Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

На правах рукописи

Егорова Анастасия Вячеславовна

Цинк-замещенные перовскиты на основе La*M*⁺³O₃, где *M*⁺³=Al, Sc, In (синтез, гидратация, ионный транспорт)

1.4.4. Физическая химия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

Екатеринбург – 2024

Работа выполнена на кафедре физической и неорганической химии ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Научный руководитель:

доктор химических наук, доцент Анимица Ирина Евгеньевна

Официальные оппоненты:

Конышева Елена Юрьевна,

доктор химических наук, старший научный ФГБУН Институт металлургии сотрудник, Уральского отделения Российской академии наук (г. Екатеринбург), ведущий научный сотрудник лаборатории статики и кинетики процессов

Пийр Ирина Вадимовна,

доктор химических наук, ФГБУН доцент, Федеральный исследовательский «Коми центр научный центр Уральского отделения Российской академии наук» – обособленное подразделение Институт химии ФИЦ Коми НЦ УрО РАН (г. Сыктывкар), главный научный сотрудник лаборатории керамического материаловедения

Ярошенко Федор Александрович,

кандидат химических наук, доцент, ФГБОУ ВО «Челябинский государственный университет», доцент кафедры химии твердого тела и нанопроцессов

Защита состоится 27 июня 2024 года в 11:00 на заседании диссертационного совета УрФУ 1.4.01.01 по адресу: 620000, Екатеринбург, пр. Ленина, 51, Зал диссертационных советов, комн. 248

С диссертацией можно ознакомиться в библиотеке и на сайте ФГАОУ ВО «Уральский федеральный университет первого Президента России Б.Н. Ельцина», имени https://dissovet2.urfu.ru/mod/data/view.php?d=12&rid=5986

Автореферат разослан « » мая 2024 г.

Ученый секретарь диссертационного совета кандидат химических наук, доцент

Аксенова Татьяна Владимировна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы и степень ее разработанности.

Современные тенденции развития электроэнергетики свидетельствуют 0 повышенном интересе к разработкам твердооксидных топливных элементов (ТОТЭ) как альтернативных источников энергии. Наиболее перспективными являются ТОТЭ, работающие интервале средних температур (500–700 °С), где в качестве В электролитической мембраны могут быть использованы протонные проводники на основе сложных оксидов [1-3]. Основная материаловедческая задача состоит в подборе технологичного, химически устойчивого и относительно недорогого твердого электролита с высокой ионной проводимостью.

Соединения со структурой перовскита ABO_3 наиболее интенсивно исследуются как протонные проводники, поскольку могут адаптировать дефицит кислорода $ABO_{3-\delta}$ и инкорпорировать протоны. Наиболее подробно исследованы допированные $BaCeO_3$ и $BaZrO_3$ [1, 4] обладающие высокой протонной проводимостью, однако при этом цирконаты характеризуются высоким зернограничным сопротивлением, а цераты неустойчивы по отношению к атмосферному углекислому газу CO_2 из-за образования карбонатов бария.

Поэтому перспективным направлением является разработка новых материалов, не содержащих щелочноземельного компонента в составе химической формулы – «alkaline earth elements free strategy». Это можно реализовать при модифицировании перовскитов $A^{+3}B^{+3}O_3$ с зарядовыми комбинациями элементов *A*- и *B-подрешеток* +3 и +3. В ряде работ показано, что акцепторно-замещенные лантансодержащие перовскиты La $M^{+3}O_3$ (M^{+3} =Al, Ga, Sc, In и др.) обладают высоким уровнем ионного транспорта [5, 6]. Допированные перовскиты LaGaO₃ и LaAlO₃ [6–8] являются преимущественно кислород-ионными проводниками, в то время как LaScO₃ [9–11], LaInO₃ [12–15], LaYO₃ [16] и LaYbO₃ [17] способны к проявлению протонной проводимости.

Традиционно оптимизация транспортных свойств реализуется при акцепторном замещении катионной подрешетки. Однако границы областей гомогенности твердых растворов на основе $LaM^{+3}O_3$ небольшие, и это не позволяет достичь высоких концентраций вакансий кислорода и, соответственно, значимых концентраций протонов. Кроме того, в качестве допантов используют щелочноземельные металлы, присутствие которых снижает химическую устойчивость фаз. Более высокий дефицит кислорода может быть реализован при организации многоподрешеточных структур с двумя разнозарядными катионами в *B*-подрешетке в соотношении 1:1. Однако имеющаяся в литературе информация о таких замещениях для перовскитов $A^{3+}B^{3+}O_3$ практически отсутствует.

