not show up when

the restricted Rystsov graph is constructed.)

The previous example shows that expanding a subset with a short word

can become possible if using words of defect greater than 1 is allowed. It is

natural to ask whether this trick solves the issue for all perfectly reachable

standardized automata. If so, then every proper non-empty subset in each

n-state perfectly reachable standardized automaton would be n-expandable

and Don’s conjecture for such automata would follow by Lemma 3.2. How-

62

0

2 4

6

810

1

3 5

7

911

a

ab2

ab4

ab6

ab8

ab10

ab

ab3

ab5

ab7

ab9

ab11

ab
10 a

Figure 3.5: The restricted Rystsov digraph of the automaton E12. Each edge

is labeled by the shortest word of defect 1 forcing it.

ever, our next example exhibits a 21-state perfectly reachable standardized

automaton with a subset that fails to be 21-expandable.

Example 3.2. Consider the standardized automaton E21 = 〈Z21, {a, b}〉
shown in Figure 3.6 where all loops labeled a are omitted to lighten the

picture. Observe that 0 · a = 14 = 14 · a in E21. Thus, for E21, both parame-

ters d and r are equal to 14 and the orbit orb(d) reduces to the singleton {14}.
The orbit graph of E21 has seven strongly connected components whose the

vertex sets are the subgroup (7Z21,⊕) generated by 14 and its cosets. The

word ab14a has defect 1, excl(ab14a) = {0} and dupl(ab14a) = {18}. Hence,

the Rystsov digraph Γ1(E21) has the edge 0 → 18. Multiplying ab14a on the

right by b, b2, b3, b4, b4, b6, we get words of defect 1 that force the edges

1→ 19, 2→ 20, 3→ 0, 4→ 1, 5→ 2, 6→ 3

in Γ1(E21). These edges, together with 0→ 18, cyclically connect all strongly

connected components of the orbit digraph. Hence, the digraph Γ1(E21) is

strongly connected. By Proposition 1.1 the automaton E21 is perfectly reach-

able.

We have verified by brute force examination of all words in {a, b}∗ up to

length 21 that none of them expand the subset 3 ⊕ 7Z21 = {3, 10, 17}. The

shortest word that expands {3, 10, 17} is the word ab14ab6 of length 22.

Although the automaton E21 possesses a subset that is not 21-expandable,

we have verified that it is not a counterexample to Don’s conjecture. The

only ‘bad’ subset {3, 10, 17} turns out to be the image of the word

(ab15ab3ab4)2ab4(ab3(ab4)2)2ab3ab4ab7(ab4)2ab14ab6. (3.2)

63

0

2

1

4

3
6

5

8
7

10

9

12

11

14

13
16

15

18
17

20

19

Figure 3.6: The automaton E21 = 〈Z21, {a, b}〉. Solid and dashed edges show

the action of a and, resp., b; if a fixes a state, the corresponding loop is

omitted to improve readability.

The length of the word (3.2) is 132, which is much less than the bound 21(21−
3) = 378 claimed by Don’s conjecture. The word (3.2) can be decomposed

into a product of 18 = 21−3 words of defect 1, but only the rightmost factor

of defect 1 has length greater than 21 while all other factors are shorter,

which by far compensates the excess of the last factor.

3.4 Additional remarks

Using the concept of expandability, we have confirmed Don’s conjecture for

standardized automata subject to an arithmetical restriction to their orbits.

Moreover, we have proved that in every standardized automaton 〈Zn, {a, b}〉,
almost all subsets are n-expandable; the only possible exceptions are the

unions of cosets of the orbit subgroup of the automaton so that if the sub-

group has index k in (Zn,⊕), then at least 2n − 2k subsets of Zn are n-

expandable. On the other hand, we found an example of a 21-state perfectly

reachable standardized automaton with a subset that is not 21-expandable.

To our surprise, our results reveal that the situation around the expand-

ability approach to Don’s conjecture for perfectly reachable automata is in

64

parallel with that around the extensibility approach to Černý’s conjecture

for synchronizable automata. A method that has proved to be efficient for

proving the Černý conjecture for special classes of automata is based on the

following notion. For an automaton A = 〈Q,Σ〉, a subset S ⊆ Q and a

word w ∈ Σ∗, denote by Sw−1 the full preimage of S under the action of w,

that is, Sw−1 := {q ∈ Q | q ·w ∈ S}. A word w ∈ Σ∗ is said to extend a

proper non-empty subset S ⊂ Q if |Sw−1| > |S|. Assuming that |Q| = n,

we say that a proper non-empty subset S ⊂ Q is n-extensible if S can be

extended by a word of length at most n It is well known (and easy to see)

that each n-state automaton, all of whose proper non-empty subsets are n-

extensible, is synchronizable and has a reset word of length at most (n−1)2;
that is, it fulfills the Černý conjecture. The approach to the Černý conjec-

ture via n-extensibility traces back to Jean-Éric Pin’s paper [32]; the most

striking applications of this approach are the proofs of the Černý conjecture

for circular synchronizable automata (Lois Dubuc [16]) and synchronizable

automata with Eulerian underlying graphs (Jarkko Kari [26]). On the other

hand, Kari [25] found an example of a 6-state synchronizable automaton (see

Figure 1) with a subset that is not 6-extensible. This shows that, in general,

the Černý conjecture cannot be proved via n-extensibility.

Clearly, every completely reachable automaton is synchronizable. The

converse is not true: it is easy to exhibit synchronizable, but not completely

reachable automaton, even in the class of standardized automata. As a

concrete instance, consider the standardized automaton shown in Figure 3.7;

it has ab4ab(ab2)2aba as a reset word, while the subset {0, 1, 3, 4} is not

reachable.

0

1

2

3

4

5

Figure 3.7: A standardized synchronizable automaton that is not completely

reachable.

The relations between expanding and extending words are similar. It is

easy to see that if, in an automaton A = 〈Q,Σ〉, a word w ∈ Σ∗ expands

a subset S ⊂ Q, then w extends S as well. The converse is not true, even

65

for standardized automata. As an instance, we can reuse the automaton

in Figure 3.7 where the word ab4ab(ab2)2aba extends the subset {0, 1, 3, 4}
but does not expand it. The automaton E21 shows that even a standardized

perfectly reachable automaton 〈Zn, {a, b}〉 may have a subset that is not n-

expandable, although all of its proper non-empty subsets are n-extensible

by [16, Proposition 4.6].

Thus, the notions of a perfectly reachable automaton and expandability

are specializations of those of a synchronizable automaton and extensibility,

respectively. Nevertheless, these specialized concepts behave similarly to how

their more general counterparts do. One can, therefore, speculate that fur-

ther advances in studying perfectly reachable automata and Don’s conjecture

may contribute to a better understanding of synchronizable automata and

progress towards resolving the Černý conjecture.

Let us come back to Zhu’s work on [39]. There he achieves to prove that

every standardized automaton 〈Zn, {a, b}〉 whose orbit subgroup coincides

with the subgroup 2Zn of the group (Zn,⊕) fulfills Don’s conjecture; this

strengthens Theorem 3.1 of the present work. Additionally he reduces the

bound of the words reaching non-empty subsets in standardized binary com-

pletely reachable automata to n(n − k) + n − 1 for all the subsets of size

k ≥ 1. In his paper Zhu takes the concepts and ideas presented in the last

two chapters and apply ingenious arguments to obtain the aforementioned

results.

