Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

На правах рукописи

no

Зен Еддин Мохамад

СИНТЕЗ СТИРОЛОВ, МОДИФИЦИРОВАННЫХ АРОМАТИЧЕСКИМИ ФЛУОРОФОРАМИ, И ПОЛИМЕРОВ НА ИХ ОСНОВЕ

1.4.3. Органическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Екатеринбург – 2024

Работа выполнена в лаборатории гетероциклических соединений ФГБУН Институт органического синтеза им. И.Я. Постовского Уральского отделения Российской академии наук и на кафедре органической и биомолекулярной химии Химико-технологического института ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

доктор химических наук, академик РАН, профессор, Научный руководитель: Чарушин Валерий Николаевич Официальные оппоненты: Стрельников Владимир Николаевич. доктор технических наук, член-корреспондент РАН, профессор, «Институт технической химии Уральского отделения Российской академии наук» – филиал ФГБУН Пермского федерального исследовательского центра Уральского отделения Российской академии наук, директор филиала; Борщев Олег Валентинович, доктор химических наук, ФГБУН Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук, г. Москва, заведующий лабораторией функциональных материалов для органической электроники и фотоники;

> Бурындин Виктор Гаврилович, доктор технических наук, профессор, ФГБОУ ВО «Уральский государственный лесотехнический университет», г. Екатеринбург, профессор кафедры технологий целлюлозно-бумажных производств и переработки полимеров

Защита диссертации состоится «18» декабря 2024 г. в 14:00 ч на заседании диссертационного совета УрФУ 1.4.06.09 по адресу: 620062, г. Екатеринбург, ул. Мира, 19, ауд. И-420 (зал Ученого совета).

С диссертацией можно ознакомиться в библиотеке и на сайте ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», <u>https://dissovet2.urfu.ru/mod/data/view.php?d=12&rid=6523</u>

Автореферат разослан «____» ____ года.

Jocues

Ученый секретарь диссертационного совета

Поспелова Татьяна Александровна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Развитие химии стиролов, модифицированных флуорофорами, является актуальным направлением исследований, имеющим своей целью создание новых полимерных светоизлучающих материалов – потенциальных сенсоров для определения нитроароматических соединений. Результатом данных исследований является синтез новых флуоресцентных полимеров на основе 4-арил- и 4-Nариламинозамещённых стиролов, содержащих привитые к основной цепи фрагменты полициклических ароматических соединений.

Известно, что органические молекулы и полимеры, содержащие фрагменты полициклических ароматических углеводородов, являются подходящими флуорофорами. К примеру, пирен и его производные успешно применяются в качестве флуоресцентных добавок к полистиролу для обнаружения взрывчатых веществ нитроароматического ряда на наномолярном уровне как в растворах, так и в паровой фазе, а полимерные микрошарики с добавками пирена являются основой флуоресцентных хемосенсоров для определения 2,4динитротолуола (DNT) в концентрации 10⁻⁹ в водных средах.

Детектирование взрывчатых веществ (ВВ) нитроароматического ряда на основе тушения флуоресценции привлекает большое внимание благодаря низкой стоимости датчиков, высокой скорости отклика, а также возможности дистанционного управления и чрезвычайно высокой чувствительности. В этом случае основными рабочими элементами служат флуорофоры, способные обратимо образовывать *π*-комплексы с нитроароматическими соединениями.

Нитроароматические соединения широко используются в агрохимической, фармацевтической и других отраслях промышленности. Проблема обнаружения BB является особенно острой сегодня, когда в условиях повышенной угрозы террористических актов существует огромная потребность в разработке простых и эффективных хемосесоров для обнаружения нитроароматических соединений, поскольку известные физические методы и созданные на их основе приборы для обнаружения и контроля BB являются, как правило, дорогими, сложными в эксплуатации и недоступны в полевых условиях.

Степень разаботанности темы исследования

В литературе известно несколько основных методов синтеза 4-арил и 4-N-ариламинозамещённых стиролов. К наиболее универсальным, высокоселективным и продуктивным методам относятся палладий-катализируемые кросс-сочетания по реакциям Сузуки-Мияуры и Бухвальда–Хартвига. Высокая каталитическая активность комплексов палладия в этих реакциях обеспечивает высокую селективность и хорошие выходы целевых продуктов, а также участие разнообразных арилирующих агентов.

Кроме того, важным технологическим приемом в синтезе новых 4-арил и 4-ариламинозамещённых стиролов является использование микроволнового излучения в реакциях Сузуки-Мияуры и Бухвальда–Хартвига, что позволяло повысить выходы и существенно снизить время реакции. Следует отметить, что к моменту постановки настоящей работы в литературе было мало сведений о применении микроволнового излучения в синтезах 4-арил- и 4-N-ариламинозамещённых стиролов.

Цель диссертационной работы - синтез новых полимеров на основе стиролов, модифицированных химически введением фрагментов флуорофорных ароматических веществ или путем допирования полистирольной матрицы флуорофорами, в качестве потенциальных сенсоров по отношению к нитроароматическим соединениям.

Для достижения цели были поставлены следующие задачи:

1. Синтез новых стиролов путем химической прививки фрагментов флуорофорных ароматических веществ и получение полимеров на их основе.

2. Изучение фотофизических свойств полученных новых мономеров и полимеров.

3. Исследование сенсорных свойств полученных полимеров по отношению к нитроароматическим соединениям в растворах, а также их применение в качестве флуоресцентных сенсоров для обнаружения нитроаренов в газовой фазе.

4. Изучение сенсорных свойств флуорофора - 1,3,6,8-тетракис-[(триметилсилил)этинил]пирена - по отношению к нитроароматическим соединениям в растворе, а также возможности его применение как допирующей добавки к полистиролу, в качестве флуоресцентного сенсора для обнаружения нитроаренов в газовой фазе.

Научная новизна и теоретическая значимость работы. Синтезирован ряд новых стиролов, модифицированных в положении 4 ароматическими флуорофорами с различным числом конденсированных бензольных колец; синтезирован ряд новых полимеров на основе полученных стиролов; для полученных мономеров и полимеров изучены фотофизические свойства в растворах и в твердом состоянии; изучены сенсорные свойства полученных полимеров по отношению к нитроароматическим соединениям в растворах, а также возможность их применения в качестве флуоресцентных сенсоров для обнаружения нитроаренов в газовой фазе; изучены сенсорные свойства флуорофора - 1,3,6,8-тетракис-[(триметилсилил)этинил]пирена - по отношению к нитроароматическим соединениям в растворе, а также его применения в чистом виде, или как допирующей добавки к полистиролу, в качестве флуоресцентных сенсоров для обнаружения нитроаренов в газовой фазе.

Практическая значимость работы. Разработаны методы синтеза 4-арил- и 4-Nариламинозамещённых стиролов, и на основе этих стиролов получены новые полимеры, которые могут быть использованы в качестве флуоресцентных сенсоров для обнаружения нитроароматических соединений как в растворах, так и в газовой фазе.

Собраны прототипы сенсорных устройств для мобильного детектора нитророматических соединений, которые способны к многоразовому, обратимому и быстрому обнаружению следовых количеств паров нитробензола и 2,4-динитротолуола в воздухе.

Методология и методы диссертационного исследования. Структура и состав полученных соединений были подтверждены комплексом физико-химических методов анализа, таких как ИК-спектроскопия, ЯМР-спектроскопия на ядрах ¹Н и ¹³С, рентгеноструктурный анализ, масс-спектрометрия и гель-проникающая хроматография. Изучение оптических и сенсорных свойств проводилось методами электронной и флуоресцентной спектроскопии. Термические свойства полимеров исследованы методами термогравиметрического анализа (ТГА).

Достоверность полученных данных. Достоверность полученных результатов подтверждена физико-химическими методами анализа (структура синтезированных соединений), а также экспертной оценкой редакционных коллегий научных журналов, в которых были опубликованы результаты данной работы. Противоречия между выводами, сделанными в результате выполнения работы, и известными литературными данными отсутствуют.

На защиту выносятся следующие положения:

- разработка методов синтеза последовательного ряда 4-арилстиролов и 4-Nариламино-стиролов, содержащих арильные остатки с различным числом конденсированных бензольных колец, путем промотируемых микроволновым излучением реакций кросс-сочетания;

- синтез 5-и мономеров 4-арилстирольного ряда, 8-ми мономеров – производных 4-N-ариламиностирола и 14 полимерных соединений на основе полистирольных матриц;

- результаты исследования оптических свойств полученных мономеров и полимеров;

- результаты исследования сенсорных свойств полученных полимеров по отношению к нитроароматическим соединениям в растворах, а также возможности их применения в качестве флуоресцентных сенсоров для обнаружения нитроаренов в газовой фазе;

- результаты исследований сенсорных свойств известного флуорофора - 1,3,6,8*тетракис*-[(триметилсилил)этинил]пирена - по отношению к нитроароматическим соединениям в растворах, а также возможности его применения в чистом виде, или или как допирующей добавки к полистиролу, в качестве флуоресцентных сенсоров для обнаружения нитроаренов в газовой фазе.