В настоящей работе нами предложена стратегия создания новых кислороддефицитных фаз на основе $LaM^{+3}O_3$, в которых, как альтернатива щелочноземельным металлам (двухзарядным допантам), предлагается использование цинка при введении его в *B-nodpewemky*.

Работа выполнена в рамках государственного задания Министерства Российской Федерации (Государственное задание № 4.2288.2017), а также в рамках Программы развития Уральского федерального университета имени первого Президента Б. Н. Ельцина в соответствии с программой стратегического академического лидерства «Приоритет-2030».

Цель работы: установление взаимосвязи между составом, кристаллическим строением и кислород-ионной/протонной проводимостью новых кислород-дефицитных цинксодержащих перовскитов на основе La M^{+3} O₃, где M^{+3} =Al, Sc, In.

Для достижения этой цели были поставлены следующие задачи:

1) Синтез новых фаз состава $LaM_{0.5}^{+3}Zn_{0.5}O_{2.75}$ (M^{+3} =Al, Sc, In) и твердых растворов $LaAl_{1-x}Zn_xO_{3-\frac{1}{2}x}$ и $LaIn_{1-y}Zn_yO_{3-\frac{1}{2}y}$;

2) Определение симметрии элементарной ячейки фаз и параметров решетки;

3) Исследование процессов гидратации, определение концентрации протонов, основных форм протонсодержащих групп;

4) Изучение электрических свойств образцов при изменении термодинамических параметров среды: температуры, парциального давления паров воды и кислорода. Дифференциация проводимости на составляющие, определение ионных чисел переноса;

5) Оценка химической стабильности исследуемых фаз к углекислому газу и парам воды.

Методология и методы исследования

Для комплексного исследования сложных оксидов использованы современные методы исследования. Экспериментальные данные были обработаны с учетом погрешностей измерений и измерительных приборов, для обработки использовалось Структура охарактеризована программное обеспечение. лицензионное методом рентгеновской дифракции, морфология поверхности исследована методом сканирующей электронной микроскопии и методом динамического рассеяния света. Методом атомноэмиссионной спектроскопии установлен химический состав фаз. Процессы гидратации термогравиметрии, масс-спектрометрии, ИК-спектроскопии. изучали методом Транспортные свойства исследовали методом импедансной спектроскопии в широком диапазоне температур, парциальных давлений паров воды *p*H₂O и кислорода *p*O₂. Протонные числа переноса образцов определены методом ЭДС.

Научная новизна работы:

1) Впервые синтезированы кислород-дефицитные соединения состава $LaM_{0.5}^{+3}Zn_{0.5}O_{2.75}$ (M^{+3} =Al, Sc, In) со структурой перовскита.

2) Впервые получены твердые растворы LaAl_{1-x}Zn_xO_{3- $\frac{1}{2x}$} (0 \leq x \leq 0.05) и LaIn_{1-y}Zn_yO_{3- $\frac{1}{2y}$} (0 \leq y \leq 0.07), определены границы областей гомогенности.

3) Доказана возможность стабилизации кубической структуры LaAlO₃ при допировании цинком.

4) Доказана способность полученных фаз к инкорпорированию протонов и установлены формы нахождения протонов в структуре. Определены концентрации протонов в зависимости от состава и температуры.

5) Установлены закономерности влияния концентрации допанта, температуры, парциальных давлений кислорода и паров воды на транспортные свойства новых фаз. Доказано, что фазы $LaM_{0.5}^{+3}Zn_{0.5}O_{2.75}$ (M^{+3} =Al, Sc, In) являются ионными проводниками при температурах ниже ~500 °C.

6) Доказана химическая устойчивость цинк-содержащих фаз в атмосфере влажного воздуха (*p*H₂O=2·10⁻² атм) и CO₂.

7) Выявлена взаимосвязь возможности появления протонной проводимости в перовскитах с величиной эффективного радиуса кислородных вакансий r_v ; в фазах с $r_v \leq 1.35$ Å протонный транспорт не реализуется.

Теоретическая и практическая значимость работы:

Получены новые кислород- и протонпроводящие соединения и твердые растворы со структурой перовскита, что значительно расширяет круг объектов современного неорганического материаловедения для их использования в ТОТЭ.

Предложена стратегия введения цинка в структуру сложных оксидов как способ получения химически устойчивой и высокоплотной керамики (98 %) без использования высоких температур спекания.