66

Chapter 4

Completely Reachable Almost

Group Automata

In this chapter we expand the work done in Chapter 2. We consider automata

where all the letters except one are permutations of the set of states and the

additional letter is of defect 1. The study of this kind of automata is by no

means new; but they are presented with different names. In [2], they are

called almost-permutation automata; and are used to present an example of

a series of slowly synchronizable automata. In [3], automata are under the

disguise of transformation semigroups and are called near permutation. In [6],

they are called almost-group automata, there it is proved that these automata

synchronize with high probability. Finally, in [34], the non-permutation letter

acts as the identity for every state except for a subset where they have the

same image. In the latter article, it is proved that if no equivalence relation

is preserved, then the automaton is synchronizable. Among these papers,

we would like to highlight the work done in [24] where the primitivity of a

group of permutations of a state set has been tightly related to the complete

reachability of the automata generated by adding a non permutation letter.

Thus, the result presented here approaches this theory from the other side

where the group is transitive but not primitive and looking for a condition

when the automaton generated is completely reachable.

As we mentioned previously, in [24, Theorem 3.1] the following charac-

terization of primitive permutation groups is given. Here [n] := {1, 2, . . . , n}
and if S is a set of transformations, then 〈S〉 is the transformation semigroup

generated by S.

Theorem 4.1 ([24]). Let G be a permutation group on [n] with n ≥ 3. Then
G is primitive if and only if for each transformation f : [n] → [n] of defect

1 every non-empty subset A ⊆ [n] is reachable in 〈G ∪ {f}〉.

67

This theorem characterizes primitive groups. Moreover, it states that in

presence of a primitive group, the addition of any transformation of defect

1 suffices to obtain a completely reachable automaton. Here we study the

related case when the group produced is transitive but not primitive. We will

see how this situation is not that forgiving and we need to ask more from the

transformation of defect 1. The condition considered is very related to the

one presented in Chapter 2 for automata with just one permutation letter

and one with defect 1.

For the rest of this chapter we will consider automata A = 〈Q,Σ〉, where

Σ = Σ0 ∪ {a} and:

• The set of letters Σ0 ⊂ SQ, are all permutations of Q.

• The generated subgroup G = 〈Σ0〉 is transitive.

• The letter a has defect 1.

The excluded state of the only letter of defect 1 will be denoted by e, i.e.,

excl(a) = e. Unless specified otherwise, the group generated by all permuta-

tion letters is denoted as G. We will denote automata with these character-

istics as almost group automata.

Let r ∈ coll(a) be one of the two states collapsed by a. There is a

permutation that sends e to r call it σ ∈ G. The transformation σa has

defect 1, e = excl(σa), and e ∈ coll(σa). Consider the automaton A =
〈Q,Σ0 ∪ {σa}〉. Note that A is completely reachable if and only if A is

completely reachable. Therefore, there is no loss of generality when we add

the condition that e ∈ coll(a) from the beginning. When this happens we

call the automaton standardized. This is similar to the process described in

Chapter 2. This change will simplify the arguments we use for the rest of

the chapter.

In this work when a block of imprimitivity is mentioned the trivial cases,

i.e., the whole set or singletons, are not considered.

Recall that a subset of states, P ⊆ Q is invariant by a transformation

w ∈ Σ∗, or w-invariant, if P ·w ⊆ P . The condition to get complete reacha-

bility in the binary case is that no subset of states that represents a subgroup

of the cyclic group is invariant by letter of defect 1. In the case of almost

group automata this representation is not so clear. The cosets of any sub-

group generate a partition of the group that contains this subgroup. There

is a parallel situation in the case of blocks of imprimitivity, they form a par-

tition of the set of states. There are subgroups for each of these blocks of

imprimitivity that let them invariant1. This is the main reason to consider

1Considerations of this are treated ahead in the chapter

68

systems of imprimitivity. These partitions of the set of states are the closest

to represent subgroups of the group acting on the states. Finally, for the

binary case our standardization allowed the excluded state to be in every

subgroup as the element labelled by 0. We state this detail more explic-

itly: the blocks of imprimitivity who are not a-invariant must be those that

contain excl(a).

4.1 The necessary condition

Like in Chapter 2 we begin proving that complete reachability implies not

a-invariance:

Proposition 4.1. Let A be a standardized almost group automaton. If A
is completely reachable, then G is transitive and if there is at least a block
of imprimitivity then no block of imprimitivity that contains e = excl(a) is
invariant by a.

Proof. First, let us prove that the condition for the group generated by the

set of permutations to be transitive is necessary. For every word w ∈ Σ∗ it

is true that e ∈ excl(wa); furthermore,

|excl(w)| ≤ |excl(wa)| ≤ |excl(w)|+ 1.

This is, the action of adding a to a word either increases by one or keeps

the defect of the resulting word. Note that adding a permutation does not

modify the defect of any word. Hence, in order to reach the subsets Q \ {q}
for every q ∈ Q, it is necessary that there exists a permutation σq ∈ G such

that e ·σq = q. Let p, q ∈ Q be an arbitrary pair of states. By the previously

said, if A is completely reachable, then there are two permutations σp, σq ∈ G
such that e · σp = p and e · σq = q. Finally, note that p · σ−1

p σq = q. Thus, G
is transitive.

For a subset of states S ⊂ Q, we denote by S its complement, i.e., Q \S.

To prove that every block of imprimitivity that contains e must be a-
invariant, we proceed by contradiction; thus suppose that B is a block of

imprimitivity that contains e and is a-invariant. This block belongs to a sys-

tem of imprimitivity, let us call it B. Recall that A is completely reachable.

Hence, for every block C ∈ B there is a word that reaches its complement,

i.e., there is v ∈ Σ∗ such that Q · v = C. Suppose that w ∈ Σ∗ is the shortest

word that reaches one of theses complements. If w = w′ b with b ∈ Σ0, then

Q · w′ = C · b−1, the complement of a block of imprimitivity in B. This

contradicts the condition of w being the shortest word. And we can conclude

that w does not end in a permutation.

69

Then, the word w ends with the letter a, i.e., w = w′ a. Recall that

Q ·w′a ⊂ Q · a and e /∈ Q · a, thus e /∈ Q ·w and we conclude that Q ·w = B.

Since B is a-invariant, by our supposition, we can conclude that its com-

plement is also a-invariant. And since every q ∈ B has a preimage by a then

this letter acts as a permutation of B. Therefore Q ·w′ = Q ·w′a = B what,

again, contradicts the supposition of w being the shortest. There is no other

type of letter in which the word w could finish, then we end with an absurd.

This situation came from supposing that B is a-invariant, thus we have our

proposition.

By the preceding proof we have:

Corollary 4.1. If there is a block of imprimitivity that contains e and is
invariant by a, then its complement is not reachable.

The assumption that e ∈ coll(a) is useful not only for the previous proof,

but also for the correspondent arguments used in the rest of the chapter.

Thus, we will maintain this condition henceforth.

4.2 Rystsov graphs of almost group automata

In this section we study the Rystsov graphs generated from almost group

automata. We show that the blocks of imprimitivity keep playing a key role

at the moment of studying these automata.

Let us use the following automaton as a running example to illustrate the

construction of these graphs for the particular case we are studying in this

chapter. Consider E18 := 〈{1, 2, . . . , 18}, {a, b, c}〉. The letters b and c are

permutations with the following cyclic representation:

b :=(1, 11, 13, 5, 7, 17)(2, 10, 14, 4, 8, 16)(3, 12, 15, 6, 9, 18)

c :=(1, 3, 2)(4, 5, 6)(7, 13)(8, 16)(9, 15)(10, 14)(11, 17)(12, 18).

Figure 4.1 represents the underlying graph of these letters, the action of b
and c is shown with dashed and dotted edges respectively.

The transformation a has defect 1. The following representation of a
puts the respective image under each state and omits the states that do not

change:
(

1 2 5 6 8

6 8 6 5 2

)

.

Additionally, Figure 4.2 gives us a graphic representation of the action of the

letter a on the states where it does not act as the identity.

70

1

1113

5

7 17

3

1215

6

9 18

2

1014

4

8 16

Figure 4.1: The action of the permutation letters b and c on the states of

E18.