Личный вклад соискателя состоит в систематизации и анализе литературных данных о методах синтеза 4-(гет)арил- и 4-(гет)ариламинозамещённых стиролов и полимеров на их основе, разработке методов синтеза и структурной идентификации ранее неописанных 4-арил- и 4-N-ариламинозамещённых стиролов, а также полимеров на их основе, обработке и интерпретации экспериментальных данных, подготовке публикаций по выполненной работе, написании текста диссертации и автореферата.

Апробация работы. Полученные результаты представлены на всероссийских и международных конференциях, в том числе на IX Молодежной конференции ИОХ РАН (Москва, 2021), V Международной конференции «Современные синтетические методологии для создания лекарственных препаратов и функциональных материалов» (Екатеринбург, 2021), XXXII и XXXIII Российской молодёжной научной конференции с международным участием «Проблемы теоретической и экспериментальной химии» (Екатеринбург, 2022, 2023), Всероссийской конференции по люминесценции с международным участием (LUMOS-2024) (Москва, 2024).

Публикации. Основное содержание исследования опубликовано в 11-ти научных работах, в том числе в 6-ти научных статьях в рецензируемых научных журналах, определенных ВАК РФ и Аттестационным советом УрФУ, и входящих в международные базы цитирования Scopus и Web of Science, и 5-ти тезисах докладов научных конференций международного и российского уровней.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках государственного задания ИОС УрО РАН по проекту "Создание функциональных материалов для техники и технологий" (рег. № 124020100137-7).

Структура и объём диссертации. Диссертационная работа выполнена на 178 страницах, состоит из введения, литературного обзора (глава 1), обсуждения результатов (глава 2), экспериментальной части (глава 3), заключения и списка литературы. Работа содержит 48 схем, 24 таблицы, 74 рисунков. Библиографический список цитируемой литературы состоит из 318 наименований. за постоянное внимание и неоценимую помощь в проведении исследований

Благодарность. Автор выражает глубокую и искреннюю благодарность коллективу ИОС УрО РАН, в частности, научному руководителю, академику РАН, д.х.н., проф., В.Н. Чарушину, дириктору ИОС УрО РАН, д.х.н, проф. РАН, Е.В. Вербицкому и в.н.с., к.х.н, Г.Л. Русинову за постоянное внимание и неоценимую помощь в проведении исследований; н.с., к.х.н., Е.Ф. Жилиной за исследование оптических и сенсорных свойств; с.н.с., к.х.н., М.Г. Первовой и м.н.с., К.А. Чистякову за проведение хроматографических исследований; с.н.с., к.х.н., М.И. Кодессу и н.с., к.х.н., М.А. Ежиковой за проведение ЯМР исследований; с.н.с., к.х.н., Д.Л. Чижову и доценту, к.х.н., А.В. Пестову за ценные замечания в подготовке работы. Автор также благодарит сотрудникам Физико-технологического института УрФУ Р.Д. Чувашову, к.т.н. А.А. Барановой и к.ф.-м.н. К.О. Хохлову за определение чувствительности к парам нитроароматических соединений с использованим созданного ими оригинального детектора-обнаружителя.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении обоснована актуальность и практическая значимость работы, сформулированы цели и задачи исследования. В обзоре литературы (глава 1) обсуждаются методы синтеза 4-(гет)арил- и 4-(гет)ариламинозамещённых стиролов и данные об использования полимеров на их основе. Результаты исследований и их обсуждение приведены в главе 2. В экспериментальной части (глава 3) описаны методики синтеза, оборудование, реактивы и материалы, а также методики синтеза.

Глава 2. Обсуждение результатов

2.1. Синтез и фотофизические свойства стиролов, модифицированных флуорофорными фрагментами

2.1.1. Синтез 4-арилзамещённых стиролов посредством палладийкатализируемых кросс-сочетаний по реакции Сузуки—Мияуры

В зависимости от структуры исходных реагентов возможны два пути синтеза 4арилстиролов по реакции Сузуки-Мияуры. В работе выбран путь, который основан на взаимодействии 4-бромстирола с соответствующими арилбороновыми кислотами, а в качестве модельной была выбрана реакция кросс-сочетания 1-бром-4-винилбензола 1 с 2нафталинбороновой кислотой **2a** (Схема 1).

Рd катализатор, фосфиновый лиганд, K₃PO₄ (2.5 экв.), температура, время Растворитель Реакции кросс-сочетания по Сузуки

3a

Схема 1

1	-ором-4-винилое	нзола 1 с 2-нафта	алиноороновой кисло	этой 2а .	7
Опыт	Pd катализатор ^{a}	Фосфиновый	Температура /	Растворитель	Выход За ^{<i>b</i>} ,
	(мол.%)	лиганд (мол.%)	Время	1 ue i Bopiii e i B	%
1	$Pd(OAc)_{2}(1)$	$PCv_2(2)$	MW 80°C / 30 мин	Толуол–Н2О	99
-	1 4(0/10)2(1)	1 0 9 3 (2)	M100,00 C7 50 Milli	(20:1)	,,,
2	$Pd(OAc)_{2}(1)$	$PC_{v_2}(2)$	MW 80°C / 10 мин	Толуол–H ₂ O	97
2	1 u(0/10)2 (1)	1 Cy3 (2)		(20:1)	71
3	$Pd(OAc)_{2}(1)$	$PC_{v_2}(2)$	MW 80°C / 1 мин	Толуол–H ₂ O	95 (81) ^c
5	1 u(0/10)2 (1)	1 Cy3 (2)		(20:1)	<i>95</i> (01)
Δ	$Pd(OAc)_{2}(1)$	$PC_{V_2}(2)$	MW 150°С / 1 мин	Толуол–Н ₂ О	$97 (90)^c$
-	1 u(OAC) ₂ (1)	1 Cy3 (2)	WIW, 150 C / 1 MIIH	(20:1))7()0)
5	DAPCy (5)	-	25°С / 24 ч	EtOH	4
6	DAPCy (5)	-	кипячение / 2 ч	EtOH	36
7	DAPCy (1)	-	MW, 80°C / 10 мин	EtOH	25
0	$\mathbf{D}\mathbf{A}\mathbf{D}\mathbf{C}_{\mathbf{T}}(1)$		MW $90^{\circ}C$ / 10 years	Толуол–EtOH	27
0	DAPCy (1)	-	WIW, 60 С / 10 МИН	(2:1)	57
0	$\mathbf{DAPC}_{\mathbf{T}}(1)$		MW 80°C / 20 Mar	Толуол–H ₂ O	10
9	DAPCy (1)	-	WIW, 60 С / 20 МИН	(20:1)	10
10	$\mathbf{DAPC}_{\mathbf{T}}(1)$		$MW = 80^{\circ}C / 10$ your	Толуол–Н2О	21
10	DAPCy (1)	-	WIW, 60 С7 10 МИН	(20:1)	51
11	DAPCy (1)	-	MW, 80°C / 10 мин	Толуол	56
12	$PdCl_2(5)$	-	25°С / 24 ч	Pr ⁱ OH	4
0	$DADC_{rr}(1)$		MW $90^{\circ}C / 10$	Толуол–EtOH	27
8	DAPCY (1)	-	$MW, \delta U C / 10 MH$	(2:1)	57

Таблица 1 - Оптимизация условий реакции кросс-сочетания 1-бром-4-винилбензола 1 с 2-нафталинбороновой кислотой 2а.

Общие условия: 1-бром-4-винилбензол (1) (182 мг, 1.0 ммоль), 2-нафталинбороновая кислота (2а) (345.45 мг, 1.5 ммоль), 2.5 экв., К₃РО₄ в 5 мл растворителя. МW – реакции в условиях микроволнового облучения (300 Вт). "При катализе Pd(OAc)₂ реакции проводили в атмосфере

аргона, при катализе DAPCy и PdCl₂ реакции проводили на воздухе; ^{*b*}Выход, определенный по данным ГХ– МС; ^сПрепаративный выход.

Анализ данных таблицы 1 показывает, что оптимальным является применение каталитической системы $Pd(OAc)_2$ (0.01 экв.) и PCy_3 (0.02 экв.) в смеси растворителей толуол/ H_2O , взятых в соотношении 20: 1 (Таблица 1, опыты 3,4) в условиях микроволновой активации, что дает сопоставимые выходы по данным ГХ с пламенно-ионизационным детектором (ГХ-ПИД), а наиболее высокий препаративный выход соединения **3a** (90%) был достигнут при проведении реакции при 150 °C.