Получены фазы, рекомендуемые для их практического использования в качестве электролитов ТОТЭ, с величиной кислород-ионной и протонной проводимости 1×10^{-4} Ом⁻¹×см⁻¹ при 750 °C и ~10⁻⁵ Ом⁻¹×см⁻¹ при 500 °C, соответственно.

Установленные закономерности ионного (O²⁻ и H⁺) транспорта позволяют прогнозировать свойства потенциальных твердых электролитов и могут быть использованы в дальнейшем поиске перспективных фаз.

Полученные данные о структуре, термических и электрических свойствах исследованных перовскитов, как и установленные в работе закономерности, могут быть внесены в соответствующие базы данных, справочные материалы и методические пособия.

Положения, выносимые на защиту:

1. Данные о границах областей гомогенности полученных твердых растворов LaAl_{1-x}Zn_xO_{3-1/2x} и LaIn_{1-y}Zn_yO_{3-1/2y}.

2. Результаты исследования влияния цинка на кристаллическую структуру фаз состава La $M_{0.5}^{+3}Zn_{0.5}O_{2.75}$ (M^{+3} =Al, Sc, In, Zn), LaAl_{1-x}Zn_xO_{3-½x}, LaIn_{1-y}Zn_yO_{3-½y};

3. Результаты исследования процессов гидратации синтезированных фаз и форм кислородно-водородных групп.

4. Результаты импедансной спектроскопии в интервале температур 300-900 °C, парциального давления кислорода $10^{-20}-0.21$ атм, парциального давления паров воды $3\cdot10^{-5}-0.02$ атм;

5. Закономерности формирования протонной проводимости в фазах на основе $LaM^{+3}O_3$ ($M^{+3}=Al$, Sc, In).

6. Результаты исследования химической стабильности исследуемых фаз.

Степень достоверности и апробация результатов работы

Достоверность результатов работы обеспечена использованием современного научного оборудования для проведения исследований, известных и аттестованных методик, непротиворечивостью экспериментально полученных результатов фундаментальным научным представлениям в данной области и воспроизводимостью данных, публикациями в высокорейтинговых зарубежных научных журналах, апробацией результатов работы на международных и российских конференциях в устных и стендовых сообщениях: VII, VIII, IX Международные молодежные научные конференции: "Физика. Технологии. Инновации" (Екатеринбург, 2020, 2021, 2022); Всероссийская конференция с международным участием "Химия твердого тела и функциональные материалы" (Санкт-Петербург, 2018); XII Всероссийский симпозиум с международным участием "Термодинамика и материаловедение" (Санкт-Петербург, 2018); III, IV Байкальские материаловедческие форумы (Улан-Удэ, 2018, 2022); 14-ое, 15-ое, 16-ое Международные Совещания "Фундаментальные проблемы ионики твердого тела" (Черноголовка, 2018, 2020, 2022); XXI Менделеевский съезд по общей и прикладной химии (Санкт-Петербург, 2019); III Всероссийская конференция "Горячие точки химии твердого тела: от новых идей к новым материалам" (Новосибирск, 2019); XVIII Российская конференция "Физическая химия и электрохимия расплавленных и твердых электролитов" (Нальчик, 2020); Первый Всероссийский семинар "Электрохимия в распределенной и атомной энергетике" (Нальчик, 2022); Молодежная научная конференция "Водородная энергетика сегодня" (Екатеринбург, 2023); IV Всероссийская конференция с международным участием "Исследования и разработки в области химии и технологии функциональных материалов" (Апатиты, 2023).

Личный вклад автора заключается в проведении экспериментов, получении, обработке и анализе результатов, изложенных в диссертации. Все результаты, представленные в диссертации, получены автором самостоятельно или при непосредственном его участии. Егорова А. В. участвовала в постановке конкретных задач, самостоятельно провела анализ литературных источников по тематике диссертации. Интерпретация результатов и написание статей проводилась совместно с научным руководителем д.х.н. Анимицей И. Е.

Публикации

По результатам диссертационной работы опубликованы 6 статей в журналах, входящих в перечень ВАК РФ и индексируемых в базах Scopus и/или Web of Science и более 15 тезисов на конференциях и совещаниях различного уровня.

Структура диссертации

Диссертационная работа состоит из введения, восьми глав, основных выводов и списка литературы, содержащего 237 библиографических ссылок. Текст работы изложен на 171 страницах, включает в себя 116 рисунков и 24 таблицы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении отмечена актуальность темы исследования, сформулирована цель работы и поставлены задачи, приведены теоретическая и практическая значимость работы.