1

2

56

8

Figure 4.2: The action of the letter a on some states of E18.

Note that the excl(a) = 1, dupl(a) = 6 and coll(a) = {1, 5}. The group

generated by {b, c} is transitive and the blocks of imprimitivity that contain

the state 1 are the sets

{1, 5}, {1, 2, 3, 4, 5, 6}.

Note that 1
a−→ 6, 2

ac2−−→ 5 and 1
ab3a−−→ 3 are edges in E1(E18).

For any automaton A recall that W1(A) is the set of all words in Σ∗ of

defect 1. Also, consider the following subset of states:

D1(A) := {p ∈ Q1 | p = dupl(w) & e = excl(w) for w ∈ W1(A)}.

As in the case of binary automata these are the states directly connected

to e in Γ1(A), that is, targets of the edges with e as source. The following

71

lemma states that all the edges in Γ1(A) are images by G of these initial

edges.

Lemma 4.1. If q → p ∈ E(Γ1(A)), then there are σq ∈ G and d ∈ D1(A)
such that e · σq = q and d · σq = p. Or, what is equivalent, there is a
permutation σq ∈ G such that p · σ−1

q ∈ D1(A).

Proof. If q → p is an edge of Γ1(A), then there is a word w ∈ W1(A) of

defect 1 such that excl(w) = q and dupl(w) = p; this by definition of Γ1(A).
Remember that G is transitive, thus there is a permutation σq ∈ G such that

e · σq = q.
The word wσ−1

q has defect 1 and excl(wσ−1
q) = excl(w) · σ−1

q , at the same

time dupl(wσ−1
q) = dupl(w) · σ−1

q . Thus excl(wσ−1
q) = q · σ−1 = e and

p · σ−1
q ∈ D1(A).

This lemma also tell us that in order to compute Γ1(A) it is sufficient

to calculate D1(A), and then apply to the generated edges permutations

that send e to each of the different states of the automaton. In our running

example the initial edges of Γ1(E18) are shown in Figure 4.3.

1

6

5

3

a
a2
ab 3a

Figure 4.3: The initial edges of Γ1(E18).

And the strongly connected component that contains 1 is shown in Figure

4.4 (we omitted the labels to lighten the picture).

Now, let Ce
[1] ⊆ Q1 be the vertex set of the strongly connected component

of Γ1(A) that contains e.

Lemma 4.2. The set C
[1]
e is a block of imprimitivity.

Proof. If Γ1(A) is strongly connected then C
[1]
e = Q and the proposition is

true.

Let σ ∈ G be the permutation such that e · σ = dupl(a) = d, then the

edge d
aσ−→ d · σ ∈ E1. If we repeat the application of σ, the resultant words

all have defect 1, and there is an i ≥ 1 such that d · σi = e. Then, C
[1]
e is not

a singleton since at least e, d ∈ C
[1]
e .

Considering this we will prove first that for any σ ∈ G, Ce
[1] · σ is also a

strongly connected component.

72

1

23

4

5 6

Figure 4.4: A strongly connected component of Γ1(E18).

Let p, q ∈ Ce
[1] be two arbitrary states. In Γ1(A) there is a path:

p
w1−→ t1

w2−→ t2 . . . tk−1
wk−→ q

where every wi is a word of defect 1. Since permutations act well on excluded

and duplicated states, then:

p · σ w1σ−−→ t1 · σ w2σ−−→ t2 · σ . . . tk−1 · σ wk·σ−−→ q · σ

is a path in Ce
[1] · σ; in the same way we can connect q · σ with p · σ making

a strongly connected component.

If x ∈ Ce
[1] ∩Ce

[1] · σ let y ∈ Ce
[1] and z ∈ Ce

[1] · σ be two different states.

By the definition of a strongly connected component there are paths from y
to x, from x to z, going back, from z to x, and from x to y. Then

Ce
[1] = Ce

[1] · σ.

This makes Ce
[1] a block of imprimitivity.

In the case that the group G is primitive over Q, from Lemma 4.2 we can

see that Γ1(A) will be strongly connected and by Theorem 1.1 it immedi-

ately follows that A is completely reachable. That is why, from now on we

consider that the group G, besides being transitive, has at least a block of

imprimitivity.

In the case of E18 we have seen that C
[1]
e = {1, 2, 3, 4, 5, 6}, and the other

strongly connected components are the sets B2 = {7, 8, 9, 10, 11, 12} and

B3 = {13, 14, 15, 16, 17, 18}. Recall the description of Rystsov graphs de-

tailed in Section 1.2. Since these sets have more than two elements, we can

continue the construction of Γ(E18). Accordingly to the process of construc-

tion, the vertex set of Γ2(E18) is Q2 = {C [1]
e , B2, B3}. Consider the word

73

w := ab3aca, note that excl(w) = {1, 3} and dupl(w) = {8, 6}, hence the

edge C
[1]
e

w−→ B2 ∈ E2. If we add b twice more we have:

excl(wb) = {11, 12}, dupl(wb) = {9, 16}
excl(wbb) = {13, 15}, dupl(wbb) = {18, 2}.

Thus adding the edges B2
wb−→ B3 and B3

wbb−−→ C
[1]
e to E2. These are

enough to conclude, thanks to Theorem 1.2, that E18 is completely reachable.

Now, we extend the results given by Lemma 4.1 and Lemma 4.2. Fol-

lowing the previous notation denote the strongly connected component that

contains e in the graph Γk(A) as C
[k]
e . Recall the notions of foliage of a

strongly connected component in a Rystsov graph introduced in Chapter 1.

Most importantly, the foliage is the set of states inside the strongly connected

component and is denoted by leaf().

Lemma 4.3. If the foliages of the vertices in Γk(A) form a system of imprim-
itivity of G over Q, then Y → Z ∈ Ek+1 if and only if there is a permutation
σ ∈ G and a set X ∈ Qk such that Ce

[k] → X ∈ Ek+1, leaf(Y) = leaf(Ce
[k])·σ

and leaf(X) · σ = leaf(Z).

Proof. Since permutations respect the defect of any word and act well on

excluded and duplicated sets, the converse is easy to see.

Now, if Y
w−→ Z ∈ Ek+1, with w ∈ Wk+1(A), then excl(w) ⊂ leaf(Y)

and dupl(w) ∩ leaf(Z) 6= ∅. Let w = u a σ with σ ∈ G, this is, σ is the

longest permutation after the last appearance of the letter a in w. Since

permutations do not increase the defect of a word, then ua ∈ Wk+1(A) and

excl(wσ−1) = excl(ua). From the last affirmation we can conclude that

excl(ua) ⊆ leaf(Y) · σ−1.
By hypothesis, leaf(Y) is a block of imprimitivity then leaf(Y) · σ−1 is

one as well. Recall that e ∈ excl(ua) thus excl(ua) ⊆ Ce
[k] = leaf(Y) · σ−1.

Using the same argument we can conclude that leaf(X) = leaf(Z) · σ−1.

Lemma 4.4. If the foliages of the vertices in Γk(A) form a system of im-
primitivity, then the foliage of Ce

[k+1] is a block of imprimitivity of G over
Q.

Proof. If each of the foliages of the vertices of Γk(A) forms a system of

imprimitivity, then the foliage of Ce
[k+1] is just the union of blocks of im-

primitivity. We can use an argument similar to the one used in the proof of

Lemma 4.2 to prove that the image by any σ ∈ G of the foliage of Ce
[k+1] is

also a strongly connected component and a block of imprimitivity.

The previous lemmata form the proof by induction of:

74

Proposition 4.2. For any k ≥ 1, the foliages of the vertices of each Γk(A)
form a system of imprimitivity.