Найденные оптимальные условия использовались для проведения реакции кросссочетания 1-бром-4-винилбензола 1 с 1-нафталинбороновой 2b, 9-фенантраценилбороновой 2c, пирен-1-бороновой 2d и 4-(дифениламино)фенилбороновой 2e кислотами (Схема 2). В результате были получены соответствующие 4-арилстиролы 3a-e с выходами от 32 до 90%. Следует отметить, что с ростом числа аннелированных бензольных колец полиароматической системы выходы значительно падают. Структура 4-арилстиролов 3a-е доказана на основании данных ЯМР и РСА, полученных для 9-(4-винилфенил)фенантрена 3c и N,N-дифенил-4'-винил-[1,1'-бифенил]-4-амина 3e (Рисунки 1 и 2).

Рисунок 1. Структура соединения 3с по данным РСА

Рисунок 2. Структура соединения Зе по данным РСА

2.1.2. Синтез 4-ариламиностиролов посредством палладий-катализируемых реакций кросс-сочетания по Бухвальду–Хартвигу

Для разработки удобного метода синтеза 4-N-ариламиностиролов в качестве модельной была выбрана реакция С–N кросс-сочетания 1-бром-4-винилбензола 1 с анилином 4а, протекающая в 1,4-диоксане при 140°С в условиях активации микроволновым излучением (Схема 3).

Схема 3

Таблица 2 - Оптимизация условий реакции кросс-сочетания

1	6		DUUUUU Gauga	701		10
T	-opc)M-4-	винилоензо.	па в с	анилином	4 a.

Опыт	Рd катализатор (мол.%)	Лиганд (мол.%)	Время, мин	Выход 5а ^{<i>a</i>} , %
1	$Pd(OAc)_2(2)$	racBiNAP (4)	25	88
2	$Pd(OAc)_2(2)$	racBiNAP (4)	15	87
3	$Pd(OAc)_2(2)$	dppf (4)	15	88
4	$Pd(OAc)_2(2)$	PCy ₃ (4)	15	81
5	$Pd(OAc)_2(2)$	$PPh_3(4)$	15	35
6	$Pd(OAc)_2(2)$	P(o-tol) ₃ (4)	15	39
7	$Pd(OAc)_2(2)$	Brettphos (4)	15	89
8	$Pd(OAc)_2(2)$	Xantphos (4)	15	84
9	$Pd(OAc)_2(2)$	XPhos (4)	15	95
10	$Pd(PPh_{3})_{4}(2)$	-	15	52
11	$Pd(OAc)_2(2)$	XPhos (4)	10	97
12	$Pd(OAc)_2(2)$	XPhos (4)	5	97
13	$Pd(OAc)_2(2)$	XPhos (4)	1	$98(93)^b$

Общие условия: 1-бром-4-винилбензол (1) (183 мг, 1 ммоль), анилин (4а) (93 мг, 1 ммоль), 1.4 экв., NaO^tBu в 5 мл 1,4-диоксана при 140 °C в условиях микроволнового облучения (300 Вт); ^{*a*}Выход, определенный по данным ГХ-ПИД; ^{*b*}Препаративный выход.

Анализ полученных данных показывает, что оптимальным является применение каталитической системы Pd(OAc)₂ (0.02 экв.) и XPhos (0.04 экв.) в 1,4 диоксане (Таблица 2, опыты 11-13) в условиях микроволновой активации, что дает сопоставимые выходы по данным ГХ-ПИД, причем достаточно высокий препаративный выход соединения **5a** (93%) был достигнут при проведении реакции в течение 1 мин (Таблица 2, опыт 13).

Схема 4

Найденные оптимальные условия использовались для реакций кросс-сочетания 1бром-4-винилбензола 1 с 2-нафтиламином 4b, 1-нафтиламином 4c, 1-антрацениламином 4d, 2-антрацениламином 4e, 9-фенантрениламином 4f, 2-флуорениламином 4g и 1-

пирениламином **4h** (Схема 4) и позволили получить соответствующие производные 4-Nариламиностиролов **5a-h** с выходами от 54 до 93%. Структура 4-(N-арил)аминостиролов (**5a-h**) доказана на основании данных ЯМР и РСА, полученных для 4-(Nфенил)аминостирола **5a**, 4-N-(2-нафтил)аминостирола **5b** и 4-N-(9фенантренил)аминостирола **5f** (Рисунки 3-5).

Рисунок 3. Структура соединения 5а (РСА)

Рисунок 4. Структура соединения 5b (РСА)

Рисунок 5. Структура соединения 5f (PCA)

2.1.3. Исследование фотофизических свойств полученных стиролов

Фотофизические свойства 4-арилстиролов **3а-е** и 4-N-ариламиностиролов **5а-h** исследованы с использованием электронной спектроскопии в УФ-/видимом диапазоне и спектрофлуориметрии для растворов этих веществ в дихлорметане при комнатной температуре (Таблицы 3 и 4, Рисунки 6-9), а также исследованы в твёрдом виде для 4-N-ариламиностиролов **5а-h** (Таблица 4, Рисунок 10).

	Π	Іоглощение	Флуор	есценция	
Соединение λ_{max} (нм За 304 274 2 96 3b 264 258	λ _{max} (нм)	$\epsilon_{ m max} imes 10^3 \ ({ m M}^{-1}.{ m cm}^{-1})$	Возбуждение, λ _{max} (нм)	Эмиссия, λ _{max} (нм)	${{{ { { \! \! \Phi}}}_{ m F}}^a}$
3 a	304 274	34.6 57.0	304 274	369 352	0.60
3b	296 264 258	18.4 15.2 153	296 264 258	370	0.90
3c	301 258	53.6 152.6	301 258	377 360	0.10
3d	345 279	104.9 117.4	345 279	400	0.60
3 e	344 272	31.9 19.2	344 272	433	0.90

Таблица 3 - Оптические свойства 4-арилстиролов За-е в растворе CH₂Cl₂.

 $\overline{\epsilon_{\text{max}}}$ — коэффициент экстинкции. "В качестве стандарта для определения относительного квантового выхода использован 1,10-дифенилантарацен при λ = 320 нм (Φ_{F} = 0.90).

Рисунок 6. Спектры поглощения соединений За-е в CH₂Cl₂

соединений **За-е** в CH₂Cl₂

Полосы поглощения 4-арилстиролов **За-е** наблюдаются в диапазонах 350–295 и 275–255 нм и их можно отнести к $\pi \rightarrow \pi^*$ переходам (Рисунок 6).

Выраженная флуоресценция соединений **За-е** наблюдается в диапазоне 340–450 нм (Рисунок 7). При этом в спектрах эмиссии **3b** и **3c** проявляется колебательная структура, связанная с наличием остатков нафталина и фенантрена, соответственно. Для образцов **3a** и **3d**, вероятно благодаря увеличению жесткости системы, в спектрах эмиссии наблюдается лишь один пик. Наибольшие относительные квантовые выходы флуоресценции зафиксированы для соединений **3b** и **3e** ($\Phi_F = 0.90$).

Полосы поглощения 4-N-ариламиностиролов **5а-h** наблюдаются в диапазонах 430– 300 и 300–220 нм. Для длинноволновых максимумов поглощения в ряду **5b-h** характерны батохромные сдвиги по сравнению с **5а** за счет расширения ароматических систем (Рисунок 8).

чисунок 8. Спектры поглощения соединений **5a-h** в CH₂Cl₂

Все соединения **5a-h** имеют полосу флуоресценции в диапазоне 350–530 нм, что, скорее всего, связано с эмиссией 4-N-ариламинофенильного фрагмента (Рисунок 9). Стоит подчеркнуть, что для фенил- и флуоренилзамещенных соединений **5a** и **5g** пики ФЛ следует отнести к эмиссии мономеров, а для остальных производных **5b–5f** и **5h** эти пики следует отнести к эксимерной эмиссии.

При переходе от раствора к твердому состоянию (порошки) полосы флуоресценции **5а** и **5g** приобретают колебательную структуру (Рисунок 10).