<u>В главе 1</u> содержатся данные о структуре перовскита и его производных. Приведен литературный обзор перовскитов состава $LaM^{+3}O_3$, где рассмотрены особенности кристаллической структуры и физико-химические свойства этих соединений. Обсуждены перспективы создания и исследования многоподрешеточных структур. Рассмотрены примеры существующих соединений с разнозарядными катионами в *B-nodpeшеmкe*, в т. ч. La-содержащих материалов. А также рассмотрены соединения, содержащие цинк, их характеристики и применение.

<u>В главе 2</u> описаны методики, используемые в работе. Твердофазный синтез образцов проводили на воздухе из предварительно прокаленных оксидов ("ос.ч."): La₂O₃, Al₂O₃, Sc₂O₃, In₂O₃, и ZnO, взятых в стехиометрических соотношениях. Конечные температуры синтеза для Zn-содержащих твердых растворов ниже на ~100 °C относительно матричных фаз.

Рентгенофазовый анализ выполнен на дифрактометре Bruker D8 Advance (Bruker, Billerica, MA, США) в Си Ка–излучении, при напряжении 40 кВ и токе 40 мА. Уточнение кристаллической структуры осуществляли методом полнопрофильного анализа Ритвельда или по методу Ле Бейла с использованием ПО FULLPROF. Для корректного сравнения фаз с разной симметрией рассчитывали значения приведенного объема ячейки $\tilde{V}_{su}=a\times b\times c/Z$. Химическую устойчивость фаз оценивали по данным РФА образцов, предварительно обработанных в течение 10 ч при температуре 500 °C в смеси газов воздух: CO₂ (1:1).

Атомно-эмиссионный анализа проводили на спектрометре с индуктивно-связанной плазмой Optima 4300 DV ICP-OES (Perkin Elmer, CША) в атмосфере аргона (99.996 % чист.). Содержание кислорода определяли на элементном анализаторе OH 836 (LECO, США) методом карботермического сжигания в атмосфере аргона в 3-х параллелях. Морфология поверхности порошковых и таблетированных образцов исследовались методом сканирующей электронной микроскопии (СЭМ) с помощью настольной рабочей станции Phenom Pharos (Phenom-World, Нидерланды). Методом динамического рассеяния света (ДРС) определяли размер частиц на анализаторе LitesizerTM 500 (Anton Paar, Aвстрия), источник света – полупроводниковый лазер, 40 мВ, с λ =658 нм, в воде и ацетоне.

Гидратированные образцы получены медленным охлаждением (1 °/мин) с 1000 °C до 150 °C в атмосфере влажного воздуха ($pH_2O=2\cdot10^{-2}$ атм). Безводные образцы – с 1000 °C до 25 °C (1 °/мин) в сухой атмосфере ($pH_2O=3.5\cdot10^{-5}$ атм). По окончанию термообработки образцы были герметично упакованы.

Сухую атмосферу ($pH_2O=3.5\cdot10^{-5}$ атм) поддерживали посредством циркуляции воздуха через склянку с пентаоксидом фосфора P_2O_5 . Влажную ($pH_2O=2\cdot10^{-2}$ атм) атмосферу задавали барботированием через насыщенный раствор KBr. Значения pH_2O определяли датчиком влажности HIH 3610 (Honeywell).

Термогравиметрические исследования проводили на термоанализаторе NETZSCH STA 409 PC Luxx (Netzsch, Германия) и с помощью термовесов PYRIS 1 TGA (Perkin-Elmer, США) в различных атмосферах при различной влажности. ИК-спектры записывали на ИК-Фурье спектрометре Nicolet 6700 в диапазоне частот от 400 до 4000 см⁻¹.

Для исследований электрических свойств образцы прессовали в форме таблеток на ручном прессе (LabTools, Россия) под давлением 50 МПа, а затем отжигали при температурах 1200–1400 °C. Относительная плотность для Zn-замещенных образцов

составила ~98 %. Для достижения аналогичной плотности у матричных фаз отжиги проводили при температурах выше на 200–300 °C.

Электропроводность измеряли в двухконтактной ячейке методом импедансной спектроскопии с использованием измерителя сопротивления Elins Impedancemeter Z-1000P (Elins, Черноголовка, Россия) в частотном интервале 100 Гц–1 МГц в интервале 300 – 1000 °С (2 °С/мин) при варьировании парциального давления паров воды pH_2O ($10^{-5}-2\cdot10^{-2}$ бар) и кислорода pO_2 (10^{-20} –0.21 бар). Вклады объемного и зернограничного сопротивления определяли посредством анализа полученных спектров импеданса в программе ZView-Impedance Software (Version 2.6b).