Note that for any k ≥ 1 if it happens that leaf(Ce
[k]) = Q then Γk(A) is

strongly connected and A is completely reachable. Now we will proof that if

this is not the case for any k, then some block of imprimitivity that contains

e is invariant by a. We will use the following set:

Dk(A) := {p ∈ Q | p ∈ dupl(w) for some w ∈ Σ∗

such that |excl(w)| ≤ k and e ∈ excl(w) ⊆ leaf(Ce
[k−1])}.

The set of states duplicated by words of defect less than k such that their

excluded set is contained in C
[k]
e .

4.3 Intermezzo

Before we continue, it is necessary to present some definitions and results

related with the theory of permutation groups that are used in the rest of

this chapter. Let Q be a finite set and G ≤ SQ be a group of permutations

of Q. For any non-empty subset P ⊂ Q consider the set of permutations:

StG(P) := {σ ∈ G | P · σ = P}.

This is, the set of permutations of G that preserve P set-wise. It can be

easily proved that StG(P) is a subgroup of G, let us call it the stabilizer of

the subset P .

Now consider an arbitrary but fixed system of imprimitivity of G over Q,

call it B. For the sake of completeness we present the proof of the following

fact although it is well known.

Proposition 4.3. Let G be a group of permutations of the finite set Q. Sup-
pose that G is transitive and B is a system of imprimitivity. If B,C ∈ B are
two different blocks of imprimitivity then StG(B) and StG(C) are conjugate
subgroups of G.

Proof. Let p ∈ B and q ∈ C arbitrary elements of these blocks of imprimitiv-

ity. The group G is transitive over Q, that means there is a permutation σ ∈
G such that p ·σ = q. By definition of blocks of imprimitivity it can be stated

that B ·σ = C. Let us show that StG(B) = σ−1StG(C)σ. First, if τ ∈ StG(C),
then for any r ∈ B it is true that r ·σ−1τσ ∈ B; thus σ−1StG(C)σ ⊆ StG(B).
For a similar argument we can say that σStG(B)σ−1 ⊆ StG(C), finishing our

proof.

75

The core of a subgroup H of a group G, denoted by Cr(H), is the inter-

section of all the conjugates of H in G, i.e.,

Cr(H) :=
⋂

σ∈G

σ−1Hσ.

Note that this subgroup is normal for G and H as well.

Resuming with the transitive group G of permutations of Q, Proposition

4.3 tell us that for every system of imprimitivity B of Q all the stabilizers of

the blocks are conjugate. Hence, it makes sense to talk about the core of B,

or even the core of a block of imprimitivity B ∈ B and denote them Cr(B)
and Cr(B) respectively. Moreover, we can give an alternative definition to

the core of a system of imprimitivity as the intersection of all the stabilizers

of its blocks. For our purposes we look for the core of certain blocks of

imprimitivity to act in a transitive way on said blocks. We can ensure this

if said core acts transitively on at least one of the blocks.

Proposition 4.4. Let G be a group of permutations of the finite set Q.
Suppose that G is transitive and B is a system of imprimitivity. If B ∈ B

is a block and Cr(B) acts transitively on B, then this core is also transitive
on all the blocks of B.

Proof. Let C ∈ B be a different block of B, besides let p, q ∈ C be two

different states. We aim to prove that there is a permutation σ ∈ Cr(B)
such that p · σ = q. Being G transitive, there is a permutation τ ∈ G such

that C · τ = B. Let r, s ∈ B be such that p · τ = r and q · τ = s. By

hypothesis, there is a permutation ρ ∈ Cr(B) such that r · ρ = s. Thus

p · τρτ−1 = q.

Since the core is normal on G we can conclude that τρτ−1 ∈ Cr(B).

4.4 Non-reachability and invariance

In this part we see that for some almost-group automata not being completely

reachable implies there is at least one block of imprimitivity invariant by the

letter of defect 1.

Before the main proposition we present a technical lemma. Since in the

following lemma k is arbitrary but fixed, eventually C
[k]
e will be referred just

as Ce.

Lemma 4.5. Let A = 〈Q,Σ0 ∪ {a}〉 be an almost-group automaton. If
in Γℓ(A) there is an edge Ce → X and Cr(leaf(Ce)) is transitive for Ce,

76

then for every state q ∈ leaf(X), there exists a word v of defect ℓ such that
excl(v) ⊂ leaf(Ce) and q ∈ dupl(v).

Proof. The edge Ce → X is produced by a word w such that excl(w) ⊂
leaf(Ce) and dupl(w)∩ leaf(X) 6= ∅. Let p ∈ dupl(w)∩ leaf(X) be arbitrary.

Since Cr(Ce) is transitive, by Proposition 4.4 there is a permutation σ ∈
Cr(Ce) such that p ·σ = q. At the same time it is true that Ce ·σ = Ce, since

the core is a subset of StG(Ce). Therefore we have that excl(wσ) ⊂ leaf(Ce)
and q ∈ dupl(wσ). As wanted.

Using the Lemma 4.3 we also can conclude:

Corollary 4.2. If in Γk(A) there is an edge X
w−→ Y and Cr(leaf(Ce)) is

transitive for Ce. Then for every state q ∈ leaf(Y), there exists a word v of
defect k such that excl(v) ⊆ leaf(X) and q ∈ dupl(v).

With these two lemmas, we are ready for the main result of this part:

Theorem 4.2. Let A = 〈Q,Σ0 ∪ {a}〉 be an almost-group automaton. Sup-
pose Γ(A) is not strongly connected. This means for some k ≥ 1 it happens
that Γ(A) = Γk(A); and Ce

[k] = Ce
[j] for every j ≥ k. Besides this, sup-

pose that for every ℓ ≤ k the cores Cr(Ce
[ℓ]) are transitive on Ce

[ℓ]. Then
leaf(Ce

[k]) is invariant by a.

Proof. We will use a, structurally, similar proof of the fact for binary au-

tomata presented in the proof of Proposition 2.6. Suppose that Ce
[k] =

Ce
[k+1]. By induction on 0 ≤ ℓ ≤ k we will prove that

leaf(Ce
[ℓ]) · a ⊆ leaf(Ce

[k]).

For ℓ = 0 take Ce
[0] = {e} hence the proposition is true in this case.

Our first induction hypothesis is that leaf(Ce
[ℓ]) · a ⊆ leaf(Ce

[k]). By the

construction of Γℓ+1(A), for any p ∈ leaf(Ce
[ℓ+1]) there is a Xm ∈ Qℓ such

that p ∈ leaf(Xm) and there is a path:

Ce
[ℓ] → X1 → X2 → · · · → Xm

in Γℓ(A).
Now, by induction on the length of the path (the number m > 1) the idea

is to prove that leaf(Xm) · a ⊆ leaf(Ce
[k]).

If m = 1, since there is an edge Ce
[ℓ] → X1 we use Lemma 4.5 to ensure

that for p ∈ leaf(X1) there is a word w ∈ Wℓ(A) such that excl(w) ⊆

77

leaf(Ce
[ℓ]) and p ∈ dupl(w)∩leaf(X1). The defect of wa is at most ℓ+1 ≤ k+1

and by the first induction hypothesis excl(wa) ⊆ leaf(Ce
[k]) and

p · a ∈ dupl(wa) ⊆ Dk+1(A) ⊆ Ce
[k+1] = Ce

[k],

proving what we wanted.

Now suppose that m > 1 and leaf(Xm−1) · a ⊆ leaf(Ce
[k]), i.e., the second

induction hypothesis. By the Corollary 4.2 for p ∈ leaf(Xm) there is a word

w ∈ Wℓ(A) such that excl(w) ⊆ leaf(Xm−1) and p ∈ dupl(w). If we apply the

same argument as before, but this time using the second induction hypothesis
we can conclude that

p · a ∈ dupl(wa) ⊆ Dk+1(A) ⊆ Ce
[k+1] = Ce

[k],

again, as intended.