Рисунок 9. Спектры эмиссии соединений 5a-h в CH₂Cl₂

Рисунок 10. Спектры эмиссии соединений 5a-h в твёрдом виде

	Поглощение Флуоресценция										
Coorrestore		В растворе CH ₂ Cl			l_2			В твёрдом состоянии			
Соединение	λ _{max} (нм)	$\epsilon_{max} imes 10^3$ (M ⁻¹ .cm ⁻¹)	Возбуждение, λ _{max} (нм)	Эмиссия, λ _{max} (нм)	τ_{avg} , (HC)/ χ^2	${\pmb \Phi_{ m F}}^a$	Возбуждение, λ _{max} (нм)	Эмиссия, λ _{max} (нм)	τ_{avg} , (HC)/ χ^2	${\pmb \Phi_{ extsf{F}}}^a$	
5a	310 230	24.4 10.4	310	373	1.51/1.141	0.24	270 356	375 380 420	1.35/1.166 1.45/1.214 2.09/1.020	0.20	
5b	324 285 256	27.1 18.0 17.1	284 321	405	4.04/1.116	0.24	350 385	406	7.21/1.129	0.22	
5c	345 290 257	12.8 15.4 13.4	257 290 344	424	3.94/1.061	0.30	350 385	412	4.00/1.096	0.26	
5d	408 250	6.6 72.0	250 409	514	9.24/1.097	0.65	350 427	483	3.48/1.160	0.08	
5e	405 364 347 329	5.7 6.9 18.5 39.7	250 325 404	485	9.17/1.106	0.56	350 400	492	3.42/1.202	<0.01	
5f	346 277 253	14.4 26.8 50.5	251 279 341	423	4.58/1.126	0.25	345 408	433	1.32/1.067	0.05	
5g	345 230	35.6 17.0	338	400	2.65/1.068	0.34	379	395 419 450	0.56/1.178 1.08/0.995 1.56/1.201	0.14	
5h	407 387 287	20.3 23.0 23.0	244 290 385	450	3.78/1.033	0.73	345 440	468	0.61/1.297	0.05	

Таблица 4 - Оптические свойства 4-N-ариламиностиролов 5а-h в растворе CH₂Cl₂ и в твёрдом виде.

^{*a*} Φ_F значения абсолютных квантовых выходов были определены с помощью интегрирующей сферы SC-30 спектрофлуориметра FS5 Edinburgh Instrument. τ_{avg} — среднее время затухания флуоресценции, χ² – хи-квадратное распределение. Для стиролов **5а-h** наблюдается сдвиг полос поглощения и эмиссии в длинноволновую область по сравнению со стиролами **3а-е**.

Измерены абсолютные квантовые выходы веществ в растворах дихлорметана и в твердом состоянии. Наибольшие абсолютные квантовые выходы флуоресценции в дихлорметане зафиксированы для соединений 5d и 5h ($\Phi_F = 0.65, 0.73$), соответственно. В твердом состоянии значения квантовых выходов этих соединений значительно ниже (<0.26), что характерно при наличии в флуорофорах плоских полиареновых фрагментов (Таблица 4).

2.2. Синтез и фотофизические свойства полимеров на основе стиролов

2.2.1. Синтез полимеров на основе 4-арил- и 4-N-ариламиностиролов

Синтезированы статистические сополимеры стирола с 4-арилстиролами (3а-е) (P1-P5) и 4-N-ариламиностиролами (5а-h) (P6-P13) в мольном соотношении 10: 1; для оценки содержания флуорофорных фрагментов в сополимерах синтезирован гомополимер P14 путем полимеризации 4-пиренилстирола 3d. Условия радикальной полимеризации в ТГФ были оптимизированы для получения более высокого выхода сополимера и достижения наименьшей полидисперсности (PDI) (Схема 5).

Таблица	5 - Оптимизация	сополимер	ризации с	стирола с 9	9-(4-в	инилф	ренил)	фен	антр	еном .	3c.

Опыт	AIBN, (мол.%)	Выход, %	Mw	Mn	PDI
1	0.5	52	7800	4200	1.8
2^d	0.5	25	3200	2300	1.4
3	1.0	60	12400	7600	1.6
4	1.5	70	20000	11000	1.8
5	2.0	58	9000	5000	1.8
6 ^{<i>a</i>}	1.5	80	16000	9800	1.6
7^b	1.5	84	24000	14400	1.6
8 ^c	1.5	70	31500	19100	1.7
9 ^e	1.5	31	11500	4100	2.8

Общие условия: мономер **3c** (100 мг, 0.356 ммоль) и стирол (372 мг, 3.566 ммоль) в 5 мл ТГФ при 80°С/12 ч; ^{*a*} в 2 мл ТГФ при 80°С/12 ч; ^{*b*} в 0.5 мл ТГФ при 80°С/3 ч; ^{*c*} в 0.3 мл ТГФ при 80°С/2 ч. ^{*d*} в толуоле. ^{*e*} Реакции при микроволновом облучении в 5 мл ТГФ при 100°С/3 ч.

Изучено влияние количества инициатора и ТГФ, температуры и времени реакции (Таблица 5). При полимеризации в толуоле выход соединения **Р3** был в два раза ниже, чем в ТГФ (Таблица 5, опыт 2). Полимеризация при микроволновом облучении не улучшила выход целевого продукта **Р3** (Таблица 5, опыт 9).

Анализ результатов показал, что 1.5 мол.% инициатора AIBN в 0.5 мл ТГФ при 80°C в течение 3 ч оказались оптимальными условиями, обеспечивающими наилучший выход полимера **РЗ** и наименьшую полидисперсность PDI (Таблицу 5, опыт 7).

Оптимальные условия реакции использованы для сополимеризации стирола с 4-(2нафтил)стиролом **3a**, 4-(1-нафтил)стиролом **3b**, 4-(1-пиренил)стиролом **3d**, 4-[4'-(N,Nдифениламино)фенил]стиролом **3e**, 4-N-фениламиностиролом **5a**, 4-N-(2-нафтил)аминостиролом **5b**, 4-N-(1-нафтил)аминостиролом **5c**, 4-N-(1-антраценил)аминостиролом **5d**, 4-N-(2-антраценил)аминостиролом **5e**, N-(9-фенантренил)аминостиролом **5f**, N-(2-флуоренил)аминостиролом **5g** и N-(9-пиренил)аминостиролом **5h**; а также для полимеризации 4пиренилстирола **3d** с целью получения полимеров **P1–P14** (Схема 6). Результаты полимеризации и термические свойства полимеров приведены в таблице 6.

Композиции (Х: Y) сополимеров **P1-P5** были охарактеризованы с помощью спектроскопии ЯМР ¹Н путем сравнения интегральных площадей пиков, характерных для флуорофорных фрагментов, с пиками арильных остатков. Для всех сополимеров **P1-P5** получено наличие 9-10 полистирольных звеньев на 1 флуорофорный фрагмент.

Таблица 6. Результаты полимеризации и термические свойства полимеров Р1–Р14.

Схема 6

Полимер	Выход, %	Mw	Mn	PDI	T _d , °C
P1	76	23000	13500	1.7	387
P2	82	25000	15500	1.6	387
P3	84	24000	14400	1.6	392
P4	73	24000	14000	1.7	395
P5	80	26000	16000	1.6	391
P6	60	24600	15500	1.6	403
P7	71	34000	21000	1.6	406
P8	65	23000	13000	1.7	405
P9	55	13000	6000	2.1	368
P10	45	10000	6000	1.7	370
P11	70	27500	17000	1.6	405
P12	68	24000	14000	1.7	395
P13	73	20000	11000	1.8	408
$\mathbf{P14}^{a}$	84	57000	26500	2.1	412

Общие условия: 4-арилстиролы **За-е**, 4-ариламиностиролы **5а-h** (100 мг, 1 экв.), стирол (10 экв.) и AIBN (1.5 мол.%) в 0.5 мл ТГФ при 80°С/З ч. ^{*a*} 4-пиренилстирол **3d** (200 мг) и AIBN (1.5 мол.%) в 0.5 мл ТГФ при 80°С/З ч.

Композиции (X: Y) сополимеров **P6-P13** были охарактеризованы с помощью спектров ЯМР ¹Н путем сравнения интегральных интенсивности ароматических и алифатических протонов NH в спектрах ЯМР ¹Н, что позволило приблизительно оценить соотношение X и Y в полученных сополимерах, которое составило от 8 (для **P10** и **P12**) до 14 (для **P11**) полистирольных звеньев на 1 флуорофорный фрагмент.

Термическую стабильность синтезированных сополимеров исследовали методом термогравиметрического анализа (ТГА) в потоке аргона. Температуры разложения T_d для всех сополимеров оказалась выше 365°C, что свидетельствует о хорошей термической стабильности полученных полимеров. Следует также отметить, что температура разложения для гомополимера **P14** (412°C) оказалась выше, чем для сополимера **P4** (395°C). Термическое разложение всех сополимеров **P1–P13** протекало по пути деполимеризации полимера, аналогично полистиролу.