Значение pO_2 задавали и контролировали электрохимическим методом с помощью кислородного насоса и датчика, изготовленных из твердого электролита ZrO₂ (10 мол% Y₂O₃). Проведена дифференциация проводимости на парциальные (ионный и электронный) вклады, рассчитаны ионные *числа переноса* $t_{ион}=\sigma_{ион}/\sigma_{oбщ}$. Определение протонных чисел переноса проводилось методом ЭДС. Градиент p_{H_2O} задавали пропусканием атмосферы через насыщенные растворы KBr ($p'_{H_2O}=1.92\times10^{-2}$ атм) и LiCl ($p''_{H_2O}=5\times10^{-3}$ атм).

<u>В главе 3</u> приводятся результаты исследований физико-химических свойств фаз на основе LaAlO₃ (*LAO*) с общей формулой LaAl_{1-x}Zn_xO_{3- $\frac{1}{2}x}$ (*x* = 0, 0.05, 0.10, 0.15, 0.33, 0.5, 0.66, 1.00).</sub>

Структурные особенности и морфология поверхности LaAl_{1-x}Zn_xO_{3-1/2x}

По данным РФА область гомогенности узкая и находится в пределах $0 \le x \le 0.05$. Образец из области гомогенности LaAl_{0.95}Zn_{0.05}O_{2.975} (*LAZ05*), синтезированный при T = 1200 °C, кристаллизуется в кубической симметрии. Образец x = 0.10 (*LAZ10*) содержал основную кубическую фазу перовскита и примеси исходных реагентов (8 %).

В квазибинарном разрезе LaAlO₃ – LaZnO_{2.5} впервые получены фазы составов LaAl_{0.5}Zn_{0.5}O_{2.75} (*LAZ50*) и La₂Zn₂O₅ (*LZO*). Обработка дифрактограммы для *LAZ50* приведена на рисунке *la*.

Рисунок 1 – Данные для образца *LAZ50*: *a*) Обработка рентгенограмм: экспериментальные (точки), расчетные (линия), разностные (внизу) данные и угловые положения рефлексов (штрихи), фактор сходимости χ^2 и *hkl*; *б*) СЭМ-Изображение поверхности порошка; *в*) Распределение по интенсивности светорассеяния суспензии частиц в воде и ацетоне

Обработка данных РФА *LAZ50* не выявила наличия сверхструктурных линий, свидетельствующих об упорядочении В-катионов. Кристаллохимические параметры, рассчитанные для фаз на основе LaAlO₃, представлены в таблице *1*.

Результаты определения химического состава приведены в таблице 2 для *LAZ50*. Катионный состав хорошо сохраняется, чему благоприятствует связывание цинка в фазу La₂Zn₂O₅ на ранних стадиях синтеза. Изучена морфология поверхности образцов, результаты представлены на рисунке *16* на примере *LAZ50*. Образцы состоят из

разноразмерных зерен округлой формы, межзеренная область чистая. Размер зерна составляет ~1 мкм, что согласуется с результатами (1.32 мкм) метода ДРС (рис. *1в*).

фаза	пр.гр.	<i>a</i> , Å	<i>c</i> , Å	угол, °	Ũяч, Å ³	V _{cb} , Å ³
LAO	<i>R-3C</i>	5.408(5)	13.182(3)	γ=120	54.34(4)	8.70(7)
LAZ05	Pm3m	3.785(2)	_	_	54.23(3)	8.82(7)
LAZ50		3.791(5)	_	—	54.57(8)	11.27(7)
LZO	P63/m	6.528(6)	3.836(2)	γ=120	70.80(5)	—

Таблица 1 – Кристаллохимические параметры образцов LaAl_{1-x}Zn_xO_{3-½x} (x=0.00-1.00)

Транспортные свойства LaAl_{1-x}Zn_xO_{3-1/2x}

Типичные годографы импеданса показаны на рисунке 2 на примере образца *LAZ05*. Спектры состоят из двух полуокружностей, первая из которых соответствует объемным свойствам (С~ 10^{-11} Ф), вторая – зернограничным (С~ 10^{-9} Ф). Спектры однотипные, имеют схожий вид для всех образцов.