Since Ce
[ℓ+1] is a strongly connected component of Γℓ(A), thus its foliage

is the union of the respective foliages of its vertices. We have proved that

leaf(Ce
[ℓ+1]) · a ⊆ leaf(Ce

[k+1]) = leaf(Ce
[k]).

The condition of the core of the system of imprimitivty being transitive on

the blocks of imprimitivity is important for the previous proof that emulates

the argument presented in Proposition 2.6. This condition is present in all

abelian groups, but not only in these, e.g., if G is isomorphic to the dihedral

group of |Q| states. Note that the cyclic group, being abelian, satisfies this

condition, thus our results generalize the case for binary completely reachable

automata. The author conjectures that this condition can be dropped and it

is possible to prove that if the Rystsov graph of an almost group automata

is not strongly connected then there is a block of imprimitivity invariant by

a. But more work must be done in this direction.

Since completely reachable binary automata are almost group automata,

Zhu’s counter examples (presented in Chapter 3) discard the possibility of the

validity of Don’s Conjecture for the latter. Nevertheless, the same remarks

made in that moment can be done here: for the case the automaton is in

standardized form the problem it is still open. The fact that the binary

case has been proven to be a not trivial one indicates that for almost group

automata more work awaits to be done.

78

Chapter 5

A Characterization of Totally

Compatible Automata

Until now we have considered the reachability of non-empty subsets of states

of an automaton. A completely reachable automaton has the capacity of

“realizing” every non-empty subset of states with a word. Inspired by this it

is natural to consider the dual concept: partitions of the state set. While the

images of words define subsets, their kernels define partitions and it is pos-

sible to look for automata that realize every partition of the state set. This

means that we focus not on the image set of the transformation (the “right
side”), but on the partition defined by the transformation over the domain

(the “left side”).

In this section we consider the class of automata such that every possible

equivalence relation on the set of states can be obtained from a word. First

we properly define them and give some examples. Then a characterization of

these automata is given. Using this characterization we develop an algorithm

to decide whether an automaton is totally compatible or not in polynomial

time in the number of states. Following this algorithm we discuss some

additional details of this type of automata.

5.1 Definition and examples

First, we define what exactly means that a word realizes an equivalence of

the state set. Let A = 〈Q,Σ〉 be an automaton and w ∈ Σ∗ a word of

the automaton. Recall the definition of kernel of w as the binary relation

ker(w) ⊂ Q×Q where (p, q) ∈ ker(w) if and only if p ·w = q ·w. This relation

is not only an equivalence relation but it is preserved by all the letters of the

79

Partition Compatible Word

1|2|3 c
12|3 t
13|2 ct
1|23 cct
123 tct

Table 5.1: Partitions of three elements and their compatible words.

automaton. Let ρ be an arbitrary equivalence relation over the set Q. We

say that a word w ∈ Σ∗ is compatible with ρ if and only if ker(w) = ρ. From

this definition the following remark can be easily seen:

Remark 5.1. Let R1, . . . , Rk, k ≥ 1, be the classes of the equivalence ρ. A
word w ∈ Σ∗ is compatible with ρ if and only if:

1. The word synchronizes each class, i.e., |Ri · w| = 1 for 1 ≤ i ≤ k, and

2. the images by w of different classes are pairwise different, i.e., Ri ·w 6=
Rj · w for all 1 ≤ i 6= j ≤ k.

Note that any permutation (or the empty word) and a reset word are

compatible with the trivial partitions, those made by just singletons and the

whole set respectively.

Definition 5.1. The automaton A = 〈Q,Σ〉 is totally compatible if for

every equivalence relation ρ over the set Q there is a word wρ ∈ Σ∗ compatible

with this relation.

An automaton whose transformations generate the full transformation

semigroup is trivially totally compatible. Note that any totally compatible

automaton is synchronizable.

The automaton T = 〈{1, 2, 3}, {c, t}〉, where c = (1, 2, 3), is the cyclic

permutation, and the action of the letter t is defined by: 1 · t = 2 · t = 1 and

3 ·t = 3 (see Figure 5.1), is an example of a totally compatible automaton. In

Table 5.1 we can see all the partitions of three elements and their compatible

transformations in T .

Recall the sequence of Černý automata Cn, with n ≥ 2. We show in the

following section that these are examples of completely reachable automata

but not totally compatible.

From the previous information, we can make sense of Figure 5.2 which il-

lustrates the subset relation between some relevant, for our discussion, kinds

80

3

1 2c

cc

t

t

t

Figure 5.1: The automaton T .

of automata. Superior classes of automata contain inferior ones. Full trans-
formation automata are such that their transformation letters generate every

possible transformation on the set of states.

Synchronizable

Completely ReachableTotally Compatible

Completely Reachable & Totally Compatible

Full Transformation Automata

Figure 5.2: Inclusion relation of some classes of automata.

Each of these continences are proper. In the next sections it is discussed in

detail about completely reachable automata who are not totally compatible

and vice versa. Let us briefly discuss about an automaton which is completely

reachable and totally compatible but not full transformation. This example

comes from [20, Section 3], in this article a series of automata with a pair of

permutation letters is shown. Figure 5.3 represents the automaton F7 with

7 seven states.1 We differentiate the permutation letters by dashed and solid

edges. The main characteristic of this automaton that is interesting for us

is the following: For every pair of subsets of states of size two {qi, qj} and

{qk, qm} there are permutations w and v such that

{qi, qj} · w = {qk, qm} and {qk, qm} · v = {qi, qj}.
1We deviate from our usual notation of naming the states with natural numbers in

order to respect the notation used in the source.

81

q6 q1

q2

q3

q4

q5 q7

Figure 5.3: The automaton F7.

In other words, the graph of pairs is strongly connected. The next section

clarifies why it is the case that if we add any letter of defect 1, the obtained

automaton is totally compatible. In particular, if the letter of defect 1 col-

lapses the subset {q7, q4} to the state q7 and fixes the other states, then a

quick calculation shows that the Rystsov graph is strongly connected and the

obtained automaton is completely reachable. Finally, note that both permu-

tations are even, thus the group generated by then can not be the whole

symmetric group of 7 elements and it is not possible to form all the possible

transformations of 7 elements.

5.2 The characterization

Theorem 5.1. The automaton A = 〈Q,Σ〉 is totally compatible if and only
if for every pair of states p, q ∈ Q there is a word of defect 1 w ∈ Σ∗ such
that p · w = q · w or coll(w) = {p, q}.

Proof. The direct implication is rather easy to see. If A is totally compatible

and p, q ∈ Q are two arbitrary different states, then there is a word in Σ∗

compatible with the equivalence relation generated by adding the pairs (p, q)
and (q, p) to the identity relation. This is a word of defect 1 that synchronizes

these states.

On the other hand if A meets the condition, let |Q| = n. It will be shown

that, for any 1 ≤ k < n− 1, if any equivalence relation of index (the number

of different equivalence classes) larger than k has a compatible word, then a

word compatible with any equivalence relation of index k can be constructed.

This will prove the result since the empty word (or identity transformation)

is compatible with the trivial equivalence of index n, and by hypothesis all

82

the equivalence relations of index n−1 have compatible words. Suppose that

any equivalence relation of index strictly bigger than k ≥ 1 has a compatible

word in Σ∗; and let ρ be an arbitrary equivalence relation over Q of index k
with R1, . . . , Rk its classes. Without loss of generality suppose that |Rk| > 1.

Now, let π be an equivalence relation over Q of index k + 1 with equivalence

classes P1, . . . , Pk, Pk+1 such that for 1 ≤ i < k all its equivalence classes

coincide with those of ρ, i.e., Pi = Ri; and in the case of k, Rk = Pk ∪ Pk+1.