2.2.2. Исследование фотофизических свойств полученных полимеров

Фотофизические свойства полученных сополимеров **P1–P13** исследовали при комнатной температуре с помощью электронной и фотолюминесцентной спектроскопии (ФЛ) в растворе дихлорметана и в твердом состоянии (Таблица 7, Рисунки 11-16).

Рисунок 11. Спектры поглощения сополимеров **P1-P5** в растворе CH₂Cl₂

Рисунок 12. Спектры поглощения сополимеров P6-P13 в растворе CH₂Cl₂

УФ-видимые спектры сополимеров **P1-P5** содержат полосы поглощения с максимумами при 350-270 нм, соответствующими поглощению 4-арилфенильных заместителей (Рисунок 11). Для длинноволновой полосы поглощения характерен батохромный сдвиг в ряду **P1** \approx **P2** <**P3** <**P5**, **P4** за счет расширения ароматической системы и увеличения сопряжения (уменьшения разности энергий π - π * перехода). Для сополимеров **P6-P13** УФ-видимые спектры содержат полосы поглощения с максимумами при 430-300 нм и 300-220 нм, соответствующими поглощению 4-N-ариламинофенильных заместителей (Рисунок 12). Длинноволновые максимумы поглощения демонстрировали батохромные сдвиги для рядов **P7-P13** по сравнению с **P6** за счет расширения ароматических систем. Значения молярных коэффициентов поглощения (ε_{max}) исследуемых сополимеров (таблица 7) закономерно увеличиваются по сравнению со значениями соответствующих мономеров (см. таблица 3,4), что связано с увеличением молекулярной массы соединений.

Сополимеры **P1-P5** имеют полосу флуоресценции (ФЛ) в диапазоне 350-450 нм, а сополимеры **P6-P13** в диапазоне 350-530 нм (Рисунки 13,14). Спектры ФЛ сополимеров **P1**, **P3**, и **P4** имеют колебательную структуру этой полосы (в отличие от **P2** и **P5**). Спектр ФЛ полимера **P4**, в дополнение к структурированным полосам (III,V), также показывает полосу

бесструктурной флуоресценции с большей длиной волны с центром при 478 нм, что объясняется излучением эксимеров молекул пирена (Рисунок 13).

В спектрах флуоресценции Р1, Р3-Р5 и Р7-Р13 по сравнению со спектрами Р2 и Р6, соответственно, наблюдается батохромный сдвиг полосы флуоресценции, что обусловлено увеличением сопряжения π - π системы (Рисунки 13,14).

При сравнении спектров флуоресценции сополимеров, у которых заместители одинаковые (P1, P7), (P2, P8), (P3, P11) и (P4, P13), выявлено, что полимеры с аминогруппой Р7, Р8, Р11 и Р13 имеют одну полосу флуоресценции, соответствующую излучению эксимера (Рисунок 14). В спектрах сополимеров без аминогруппы Р1, Р2, Р3 и Р4 наблюдаются полосы флуоресценции арилстирольных заместителей (Рисунок 13). Повидимому, NH-группа способствует повышению подвижности 4-арильного заместителя, что увеличивает возможность перекрывания заместителей и, соответственно, вероятность образования эксимеров, испускающих в более длинноволновой области спектра.

Рисунок 15. Спектры эмиссии

Рисунок 16. Спектры эмиссии сополимеров Р1-Р5 в твёрдом состоянии сополимеров Р6-Р13 в твёрдом состоянии

При переходе от раствора к твердому порошку эмиссия сополимеров Р4 и Р5 заметно изменяется (Рисунок 15). Спектр излучения каждого полимера состоит из одной полосы при 457 и 420 нм соответственно. Для сополимеров Р6 и Р12 пики ФЛ в твёрдом состоянии следует отнести к эмиссии мономерных фрагментов (Рисунок 16). Для остальных полимеров Р7–Р11, Р13 эти пики следует отнести к эксимерной эмиссии. Также в спектре ФЛ Р12, помимо мономерной полосы, имеется более длинноволновая бесструктурная полоса флуоресценции с центром при 610 нм, которую приписывают излучению эксимеров молекул флуорена.

Для всех соединений определены квантовые выходы (таблица 7). Умеренные и высокие значения квантовых выходов (0.20-0.73) наблюдаются для растворов CH₂Cl₂ почти для всех исследуемых сополимеров, а также для сополимеров на основе 4арилстиролов Р1-Р5 в твёрдом виде.

Как видно, полимеры Р6-Р13, имеющие в своей структуре NH-группу, в твёрдом виде имеют низкие квантовые выходы, тогда как в растворах почти все соединения имеют относительно высокие квантовые выходы. Это связано с более плотной упаковкой молекул в твёрдом виде, из-за чего увеличивается количество эксимеров, что ведет к увеличению значений констант безизлучательных переходов и проявляется в понижении квантовых выходов в твёрдом виде по сравнению с растворами. Как отмечено выше, NH-группа способствует увеличению подвижности арильных заместителей, что приводит к образованию эксимеров.

	Погл	ющение				Флуоре	сценция			
Сополимер			В растворе СН2	Cl_2				В твёрдом сост	оянии	
Сополимер	λ_{max} (HM)	$\epsilon_{max} \times 10^3$ (M ⁻¹ .cm ⁻¹)	Возбуждение, λ _{max} (нм)	Эмиссия, λ _{max} (нм)	иссия, τ_{avg} , (нс)/ χ^2 Ф 362 21 19		Возбуждение, λ _{max} (нм)	Эмиссия, λ _{max} (нм)	$ au_{avg}$, (HC)	${\Phi_{ extsf{F}}}^a$
	292	310	200	362	21.19			362	41.25	
P1	259	1031	290 263	345	21.60	0.17	305	355 346	40.31 40.02	0.44
P2	294	309	294	358	2.06	0.28	311	359	2.15	0.48
	230	1271	230							
P3	301	336.8	301	376	14.57	0.08	351	377	27.88	0.24
	258	1318.3	265	359	14.74		313	364	27.95	
	345	693	345	478	25.23					
P4	281	858.8	281	401	11.46	0.29	375	457	23 50	0.93
	271	585.1	271	383	11 35	0.25	350	107	20.00	0.75
	245	1025.3	245	505	11.55					
P5	322	552.3	325	392	1.12	0.30	350	420	1 32	0.77
10	246	332.7	246	372	1.12	0.50	350	420	1.52	0.77
P6	288	403.9	300	372	1.44/1.102	0.01	338	365	2.21	0.03
	269	753.5	274							
P7	311	664.9	311	408	4.27/1.045	0.21	375	405	3.36	0.02
	349	141.1	347							
DQ	255	417.4	255	420	4 22/1 122	0.20	310	122	2 47	0.02
ro	342	189.4	340	430	4.55/1.122	0.39	389	432	2.47	0.05
	250	748.9	250							
P9	370	48.2	370	523	10.80/1.171	0.37	450	515	0.68	< 0.01
	410	67.4	412							
	248	543.7	254							
P10	309	398.7	316	491	9 69/1 104	0.21	440	496	0.50	< 0.01
	410	60	365 411	171	1 9.69/1.104 0.21		120	0.20		

Таблица 7. Оптические свойства полимеров Р1-Р13 в растворе CH₂Cl₂ и в твёрдом виде.

Продолжени	ие таблицы 7										
	Погл	ющение	Флуоресценция								
Сополимер	В растворе CH ₂ Cl ₂							В твёрдом состоянии			
Сополимер	λ_{max} (HM)	$\epsilon_{max} imes 10^3$ (M ⁻¹ .cm ⁻¹)	Возбуждение, λ _{max} (нм)	Эмиссия, λ _{max} (нм)	τ_{avg} , (HC)/ χ^2	${\Phi_{ extsf{F}}}^a$	Возбуждение, λ _{max} (нм)	Эмиссия, λ _{max} (нм)	τ_{avg} , (HC)	${\Phi_{ extsf{F}}}^{a}$	
	250	1177.8	250								
P11	341	235.8	272 340	424	5.93/1.134	0.27	378	425	4.42	0.05	
D12	260	260.2	260	275	0 62/1 229	0.09	270	386	0.40	0.02	
F12	320	735	320	575	0.02/1.328	0.08	570	610	3.09	0.02	
	242	1162	250								
P13	293	398.4	293	452	3 63/1 100	0.38	338	470	1 77	0.03	
	388	442.1	390	432	5.05/1.199	0.38	440	479	1.//	0.05	
	409	401.3	410								

 $^{a} \Phi_{\rm F}$ значения абсолютных квантовых выходов были определены с помощью интегрирующей сферы SC-30 спектрофлуориметра FS5 Edinburgh Instrument. $\tau_{\rm avg}$ — среднее время затухания флуоресценции, χ^2 – хи-квадратное распределение.