Таблица 2 – Катионный состав *LAZ50* -*Z*",

h	Содержание			
Элемент	Теор., ат.%	Эксп., ат.%		
La	50	$50.84{\pm}~0.5$		
Al	25	$24.51{\pm}~0.2$		
Zn	25	24.65 ± 0.2		

Рисунок 2 – Годографы импеданса для *LAZ05* в сухой атмосфере при 560–640 °C

На рисунке 3*а* приведены температурные зависимости проводимостей *LAO*, *LAZ05*, *LAZ10*, *LAZ50* и *LZO*. Все цинксодержащие образцы демонстрируют проводимость более высокого уровня относительно матричного состава, что обусловлено наличием кислородного дефицита в исследуемых соединениях. Все образцы не реагируют на смену влажности, что показано на примере *LAZ05*. Концентрационные зависимости проводимости приведены на рисунке *36*.

Рисунок 3 — Температурные (*a*) и концентрационные (*б*) зависимости проводимости образцов *LAO*, *LAZ05*, *LAZ10*, *LAZ50* и *LZO*; синим показана область гомогенности LaA1_{1-x}Zn_xO_{3- $\frac{1}{2x}$} (сухая атмосфера – закр. симв., влажная – откр. симв.)

Максимальный рост проводимости наблюдается у фазы с наибольшим кислородным дефицитом LaAl_{0.5}Zn_{0.5}O_{2.75}. Новое соединение цинкат лантана La₂Zn₂O₅ также имеет высокие значения проводимости.

Электропроводность фаз *LAO*, *LAZ05* и *LAZ50* измерена в зависимости от парциального давления кислорода, данные приведены на рисунке 4*a* на примере *LAZ50*.

Рисунок 4 – Изотермы проводимости от парциального давления кислорода *p*O₂: *a*) для *LAZ50*; *б*) для образцов *LAZ05* и *LAZ50*; сухая атмосфера – закр. симв., влажная – откр. симв.

На изотермах $\sigma - f(pO_2)$ наблюдается область электролитической проводимости, независимой от pO_2 , а также линия с положительным наклоном при $pO_2>10^{-4}$ атм, свидетельствующая о вкладе проводимости *p*-типа. При понижении температуры область плато расширяется и при T≤400 °C образец *LAZ50* характеризуется преобладающим ионным типом проводимости во всей исследованной области pO_2 . Отклика на смену влажности не наблюдается. При сравнении изотерм проводимости фаз *LAZ50* и *LAZ05* (рис. 46) можно отметить общее сходство зависимостей, однако образец *LAZ50* характеризовался значимо большими значениями ионной проводимости.

Рисунок 5 – Температурные зависимости: *a*) ионных *чисел переноса* для *LAO*, *LAZ05* и *LAZ50* при *p*O₂=0.21 атм; *б*) – парциальных проводимостей для *LAZ50*; *в*) – ионной проводимости для *LAZ05*, *LAZ50* и *LAO*

Проведены расчеты парциальных проводимостей и ионных *чисел переноса*. Сравнение t_{uoh} для образцов *LAO*, *LAZ05* и *LAZ50* при температурах 400–900 °C показано на рисунке 5*a*. Как и базовый состав *LAO*, так и Zn-содержащие образцы являются смешанными ионно-дырочными проводниками на воздухе ($pO_2=0.21$ атм). Доля кислородионного переноса для образца *LAZ05* незначительно изменяется во всем интервале температур. Поведение проводимости фазы *LAZ50* отличается: при уменьшении температуры значения ионных *чисел переноса* увеличиваются, а доминирующий ионный транспорт реализуется ниже 450 °C.

Разделение общей электропроводности на парциальные вклады представлено на рисунке 56 для *LAZ50*. Ионная составляющая проводимости ниже температуры 450 °C становится доминирующей. Значения энергии активации для ионной и электронной проводимостей составили 0.93 эВ и 1.20 эВ, соответственно.

Кислород-ионная проводимость образцов *LAZ05*, *LAZ50* (рис 5*в*) выше относительно базового состава *LAO* на 3.5 и 4 порядка величины, соответственно.

Наибольшие значения ионной проводимости реализуются для фазы *LAZ50*, вероятно, за счет бо́льшего значения свободного объема ячейки (табл. 1), что коррелирует также с величинами $E_a=0.93$ эВ (для *LAZ50*) и $E_a=1.0$ эВ (для *LAZ05*).

<u>В главе 4</u> описано получение и аттестация физико-химических свойств индатов с общей формулой LaIn_{1-y}Zn_yO_{3-1/2y} (y=0, 0.05, 0.07, 0.10, 0.15). Область гомогенности твердого раствора находится в пределах $0 \le y \le 0.07$. Синтез твердого раствора с y=0.05 (*LIZ05*) и y=0.07 (*LIZ07*) был завершен при 1200 °C. При 1300 °C синтезирована новая фаза LaIn_{0.5}Zn_{0.5}O_{2.75} (*LIZ50*). Образцы y= 0.10, 0.15 не получены однофазными.