This has sense since Rk has more than one element. From our assumption

there is a word wπ ∈ Σ∗ compatible with π. Note that both conditions of the

Remark 5.1 are met by wπ with almost all equivalence classes of ρ except for

Rk, where Rk ·wπ = (Pk∪Pk+1) ·wπ = {p, q} and p 6= q. By hypothesis, there

is a defect 1 word v ∈ Σ∗ such that p · v = q · v, and acting as an injection

in the rest of states. Observe that wπv synchronizes Rk thus meeting both

conditions of the Remark 5.1, and making it compatible with ρ.

Note how the characterization is fairly similar to that of synchronizable

automata: an automaton A is synchronizable if and only if every pair of

states can be synchronized. The main difference is that in our case we ask

the word that synchronizes has to be of defect 1. Also the proof of Theorem

5.1 suggests a method to construct a word compatible with any partition of

the set of states. A word compatible with the trivial partition of all states

in one class is a synchronizing word. From this fact it is fair to assume that

the greedy algorithm that could be derived from the aforementioned proof

would not produce an automaton’s shortest reset word.

We can, already, show why Černý ’s automata are not totally compatible.

Let n > 2 be arbitrary but fixed and consider Cn. The automaton Cn has

n states, {0, . . . , n− 1} and two letters {a, b}, where b acts as the complete

cycle in the usual order and a fixes every state except 0 that is sent to 1, i.e.,

coll(a) = {0, 1}. Let {p, q} and {r, s} be different pairs of states. There is a

k ≥ 1 such that {p, q} · bk = {r, s} if and only if:

p− q ≡ r − s (mod n) or p− q ≡ s− r (mod n).

Because of this, we know there is no permutation such that

{0, 2} · w = {0, 1},

thus there is no word of defect 1 with {0, 2} as its collapsed set and Cn is not

totally compatible.

83

5.3 Decidability, size and synchronization

From the stated in Theorem 5.1 we can derive some additional properties

of totally compatible automata. The characterization suggests that in order

to decide if an arbitrary automaton is totally compatible the focus must be

on the letters that act as permutations and the ones which have defect 1.

Since these transformations have the biggest ranks (cardinal of the image

set), n and n − 1 respectively, and the composition of transformations does

not increment the rank, it would not be possible to obtain transformations

of defect 1 using transformations with lower ranks.

Using the previous terms an automaton is totally compatible if and only

if every set of states of cardinality 2 (a 2-subset) is the collapsed set of some

word of defect 1. Given two words of defect 1 of the same automaton, w and

v, recall that the word wv keeps the defect if and only if excl(w) ∈ coll(v),
in this case coll(wv) = coll(w); therefore the concatenation of two of words

of defect 1 that keeps the defect will not create new collapsed sets.

To decide whether a given automaton is totally compatible or not we need

the following construction. Let A = 〈Q,Σ〉 be an automaton, denote by Σ0

and Σ1 the subsets of letters in Σ with defect 0 and 1 respectively. Now

consider the directed and labelled graph A[2]
0 with vertex set the 2-subsets of

Q, denoted here by Q[2]; and where P
b−→ T , with b ∈ Σ0, is a directed edge

if and only if P · b = T . Define:

C := {P ∈ Q[2] | P = coll(a), for some a ∈ Σ1},

the subset of the collapsed sets of every letter in Σ1. If there is a directed path

in the graph A[2]
0 , labelled by the sequence of letters b1, b2, . . . , bk (k ≥ 0),

that begins at the 2-subset P ∈ Q[2] and finishes at some coll(a) ∈ C, then

the word w = (b1b2 . . . bk) a has defect 1. It is easy to see that coll(w) = P .

From the previous discussion the procedure to decide whether A is shown

in Algorithm 3.

84

Algorithm 3 Decide whether an automaton is totally compatible

Input: An automaton A = 〈Q,Σ〉.
Output: true if A is totally compatible, false otherwise.

1: Find Σ0 and Σ1.

2: Find C.

3: Construct the graph A[2]
0 .

4: Find the strongly connected components of A[2]
0 .

5: for all strongly connected components in A[2]
0 do

6: Check whether there is at least one pair of C in the strongly connected

component.

7: if this is the case then

8: return true

9: else

10: return false

For an automaton with n states A, in order to generate A[2]
0 we need

to consider the
(

n

2

)

possible 2-subsets and for each one determine its image

by each permutation in Σ0. Tarjan’s algorithm can be used to find the

strongly connected components of A[2]
0 . Both of these processes can be made

in O(n2|Σ0|) time. Finally, to check if every strongly connected component

contains at least one pair of C needs as many time as the number of strongly

connected components, this is, O(n2). Thus, the decision problem of totally

compatibility can be solved in polynomial time.

Proposition 5.1. Totally compatible automata are P-decidable.

Recall that if w and v are two words of defect 1 such that their concate-

nation, wv, has also defect 1 then coll(wv) = coll(w), the collapsed set is

preserved on the left. A consequence of the characterization and the afore-

mentioned fact is that if there are not enough letters to collapse every pair

of states there must be at least one letter that acts as a non-identity permu-

tation. The fact that permutation groups that connect all possible 2-subsets

of states (2-homogeneous) require at least two generators [4] makes us imply

that if a totally compatible automaton has more than three states, then it

must have more than three letters.

Corollary 5.1. If A = 〈Q,Σ〉 is a totally compatible automaton and |Q| > 3
then |Σ| > 2.

For k > 1, a natural number, the Bell’s number, Bk is the amount of

possible partitions of a set with k elements. From this, it is clear that the

size of the syntactic monoid of any totally compatible automata with n states

85

is at least Bn. It is natural to ask if this lower bound is reached by any

totally compatible automaton, that is, for every possible partition of the

state set, there is exactly one transformation in the syntactic monoid of the

automaton with kernel equal to this partition. If this is the case we say that

this automaton is minimal.
In [19, Section 12.4], it is reported the existence of a transformation semi-

group over any finite set that contains exactly one transformation for every

partition of that set. From this we can deduce the existence of a minimal

totally compatible automaton. Moreover, up to isomorphism this semigroup

is unique. Here we describe the transformations of this semigroup and a set

of generators.

Let Q be a finite set with n elements and ≺ an arbitrary but fixed linear

order of Q, i.e., Q = {q1 ≺ q2 ≺ · · · ≺ qn}. Let P,R ⊂ Q be non-empty and

disjoint, we say that P ≺ R if and only if the minimum element of P , with

respect to ≺, precedes the minimum element of R. Therefore any partition

of Q can be linearly ordered. For the arbitrary partition P1 ≺ P2 ≺ · · · ≺ Pk

of Q define the transformation that sends the elements of the set Pi to the

state qi for 1 ≤ i ≤ k. That is, the i-th subset in the ordered partition is sent

to the i-th element in the order. Any automaton such that its transformation

letters generate this semigroup is an example of a minimal totally compatible

automaton.

Now, let us show a set of generators for this semigroup. For each possible

2-subset of states {qi, qj} ⊂ Q, where (without loss of generality) qi ≺ qj ,
define the transformation letter ai,j by:

qk · ai,j : =











qk if 1 ≤ k < j;

qi if k = j;

qk−1 if k > j.

It is easy to see that these transformations belong to the aforementioned

semigroup and, following the same lines of the proof of Theorem 5.1, they

generate it. Furthermore, note that the only permutation in this minimal

semigroup is the identity, thus this is the smallest set of generators possible.

It is worth noting that this minimal automaton is an example of a totally

compatible automaton which is not completely reachable since the subsets

Q \ {qi} for 1 ≤ i < n are not reachable. For every n > 1 let us call the

automaton with n states and letters the generating set described before by

MT Cn.
Until now, we have seen examples of completely reachable but not to-

tally compatible automata and vice versa. The following proposition gives

a necessary condition for a totally compatible automaton to be completely

86

reachable. The idea behind it was inspired by [3]. First recall that a trans-

formation u, of defect 1 such that coll(u) = {q, p}, is idempotent (u2 = u) if

and only if, without loss of generality, p · u = q and the transformation acts

as the identity on the rest of states; hence excl(u) = p and dupl(u) = q.