Для оценки влияния числа флуорофорных фрагментов в сополимерах изучены фотофизические свойства гомополимера 4-(1'-пиренил)стирола **Р14** в сравнении с данными для сополимера **Р4** — поли[стирол-со-4-(1'-пиренил)стирола. Исследованы фотофизические свойства гомополимера **Р14** и сополимера **Р4** в тетрагидрофуране (ТГФ), а также в твердом виде при комнатной температуре (Таблицы 8 и 9).

	По	глощение		Флу	оресцен	ция		
Полимер	λ_{max}	$\epsilon imes 10^3$	Возбуждение,	Эмиссия,	$ au_{\rm avg,}$	ሐ	$k_{\rm r} \times 10^7$	$k_{ m nr} \times 10^7$
	(нм)	$(M^{-1}.cm^{-1})$	λ_{max} (HM)	λ _{max} (нм)	(нс)	$\Psi_{ m F}$	(c^{-1})	(c^{-1})
	345	5069.7	260					
P14	280	603.8	306	477	19.41	0.55	2.83	2.32
	241	7178.9	373					
	344	691.3	250	384	10.98		2 72	5 27
D 4	280	861.7	250	401	11.07	0.41	5.75	5.57
ľ4	270	592.3	280	470	10.06	0.41	0.15	2 10
	244	994.3	545	472	19.00		2.15	5.10

Таблица 8. Оптические свойства полимеров Р4 и Р14 в растворе ТГФ.

 $k_r = \Phi_F / \tau_{avg}; k_r$ — константа скорости излучательных переходов; $k_{nr} = 1 / \tau_{avg} - k_r; k_{nr}$ — константа скорости безызлучательных переходов; Φ_F — абсолютный квантовый выход определен с использованием интегрирующей сферы SC-30 спектрофлуориметра FS5 Edinburgh Instrument.

Растворы Р4 и Р14 в ТГФ имеют две группы полос поглощения в области 300-400 нм и 210-290 нм, которые могут относиться к π - π * переходам ароматической системы (Рисунки 17,18). Выраженная флуоресценция соединений Р4 и Р14 в растворах ТГФ наблюдается в диапазоне (380-490 нм) с абсолютными квантовыми выходами до 0.55 (Таблица 8).

Спектр флуоресценции сополимера **Р4** характеризируется наличием полос испускания мономерной и эксимерной форм пирена (Рисунок 18). В данном случае из пяти возможных вибронных полос испускания мономерной формы пирена (при ~375 (I), ~379 (II), ~385 (III), ~395 (IV), ~410 (V) нм) разрешаются только две III и V при 384 и 401 нм, соответственно. В длинноволновой области спектра при 472 нм проявляется испускание эксимера. Время жизни испускания эксимера (~19 нс) почти в два раза больше флуоресценции мономера (~11 нс). Для раствора **Р14** в ТГФ характерна только люминесценция эксимера в виде широкой полосы при 477 нм (Рисунок 17) с временем жизни 19.41 нс (Таблица 8). В виде порошков полимеры **Р4** и **Р14** демонстрируют флуоресценцию эксимеров с максимумами испускания 457 и 478 нм, соответственно (Рисунок 19).

Полимер	Флуоресценция								
	Возбуждение,	Эмиссия,	$ au_{ m avg,}$	$\phi_{\scriptscriptstyle m E}$	$k_{\rm r} \times 10^7$	$k_{\rm nr} \times 10^7$			
	λ _{max} (нм)	λ _{max} (нм)	(нс)	τΓ	(c^{-1})	(c^{-1})			
P14	317, 388	478	20.61	0.35	1.70	3.15			
P4	375, 350	457	23.50	0.93	3.97	0.98			

Таблица 9. Оптические свойства полимеров Р4 и Р14 в твердом виде.

Известно, что для образования эксимеров расстояние между пиреновыми кольцами в основном и возбужденном состояниями должно составляет ~ 10 Å. По-видимому, в случае гомополимера **P14** расстояние между пиреновыми кольцами меньше по сравнению с сополимером **P4**, что и отражается на положениях полос поглощения и значениях времен жизни, 20.61 и 23.50 нс. Большее количество внутримолекулярных эксимеров в случае гомополимера **P14** способствует увеличению на порядок константы безизлучательных переходов в сравнении с сополимером **P4**, что проявляется в понижении квантового выхода с 0.93 до 0.35.

2.3. Применение полученных полимеров в качестве сенсоров для определения нитроароматических соединений

2.3.1. Исследование сенсорных свойств полимеров Р1-Р14 в растворе

Для оценки способности сополимеров **P1-P14** к обнаружению нитроароматических аналитов NB, DNT, TNT и PA (Рисунок 20) было проведено флуоресцентное титрование в растворе дихлорметана (для сополимеров **P1-P13**) и в растворе ТГФ для гомополимера **P14** (Таблица 10).

Показана возможность детектирования модельных нитроароматических соединений с пределами обнаружения от 10⁻⁶ до 10⁻⁷ моль/л с использованием сополимеров **P1-P13**. Константы тушения Ksv для полимеров **P1, P2, P3** и **P4** в целом на порядок выше, чем для полимеров с NH-группой **P7, P8, P11** и **P13** (сравнение полимеров с одинаковыми заместителями), а пределы обнаружения нитроароматических веществ DL отличаются незначительно.

При изучении оптических свойств полимеров показано, что полимеры с NH-группой **P6-P13** имеют полосу испускания, соответствующую образующимся эксимерам, тогда как в спектрах сополимеров без NH-группы **P1-P5** наблюдаются полосы эмиссии мономерных форм арилстирольных заместителей. По всей видимости, отсутствие эксимеров в сополимерах без NH-групп **P1-P5** облегчает образование комплексов «полимер-тушитель», что и отражается в улучшении их сенсорных свойств.

	PA		2,4,6	5-TNT	2,4-	DNT	NB		
Полимер ^а	Ksv×10 ⁴	DL							
	M ⁻¹	моль.л ⁻¹							
P1	405.79	1.74×10 ⁻⁷	24.32	4.02×10 ⁻⁷	34.33	3.70×10 ⁻⁷	52.26	1.92×10 ⁻⁷	
P2	89.16	5.11×10 ⁻⁷	19.91	3.63×10 ⁻⁷	41.78	3.44×10 ⁻⁷	29.56	3.71×10 ⁻⁷	
P3	40.25	3.55×10 ⁻⁷	14.70	4.51×10 ⁻⁷	24.81	2.58×10 ⁻⁷	17.14	2.91×10 ⁻⁷	
P4	54.21	4.78×10 ⁻⁷	7.56	6.63×10 ⁻⁷	5.20	7.18×10 ⁻⁷	3.08	1.04×10 ⁻⁶	
$\mathbf{P4}^{b}$	762.27	6.09×10 ⁻⁸	96.41	8.25×10 ⁻⁷	124.78	3.07×10 ⁻⁷	9.81	1.03×10 ⁻⁶	
P5	76.24	1.74×10 ⁻⁷	5.74	1.54×10 ⁻⁷	4.66	3.71×10 ⁻⁷	2.70	5.55×10 ⁻⁷	
P6	20.87	8.72×10 ⁻⁷	16.08	3.24×10 ⁻⁷	11.02	3.73×10 ⁻⁷	21.35	1.22×10 ⁻⁶	
P7	22.35	1.77×10 ⁻⁷	4.77	3.34×10 ⁻⁷	9.41	2.29×10 ⁻⁷	1.95	6.91×10 ⁻⁷	
P8	33.27	1.79×10 ⁻⁷	5.98	6.02×10 ⁻⁷	7.44	3.63×10 ⁻⁷	2.08	1.55×10 ⁻⁶	
P9	2.39	5.77×10 ⁻⁷	2.33	1.10×10 ⁻⁶	5.04	3.50×10 ⁻⁷	4.73	5.21×10 ⁻⁷	
P10	2.07	6.74×10 ⁻⁷	1.19	1.57×10 ⁻⁶	1.73	9.56×10 ⁻⁷	0.55	2.40×10 ⁻⁶	
P11	32.74	1.65×10 ⁻⁷	6.47	4.83×10 ⁻⁷	7.92	2.31×10 ⁻⁷	2.42	7.36×10 ⁻⁷	
P12	21.42	6.38×10 ⁻⁷	8.10	1.24×10 ⁻⁶	16.46	6.51×10 ⁻⁷	3.22	4.22×10 ⁻⁷	
P13	2.86	8.82×10 ⁻⁷	1.45	1.99×10 ⁻⁶	2.24	8.35×10 ⁻⁷	1.07	1.92×10 ⁻⁶	
P14 ^b	15.86	5.78×10 ⁻⁷	13.57	9.39×10 ⁻⁷	5.96	1.35×10 ⁻⁶	0.56	1.06×10 ⁻⁵	

Таблица 10. Константы Штерна-Фольмера Ksv и пределы обнаружения DL нитроароматических соединений для полимеров **P1-P14** в растворах.