Структурные особенности и морфология поверхности LaIn_{1-y}Zn_yO_{3-1/2y}

Все образцы *LIO*, *LIZ05*, *LIZ07* и *LIZ50* характеризуются ромбической симметрией. На рисунке *6а* показана обработка рентгенограммы на примере образца *LIZ50*. Рассчитанные параметры ячейки образцов в системе LaIn_{1-y}Zn_yO_{3-½y} представлены в таблице 3.

Рисунок 6 – *a*) Обработка данных РФА: экспериментальные (точки), расчетные (линия), разностные (внизу) данные и угловые положения рефлексов (штрихи), χ^2 и *hkl* для *LIZ50*; СЭМ-изображения поверхности порошков для *LIO* (б), *LIZ05* (*e*), *LIZ50* (*c*) и *LIZ07* (*d*)

у	a, Á	b, Å	<i>c</i> , Å	Ũ яч, Å ³	Vсв, Å ³
0	5.939(3)	8.218(5)	5.724(2)	69.84(8)	22.70(9)
0.05	5.938(4)	8.217(9)	5.724(0)	69.83(4)	23.00(4)
0.07	5.939(4)	8.216(9)	5.723(3)	69.82(9)	23.12(3)
0.50	5.941(2)	8.217(1)	5.723(7)	69.85(7)	25.81(3)

Таблица 3 – Кристаллохимические параметры образцов LaIn_{1-v}Zn_vO_{3-1/2v}

Для Zn-содержащих образцов характерно небольшое снижение параметров *b* и *c*. Так как ионные радиусы индия ($R_{In} = 0.80$ Å) и цинка ($R_{Zn} = 0.74$ Å) близки, объем элементарной ячейки изменяется незначительно, при этом свободный объем ячейки увеличивается, для состава *LIZ50* характерно относительно высокое значение V_{св}.

Размер зерен (рис. 66–6д) образцов *LIO* и *LIZ50* составил ~1 мкм, что подтверждено методом ДРС. Морфология поверхности образцов *LIZ05* и *LIZ07* характеризовалась более крупным размером зерен ~5 мкм, часть зерен связалась в агломераты размером 10–20 мкм. *Аттестация элементного состава веществ*

Элементный состав фаз определен атомно-эмиссионным методом, результаты приведены в таблице 4 для образца *LIZ50*. Средние (I) и теоретические (II) значения концентраций кислорода (масс.%) представлены в таблице 5 для *LIO* и *LIZ50*. Экспериментальные данные хорошо коррелируют с номинальным значением.

3	начениями.				
	Drawarra	Содержание			
	Элемент	Теор., ат.%	Эксп., ат.%		
	La	50	51.6± 0.5		
	In	25	23.9 ± 0.2		
	Zn	25	24.4 ± 0.2		

Таблица 4 – Катионный состав перовскита *LIZ50* в сравнении с теоретическими

Таблица 5 – Концентрации кислорода в образцах *LIO* и *LIZ50*: средние (I) и теоретические (I)

Концентрация кислорода, масс.%					
LaInO	3	LaIn0.5Zn0.5O2.75			
Ι	II	Ι	II		
16.0 ± 1.0	15.9	18.5 ± 1.0	16.1		

Процессы гидратации

Для гидратированных форм фаз из области гомогенности твердых растворов LaIn_{1-y}Zn_yO_{3-1/2y} (рис 7*a*) удаление воды происходит в одну стадию в интервале температур 300–400 °С. На кривой ТГ образца состава *LIZ50* (рис. 7*б*) наблюдается две слаборазрешающиеся ступени: при 200–250 °С небольшой эффект, а основное изменение массы образца происходит в интервале температур 300–500 °С. Два разных по интенсивности пика на МС-кривой свидетельствуют о наличии в структуре неэквивалентных ОН-групп. При охлаждении образца *LIZ50* в атмосферах сухого воздуха и аргона изменений массы не происходило.