Lemma 5.1. Let A = 〈Q,Σ〉 be an automaton. Suppose that the group
generated by Σ0 (the transformation letters that act as permutations over Q)
is transitive. Let u ∈ Σ∗ be a transformation of defect 1 with coll(u) = {q, p}.
Then Σ∗ contains both idempotents of defect 1 with collapsed set {q, p}.

Proof. Let e ∈ Q be the excluded state of the transformation u. Since

the group generated by the permutations letters is transitive, then there is

a permutation σ ∈ Σ∗ such that e · σ = q. Consider the transformation

uσ ∈ Σ∗. It has defect 1, excl(uσ) = q and coll(uσ) = coll(u). Besides, uσ
acts as a permutation on the set Q \ {q}. Hence, there is a positive number

k > 1 such that (uσ)k acts as the identity on this set. This transformation is

still of defect 1 and coll((uσ)k) = coll(u) since collapsed sets do not change

with the addition of suffixes. Furthermore excl((uσ)k) = q and

p · (uσ)k = p = q · (uσ)k.

Thus (uσ)k is one of the idempotents we look for. A repetition of the previous

argument now with p as the image of the excluded set completes the proof.

With this lemma we can now say the following about Rystsov graph of a

totally compatible automaton with a transitive group.

Proposition 5.2. Let A = 〈Q,Σ〉 be a totally compatible automaton such
that the group generated by Σ0 is transitive. The graph Γ1(A) is complete on
the vertex set Q.

Proof. Let p, q ∈ Q be two different states. Since A is a totally compatible

automaton, by its characterization (Theorem 5.1) there is a transformation

w ∈ Σ∗ of defect 1 such that coll(w) = {p, q}. By the previous lemma,

there are idempotent transformations of defect 1 such that {p, q} is their

collapsed set, thus these transformations define in Γ1(A) the edges (p, q) and

(q, p). This happens for every arbitrary pair of states. Thus the graph is

complete.

By this we have the corollary:

Corollary 5.2. If A = 〈Q,Σ〉 is a totally compatible automaton such that
the group generated by Σ0 is transitive, then A is completely reachable.

87

It is trivial to see that if an automaton is totally compatible, it is syn-

chronizable since there must be a transformation for the complete equivalence

relation. Thus, it is natural to ask for a bound of the shortest synchronization

word of a totally compatible automaton. Using the naive method of synchro-

nization by one pair at time it is easy to see thatMT Cn synchronizes with a

word of length n. Note that this automaton has a quadratic number of letters

of defect 1 and no permutations. On the other hand if a totally compatible

automaton has just one letter of defect 1, then it must have permutations

letters that generate a 2-homogeneous, and therefore primitive, group [5].

Although not explicitly stated in [20, Remark 8] it is proven that automata

where their permutation letters generate a 2-homogeneous group have a syn-

chronization word of length at most quadratic on the number of states. These

examples represent extreme cases in the number of letters of defect 1 of the

automaton, between just one letter and a quadratic number of them. Work

is yet to be done in the middle ground, where the group generated by the

permutation letters does not connect all the 2-subsets of states and more

than one letter of defect 1 is needed.

88

Conclusion

In this work we have, mainly, dealt with complete reachable automata. This

kind of automata are an special case of synchronizable ones. We narrowed

our attention to automata whose letters have the largest possible ranks, this

is, permutations and letters of defect 1. At first sight, this kind of automata

looks simple, but they have shown a great potential for interesting research.

The main conclusions of this work are the results obtained in the devel-

opment of it. Let us present a summary of these results.

• At first, extending the ideas given in [21], we proposed an algorithm

to construct the Rystsov graph Γk() of an arbitrary automaton with n
states and m letters. This algorithm has a polynomial time complexity,

with exponent k.

• We have characterized binary completely reachable automata. Our

characterization leads to an algorithm that given a binary automaton

A, decides whether or not A is completely reachable in quasilinear

time with respect to the size of A. Our results heavily depend on the

fact that apart from a single exception, binary completely reachable

automata are circular, that is, have a letter acting as a cyclic permuta-

tion of the whole state set. Thus, the characterization depends on how

the non permutation letter acts over the subsets of states that represent

subgroups of the corresponding cyclic group.

• After characterizing binary completely reachable automata, we tack-

led the problem of bounding the length of the words that reach each

subset. We found a partial characterization of standardized binary

completely reachable automata that follow Don’s conjecture. This was

done by expanding Don’s ideas and taking advantage of the character-

ization previously found. As noted in Chapter 3 the requirement to be

a standardized automaton is not an innocuous one.

• Once considered the binary case we wanted to continue the discussion

on complete reachability for automata with more than two letters. For

89

this, we considered almost group automata. For them we had a par-

tial success expanding the results obtained for the binary case. These

results tell us that what is important for complete reachability is how

the letter of defect 1 acts on the systems of blocks of the group gen-

erated by the permutations of the automaton. We managed to prove

the necessity of the condition and a weaker version for the sufficient

direction.

• Inspired by the notion of automata that can obtain every possible non-

empty subset of states as image of some word, we continued our discus-

sion with the dual notion: automata that have every possible partition

of the states set as the kernel of some word. It was, also, proposed

an algorithm that runs in polynomial time in the number of states to

decide whether a finite automaton is of that type or not.

Open problems and future work

In the process of researching and solving questions, most of the cases, new

problems to be solved arise. Our work is not an exception of this. This is

a list of some of the questions and problems we found. It is by no means

complete and more inquiries may be waiting to be discovered.

• This work contains some examples of binary completely reachable au-

tomata whose Rystsov graph are disconnected when considering words

of defect 1 and 2. It is yet to be found examples for bigger defects.

By this we mean binary completely reachable automata whose Rystsov

graphs Γ1,Γ2 and Γ3 are disconnected but once we consider Γ4 the

graph becomes strongly connected. Off course the problem can be ex-

tended for an arbitrary large k > 1. To be more concrete: Find binary
completely reachable automata such that all the Rystsov graphs Γi, with
i ≤ k are disconnected but the graph Γk+1 is connected.

• Related to the previous problem it comes the problem of minimality.

Recall that Corollary 2.1 allows us to conclude that the minimal num-

ber of states for binary completely reachable automata automata with

Γ1 disconnected is 12. We conjecture that in the case of Γ2 being dis-

connected, the minimal number of states required is 48. Again, this

problem can be extended to the general case.

• Zhu in [39] proved that Don’s conjecture is not true for arbitrary com-

pletely reachable automata and gave bound for standardized binary

90

completely reachable automata. Nevertheless it is still open if stan-

dardized binary completely reachable automata fulfill Don’s conjecture

or there are counter examples as in the general case. Although the ex-

pansion method alone is not enough more work in that direction could

lead to some progress.

• The transitivity of the cores over the blocks is a condition necessary

for the proof of Theorem 4.2. The author thinks this condition can

be omitted; yet it is still open to find a proof for this fact. Adding to

this, the aforementioned discussion about Don’s conjecture and Rystsov

graphs applies in this case for almost group automata.

• There is plenty of work to be done in regard of the length of synchro-

nization words of totally compatible automata. Table 5.2 depicts the

lower and upper bounds of synchronizing words for the different kinds

of automata studied in this work. Note how for totally compatible au-

tomata both bounds are open and we present just the bounds given

by some kind of automata that are contained and contain the kind of

totally compatible.