^{*a*} в растворе CH₂Cl₂; ^{*b*} в растворе ТГ Φ .

Рисунок 20. Структуры исследуемых тушителей Интересным фактом является увеличение обнаружения до 10⁻⁸ моль/л и констант Штерна-Фольмера для сополимера **P4** при переходе от дихлорметана к тетрагидрофурану. По-видимому, причиной является конкуренция взаимодействий растворитель–аналит (сольватация) и флуорофор–аналит, при этом энергия сольватации нитроаналитов в тетрагидрофуране значительно ниже, чем в дихлорметане.

Следует также отметить, что при переходе от сополимера P4 к гомополимеру P14 происходит резкое снижение пределов обнаружения до 10⁻⁵ моль/л, а также константы Штерна-Фольмера, количественно характеризующей образование нефлуоресцирующего донорно-акцепторного комплекса между пиреновым фрагментом и молекулой аналита. Объяснением этому факту может служить увеличение стерических затруднений в гомополимере P14 по сравнению с P4 за счёт большего количества объёмных пиреновых фрагментов, препятствующих образованию донорно-акцепторного комплекса «полимер– нитроароматическое соединение».

Линейная зависимость для графиков Штерна-Вольмера (в диапазоне концентраций от 0 до 1×10⁻⁴ М) и измерения времени жизни для **P5** и **P13** при добавлении DNT указывают на преобладающую роль взаимодействий статического характера в тушении флуоресценции (Рисунок 21).

Рисунок 21. Кривые времени тушения флуоресценции Р5 (а) и Р13 (b) с DNT в CH₂Cl₂ при длине волны возбуждения 300 нм и длине волны излучения 392 нм.

2.3.2. Применение полимеров для обнаружения нитроароматических соединений в газовой фазе

Сополимеры на основе 4-арилстиролов **P4** и **P5**, а также сополимеры на основе 4-Nариламиностиролов **P8**, **P11** и **P13**, демонстрирующие лучшие квантовые выходы в твердом состоянии (см. таблицу 7), были исследованы в качестве сенсоров для анализа BB в газовой фазе. На основе вышеперечисленных сополимеров, были получены соответствующие флуоресцентные материалы.

Сенсорные элементы были изготовлены таким образом, чтобы адаптировать материалы датчиков для отбора проб в газовой фазе и содержали по 3 фрагмента каждого из материалов (Рисунки 22 и 23). Устройство использует ультрафиолетовый диод с длиной волны 365 нм для возбуждения флуоресценции чувствительных материалов и направляет поток воздуха через чувствительный элемент с помощью насоса.

Рисунок 22. Сенсорный элемент, содержащий флуоресцентные материалы при УФ- (слева) и видимом (справа) освещении

Рисунок 23. Флуоресцентный регистратор и картридж

Полученные флуоресцентные материалы исследованы в качестве сенсоров для анализа BB в паровой фазе. Пределы обнаружения (DL) паров модельных нитроароматических соединений NB, DNT и TNT, приведены в Таблице 11.

Габлица 11. Пределы обнаружения (DI) нитроароматических	соединений в газовой ф	азе.
-------------------------------------	----------------------	------------------------	------

Флуоресцентный Материал	Аналит	DL, (ppb)	Время воздействия (с)		
		2918	10		
	NB	975	50		
P4		608	100		
	DNT	282.4^{*}	3.0		
	TNT	5.8^{*}	14.6		
	ND	28700	5.7		
D5	IND	1000	247		
F5	DNT	386.1*	4.6		
	DNI	25.2	98.7		
		3389	10		
P8	NB	309	50		
		515	100		
		7412	10		
P11	NB	2370	50		
		1450	100		
		4706	10		
P13	NB	1146	50		
		624	100		

*Концентрация насыщенных паров в объеме образца 160 мл.

Для нитроароматических соединений с низким давлением паров, таких как DNT, TNT и PA присутствие полистирольной матрицы, по-видимому, снижает эффективность тушения. Для материалов на основе полимеров **P8**, **P11** и **P13** не наблюдалось заметного гашения флуоресценции при воздействии насыщенных паров низколетучих нитроароматических соединений DNT, TNT и PA [273 ppb (parts-per-billion, 10⁻⁹), 5514 ppt

(parts-per-trillion, 10^{-12}), 611 ppt соответственно]. Также для материалов на основе **P1**, **P4** и **P5** не было получено существенного тушения флуоресценции при воздействии PA, из-за низкого давления насыщенных паров (ниже 1 ppb).

Материал на основе **P4** был способен обнаруживать насыщенные пары TNT при концентрации 5.8 ppb в объеме образца 160 мл, а насыщенные пары DNT были обнаружены при концентрации 282.4 ppb и 386.1 ppb в объеме образца 160 мл с помощью материалов на основе **P4** и **P5** соответственно. Эти данные показывают применимость полученных сенсорных материалов для прямого определения BB в газовой фазе с использованием предварительного концентратора или с помощью закрытых упаковок, позволяющих накапливать пары.

Результаты показали, что материалы на основе **P4** и **P5** способны обнаруживать NB в количестве 1 ppm при экспозиции менее 5 минут, а для материалов на основе **P8, P11** и **P13** - в концентрации 0.5 ppm при 100-секундном воздействии паров нитробензола. Это позволяет предположить, что полученные флуоресцентные материалы можно рассматривать как сенсоры нитробензола в газовой фазе.

Для полученных значений пределов обнаружения в газовой фазе характерна та же закономерность, что и для значений в растворе CH₂Cl₂. Сенсорный материал, полученный из полимера без NH-группы **P4**, демонстрирует более низкие значения предела обнаружения по сравнению с аналогичным полимером с NH-группой **P13**.

2.4. Применение производного пирена (F) в качестве флуоресцентного сенсора нитроароматических соединений в растворе и газовой фазе

Допирование полистирола флуорофорами, такими как пирен и его производные, является одним из путей повешения флуоресцентной чувствительности. В связи с этим, были исследованы сенсорные свойства флуорофора 1,3,6,8*тетракис*[(триметилсилил)этинил]пирена (F) (Рисунок 24) в чистом виде, а также в качестве допирующего компонента, распределенного в полистирольной матрице. Результаты сравнивали с сенсорными свойствами стирольных полимеров P1-P14 с привитыми химическим путем флуорофорами.

Флуоресцентным титрованием раствора производного пирена (**F**) в ацетонитриле показана возможность детектирования модельных нитроароматических соединений NB, DNT, TNT и PA с высокими пределами обнаружения от 10^{-8} до 10^{-9} моль/л, превышающими значения флуоресцентной чувствительности полимеров **P1-P14** с величинами порядка 10^{-7} моль/л (см. Таблица 10).

Рисунок 24. Структура производного пирена F - 1,3,6,8-*тетракис*[(триметилсилил)этинил]пирен

Для исследования сенсорных свойств производного пирена (**F**) в газовой фазе были изготовлены флуоресцентные материалы на основе этото флуорофора в чистом виде или в качестве допирующего компонента, распределенного в полистирольной матрице. Используемый полистирол получен тем же способом, что и сополимеры, чтобы обеспечить такое же молекулярно-массовое распределение. Сенсорные элементы изготовлены по аналогии с сополимерами (см. Рисунки 8 и 9).

Пределы обнаружения (DL) паров модельных нитроароматических соединений NB и DNT, приведены в Таблице 12. Результаты показывают, что флуорофор (**F**) в чистом виде

или в качестве добавки в полистирольном матрице, способен надежно обнаруживать пары 2,4-DNT при концентрации до 4.5 ppb в течение 100 с.

Флуоресцентный Материал	Аналит	DL, (ppb)	Время воздействие (с)		
		1389	10		
	NB	747	50		
mE/Elan		571	100		
mr/Eisp		17.9	10		
	2,4-DNT	6.8	50		
		4.5	100		
		3741	10		
	NB	2205	50		
E + DC		1756	100		
mr+PS		26.1	10		
	2,4-DNT	10.5	50		
		7.1	100		

	10	п	~		DI							U 1	1
Гарина	12	Пределы	ODHanvy	кения (1)1.) нитr	021	оматических	co	елинении	в пя	повои (hase
гаолица	14.	пределы	oonupyn		νL	, iiiip	oup			одинении	DIIIu	pobon	puse.

mF/Elsp: материал на основе чистого флуорофора **F**, полученного электроспинингом; mF+PS: материал на основе флуорофора **F** и полистирола, полученного методом литья по каплям.