Kind of Automata Lower bound Upper bound

Synchronizable (n− 1)2 0.1654n3 + O(1)[35]

Completely Reachable (n− 1)2 2n2 − n ln(n)− 4n + 2 [17]

Totally Compatible
n(n−1)

2
[20] 0.1654n3 + O(1)[35]

Completely Reachable and

Totally Compatible

n(n−1)
2

[20] 2n2 − n ln(n)− 4n + 2 [17]

Full Transformation Automata
n(n−1)

2
[20] 2n2 − 6n + 5[20]

Table 5.2: Table with the bounds for the length of synchronizing words of

some kind of automata.

The research on completely reachable automata was, partly, initiated to

further study the synchronization problem and the Černý’s conjecture. In

the same vein totally compatible automata were conceived. But, the subject

has gained inertia by itself and it has developed into a source of new and

interesting problems and results. We hope this work is an evidence of this.

91

Bibliography

[1] D. Ananichev and M. Volkov. Some results on Černý type problems for

transformation semigroups. In Proceedings of the Workshop Semigroups
and Languages: Lisboa, Portugal, 27–29 November 2002, pages 23–42.

World Scientific, 2004.

[2] D. Ananichev and V. Vorel. A new lower bound for reset threshold of

binary synchronizing automata with sink. Journal of Automata, Lan-
guages and Combinatorics, 24(2-=4):153–164, 2019.

[3] J. André. Near permutation semigroups. In Proceedings of the Workshop
Semigroups and Languages: Lisboa, Portugal, 27–29 November 2002,

pages 43–53. World Scientific, 2004.

[4] J. Araújo, W. Bentz, and P. Cameron. Orbits of primitive k-homogenous

groups on (n− k)-partitions with applications to semigroups. Transac-
tions of the American Mathematical Society, 371(1):105–136, 2018.

[5] R. Beaumont and R. Peterson. Set-transitive permutation groups. Cana-
dian Journal of Mathematics, 7:35–42, 1955.

[6] M. Berlinkov and C. Nicaud. Synchronizing almost-group automata. In-
ternational Journal of Foundations of Computer Science, 31(08):1091–

1112, 2020.

[7] J. Berstel, D. Perrin, and C. Reutenauer. Codes and Automata. Encyclo-

pedia of Mathematics and its Applications. Cambridge University Press,

2009.

[8] E. Bondar, D. Casas, and M. Volkov. Completely reachable automata:

An interplay between automata, graphs, and trees. International Jour-
nal of Foundations of Computer Science, 34(06):655–690, 2023.

[9] E. Bondar and M. Volkov. Completely reachable automata. In Descrip-
tional Complexity of Formal Systems, pages 1–17. Springer, 2016.

92

[10] E. Bondar and M. Volkov. A characterization of completely reachable au-

tomata. In Developments in Language Theory, pages 145–155. Springer,

2018.

[11] D. Casas and M. Volkov. Binary completely reachable automata. In

LATIN 2022: Theoretical Informatics, pages 345–358. Springer, 2022.

[12] D. Casas and M. Volkov. Don’s conjecture for binary completely reach-

able automata: an approach and its limitations, 2024. Preprint on:

https://arxiv.org/abs/2311.00077.

[13] J. Černỳ. Poznámka k homogénnym experimentom s konečnỳmi

automatmi. Matematicko-fyzikálny Časopis Slovensky Akadmie Vied,

14(3):208–216, 1964.

[14] J. Černý. A note on homogeneous experiments with finite automata.

Journal of Automata, Languages and Combinatorics, 24(2–4):123–132,

2019.

[15] H. Don. The Černý conjecture and 1-contracting automata. The Elec-
tronic Journal of Combinatorics, 23(3): article no. P3.12, 2016.

[16] L. Dubuc. Sur les automates circulaires et la conjecture de Černý.

RAIRO – Theoretical Informatics and Applications, 32(1-3):21–34, 1998.

[17] R. Ferens and M. Szyku la. Completely reachable automata: A poly-

nomial algorithm and quadratic upper bounds. In 50th International
Colloquium on Automata, Languages, and Programming (ICALP 2023),
pages 59:1–59:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,

2023.

[18] M. Fredman and D. Willard. Surpassing the information theoretic

bound with fusion trees. Journal of Computer and System Sciences,
47(3):424–436, 1993.

[19] O. Ganyushkin and V. Mazorchuk. Classical Finite Transformation
Semigroups. Springer, 2009.

[20] F. Gonze, V. Gusev, R. Jungers, B. Gerencsér, and M. Volkov. On the

interplay between Černý and Babai’s conjectures. International Journal
of Foundations of Computer Science, 30(01):93–114, 2019.

[21] F. Gonze and R. Jungers. Hardly reachable subsets and completely

reachable automata with 1-deficient words. Journal of Automata, Lan-
guages and Combinatorics, 24(2–4):321–342, 2019.

93

[22] G. Hardy and E. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, 6th edition, 2008.

[23] S. Hoffmann. Binary and circular automata having maximal state com-

plexity for the set of synchronizing words. Information and Computation,

295: article no. 105076, 2023.

[24] S. Hoffmann. New characterizations of primitive permutation groups

with applications to synchronizing automata. Information and Compu-
tation, 295: article no. 105086, 2023.

[25] J. Kari. A counter example to a conjecture concerning synchronizing

words in finite automata. Bulletin of the EATCS, 73:146, 2001.

[26] J. Kari. Synchronizing finite automata on Eulerian digraphs. Theorerical
Computer Science, 295:223–232, 2003.

[27] C. Liu. Some memory aspects of finite automata. PhD thesis, Mas-

sachusetts Institute of Technology, Department of Electrical Engineer-

ing, 1962.

[28] M. Maslennikova. Reset complexity of ideal languages. In Mária

Bieliková, Gerhard Friedrich, Georg Gottlob, Stefan Katzenbeisser, and

György Turán, editors, SOFSEM 2012: Theory and Practice of Com-
puter Science (Institute of Computer Science Academy of Sciences of the
Czech Republic), pages 33–44. See also https://arxiv.org/abs/1404.2816

, 2012.

[29] E. Moore. Gedanken-experiments on sequential machines. In Automata
Studies, pages 129–154. Princeton University Press, 1956.

[30] B. Natarajan. An algorithmic approach to the automated design of parts

orienters. In 27th Annual Symposium on Foundations of Computer Sci-
ence, pages 132–142, 1986.

[31] B. Natarajan. Some paradigms for the automated design of parts feeders.

The International Journal of Robotics Research, 8(6):98–109, 1989.

[32] J. Pin. Sur un cas particulier de la conjecture de Cerny. In Giorgio

Ausiello and Corrado Böhm, editors, Automata, Languages and Pro-
gramming, Fifth Colloquium, Udine, Italy, July 17–21, 1978, Proceed-
ings, pages 345–352, Springer, 1978.

94

[33] I. Rystsov. Estimation of the length of reset words for automata with

simple idempotents. Cybernetics and Systems Analysis, 36(3):339–344,

2000.

[34] I. Rystsov and M. Szyku la. Primitive automata that are synchronizing,

2023. Preprint on https://arxiv.org/abs/2307.01302.

[35] Y. Shitov. An improvement to a recent upper bound for synchronizing

words of finite automata. Journal of Automata, Languages and Combi-
natorics, 24(2–4):367–373, 2019.

[36] P. Starke. Eine Bemerkung über homogene Experimente. Elektronische
Informationsverarbeitung und Kybernetik, 2(4):257–259, 1966.

[37] P. Starke. A remark about homogeneous experiments. Journal of Au-
tomata, Languages and Combinatorics, 24(2–4):133–137, 2019.

[38] M. Volkov. Synchronization of finite automata. Russian Mathematical
Surveys, 77(5):819–891, 2022.

[39] Yinfeng Zhu. Around Don’s conjecture for binary completely reachable

automata. In Joel D. Day and Florin Manea, editors, Developments in
Language Theory, pages 282–295, Springer, 2024.

95

	TitlePage_David
	Dissertation