ЗАКЛЮЧЕНИЕ

- Разработаны удобные методы синтеза последовательного ряда 4-арилстиролов и 4-Nариламиностиролов, содержащих остатки ароматических флуорофоров с различным числом конденсированных бензольных колец, основанные на металл-катализируемых реакциях кросс-сочетания в условиях их активации микроволновым излучением. Установлено, что полученные стиролы обладают выраженной флуоресценцией в диапазоне 340-450 нм.
- 2. Синтезированы статистические сополимеры путем взаимодействия полученных стиролов со стиролом в молярных соотношениях от 8 до 14 полистирольных звеньев на 1 флуорофорный фрагмент, а также гомополимер поли[4-(1-пиренил)стирола]. Показано, что все сополимеры имеют выраженную флуоресценцию в диапазоне 340–520 нм с высокими квантовыми выходами (до 0.93). Для сополимеров на основе 4-N-ариламиностиролов выявлено образование эксимеров.
- 3. Показаны сенсорные свойства полученных сополимеров. Пределы обнаружения нитроароматических соединений для сополимеров достигали до 10⁻⁷ моль/л в растворе. Показано, что сополимеры на основе 4-арилстиролов обладают лучшими сенсорными свойствами в сравнении с сополимерами на основе 4-N-ариламиностиролов.
- Проведено сравнение фотофизических и сенсорных свойств гомополимера 4-пиренилстирола, а также его сополимера со стиролом. Продемонстрировано, что сополимер обладает лучшими сенсорными свойствами (детектирование нитроароматических соединений) по сравнению с гомополимером.
- 5. Получены сенсорные материалы на основе ряда сополимеров, которые позволяют надежно обнаруживать пары нитробензола в концентрации 0.5 ppm при 100-секундном воздействии паров нитробензола.
- 6. Определены сенсорные свойства флуорофора 1,3,6,8-*тетракис*[(триметилсилил)этинил]пирена (F). Пределы обнаружения нитроароматических соединений для флуорофора F были на уровне 10⁻⁹ моль/л в растворе, превышая таким образом значения для полимеров P1-P14 с величинами порядка 10⁻⁷ моль/л. Получены сенсорные материалы на основе этого флуорофора в чистом виде, а также в качестве допирующего компонента в полистирольной матрице, позволяющие надежно обнаруживать пары 2,4-DNT в концентрации 4.5 ppb в течение 100 с.

Статьи, опубликованные в рецензируемых научных журналах и изданиях, определенных ВАК РФ и Аттестационным советом УрФУ

- 1. Zen Eddin, M. A new approach to 4-arylstyrenes: microwave-assisted synthesis and photophysical properties / M. Zen Eddin, M.G. Pervova, E.F. Zhilina, K.A. Chistyakov, E.V. Verbitskiy, G.L. Rusinov, V.N. Charushin // Russian Chemical Bulletin 2021. Vol. 70. № 11. P. 2139–2144 (0,40 п.л. / 0,06 п.л.) (Scopus, WOS).
- 2. Zen Eddin, M. Random Copolymers of Styrene with Pendant Fluorophore Moieties: Synthesis and Applications as Fluorescence Sensors for Nitroaromatics / M. Zen Eddin, E.F. Zhilina, R.D. Chuvashov, A.I. Dubovik, A.V. Mekhaev, K.A. Chistyakov, A.A. Baranova, K.O. Khokhlov, G.L. Rusinov, E.V. Verbitskiy, V.N. Charushin // Molecules 2022. Vol. 27. № 20. 6957. (1,21 п.л./0,12 п.л.) (Scopus, WOS).
- Chuvashov, R.D. Trimethylsilylethynyl-Substituted Pyrene Doped Materials as Improved Fluorescent Sensors towards Nitroaromatic Explosives and Related Compounds / R.D. Chuvashov, E.F. Zhilina, M. Zen Eddin, G.L. Rusinov, E.V. Verbitskiy, V.N. Charushin // Chemosensors – 2023. – Vol. 11. – № 3. – 167 (1,21 п.л./0,20 п.л.) (Scopus, WOS).
- Chuvashov, R.D. Fluorescent detection of nitrobenzene vapors via fluorophore-doped polystyrene materials | флуоресцентное определение паров нитробензола с использованием допированного флуорофорами полистирола // R.D. Chuvashov, D.V. Belyaev, K.O. Khokhlov, A.A. Baranova, M. Zen Eddin, I. I. Milman, E. V. Verbitskiy // Analitika i Kontrol 2022. Vol. 26. № 4. P. 284–297 (0,81 п.л./0,12 п.л.) (Scopus).
- 5. Zen Eddin, M. Poly[4-(1'-pyrenyl)styrene]: synthesis, photophysical properties, and practical application as a sensor for nitroaromatic explosives / M. Zen Eddin, E.F. Zhilina, A.I. Dubovik, M.I. Kodess, M.A. Ezhikova G.L. Rusinov, E.V. Verbitskiy, V.N. Charushin // Russian Chemical Bulletin 2023. Vol. 72. № 11. P. 2717–2725 (0,58 п.л./0,08 п.л.) (Scopus, WOS).
- Zen Eddin, M. Synthesis of random copolymers of styrene and arylamino substituted styrenes and their sensitivities towards nitroaromatics / M. Zen Eddin, E.F. Zhilina, R.D. Chuvashov, A.I. Dubovik, A.V. Mekhaev, K.A. Chistyakov, M.G. Pervova, M.I. Kodess, M.A. Ezhikova, A.A. Baranova, K.O. Khokhlov, G.L. Rusinov, E.V. Verbitskiy, V.N. Charushin // J. Appl Polym Sci. 2024. Vol. 141. № 19. e55355 (1,21 п.л./0,09 п.л.) (Scopus, WOS).

Тезисы докладов:

- 7. Зен Еддин М. Синтез 4-(N-арил) стиролов по реакции Бухвальда-Хартвига в условиях микроволновой активации / Зен Еддин М., Первова М.Г., Вербицкий Е.В., Русинов Г.Л., Чарушин В.Н. // V Международная научно-практическая конференция «Современные синтетические методологии для создания лекарственных препаратов и функциональных материалов» (MOSM) 2021. Сборник тезисов (Екатеринбург, 2021 г.) С. 213 (0,06 п.л./0,01 п.л.).
- Зен Еддин М. Синтез 4-арилстиролов в условиях микроволновой активации и изучение их фотофизических свойств / М. Зен Еддин, М.Г. Первова, Е.Ф. Жилина, К.А. Чистяков, Е.В. Вербицкий, Г.Л. Русинов, В.Н. Чарушин // IX Молодежная конференция ИОХ РАН 2021. Сборник тезисов (Москва, 2021 г.) С.154 (0,06 п.л. / 0,01 п.л.).
- 9. Зен Еддин М. Новые флуоресцентные хемосенсоры на основе полиароматических сополимеров для обнаружения нитроароматических веществ / М. Зен Еддин, Е.Ф. Жилина, А.И. Дубовик, Е.В. Вербицкий, Г.Л. Русинов, В.Н. Чарушин // ХХХІІ Российская молодёжная научная конференция с международным участием «Проблемы теоретической и экспериментальной химии» 2022. Сборник тезисов (Екатеринбург, 2022 г.) С. 325 (0,06п.л./ 0,01 п.л.).
- 10. Зен Еддин М. Полимеры на основе 4-арилстиролов: оптические и сенсорные свойства / А.И. Дубовик, М. Зен Еддин, Е.Ф. Жилина, Е.В. Вербицкий, Г.Л. Русинов, В.Н. Чарушин // ХХХІІІ Российская молодёжная научная конференция с международным участием «Проблемы теоретической и экспериментальной химии» 2023. Сборник тезисов (Екатеринбург, 2023 г.) С. 34 (0,06 п.л. / 0,01 п.л.).
- 11.Зен Еддин М. Сополимеры стирола и полиароматических углеводородов: фотофизические и сенсорные свойства / Е.Ф. Жилина, М. Зен Еддин, Р.Д. Чувашов, А.И. Дубовик, А.В. Мехаев, К.А. Чистяков, М.Г. Первова, М.И. Кодесс, М.А. Ежикова, А.А. Баранова, К.О. Хохлов, Е.В. // Всероссийская конференция по люминесценции с международным участием (LUMOS) 2024. Сборник тезисов (Москва, 23-26 апреля 2024 г) С. 69 (0,06 п.л. / 0,01 п.л.).