Рисунок 7 – Данные ТГ (зеленые кривые) и масс-спектрометрии (синие кривые) для гидратированных образцов *LIZ07* (*a*) и *LIZ50* (*б*). Данные ТГ для *LIZ50* после выдержки образца при 1000 °C и последующим охлаждением в сухом воздухе (черная кривая) и аргоне (красная кривая)

Формы кислородно-водородных групп в структуре определялись методом ИКспектроскопии. Наличие на ИК-спектрах образца *LIZ50* (рис. *8a*) сигналов в области валентных колебаний (3040 см⁻¹) и (3240 см⁻¹) и полосы в области деформационных колебаний (1490 см⁻¹) доказывает присутствие ОН⁻групп, вовлеченных в разные по силе водородные связи. Энергетическая неэквивалентность гидроксогрупп обуславливает их различную термическую стойкость и проявляется в стадийности эффектов выделения воды в экспериментах по термогравиметрии. Процессы гидратации фаз можно описать квазихимическим уравнением:

$$V_0^{\bullet\bullet} + O_o^{\chi} + H_2 0 \Leftrightarrow 20 H_o^{\bullet}, \tag{1}$$

где $V_0^{\bullet\bullet}$ – двукратно ионизированная вакансия кислорода; O_0^x – атом кислорода в регулярной позиции; OH_0^{\bullet} – протон, локализованный на кислороде, находящемся в регулярной позиции.

Степени гидратации 0.032 и 0.16 моль H_2O (на перовскитную единицу) исследуемых фаз *LIZ07* и *LIZ50* соответствовали 90 % и 66 % заполнению вакансий кислорода, исходя из их расчетной концентрации.

Рисунок 8 – *a*) ИК-спектр гидратированного образца состава LaIn_{0.5}Zn_{0.5}O_{2.75}·*n*H₂O; δ) Годографы импеданса *LIZ50* при температурах 500–600 °C

Транспортные свойства образцов состава *LIO*, *LIZ05*, *LIZ07* и *LIZ50* были исследованы при варьировании T, $pH_2O pO_2$. Спектры импеданса для всех образцов однотипные. На примере образца *LIZ50* на рисунке 86 показана эволюция спектров при смене влажности. Годографы имеют схожий вид, при повышении влажности сопротивление уменьшается, что связано с появлением в системе подвижных носителей тока – протонов, в соответствии с квазихимическим уравнением *1*.

На рисунке 9*a* показаны политермы проводимости для образцов состава *LIO*, *LIZ07* и *LIZ50*. Рост электропроводности в сухом воздухе для цинксодержащих образцов *LIZ07* и *LIZ50* достигает ~2 и ~1.5 порядка величины, соответственно, по сравнению с матричной фазой, что обусловлено дефицитом кислородной подрешетки.

Рисунок 9 *a*) Температурные И б) концентрационные (при 600–900 °C) зависимости общей электропроводности образцов В системе LaIn_{1-у}Zn_уO_{3-1/2у}; Данные в сухом воздухе показаны закр. симв., во влажном – область откр. симв., гомогенности – серым

Образцы реагируют на изменение влажности. Принимая во внимание ТГ и ИКданные, можно заключить, что рост электропроводности в условиях повышенной влажности определяется появлением протонного переноса. Для твердых растворов этот эффект не столь значителен, что обусловлено низкой концентрацией протонных дефектов. Для образца *LIZ50* рост проводимости наиболее значим при температурах ниже 500 °C. Концентрационные зависимости общей электропроводности для образцов в системе LaIn_{1-y}Zn_yO_{3-1/2y} приведены на рисунке *9б*. Как видно, небольшие концентрации допанта приводят к существенному увеличению электропроводности материала.

Электропроводность составов **LIO**, **LIZ07** и **LIZ50** в зависимости от pO_2 представлена на рис. 10. Все фазы на воздухе характеризуются смешанным ионнодырочным типом проводимости. Электропроводность фаз **LIZ07** и **LIZ50** увеличивается относительно LaInO₃. Ионные *числа переноса* для **LIZ07** и **LIZ50** (рис. 11*a*) с уменьшением температуры увеличивались и при температурах ниже 470 °C и 570 °C для **LIZ07** и **LIZ50**, соответственно, ионный перенос доминировал. Значения *чисел переноса* близкие к 1 реализуются у фазы **LIZ50** при температуре ниже 400 °C.

Рисунок 10 - Изотермыэлектропроводности в зависимости от парциального давления кислорода pO_2 для образцов *LIO*, *LIZ07* и *LIZ50* в сухом воздухе при температуре 900 °C (*a*) и 500 °C (*б*)

Дифференциация общей электропроводности на парциальные вклады в сухой атмосфере представлена на рисунке *116* на примере образца *LIZ50*. При температуре ниже 550 °C доминирующим становится O^{2^-} -ионный перенос (E_a=0.89 эВ). Для образца *LIZ07* кислород-ионная проводимость доминирует ниже 450 °C (E_a=0.74 эВ).

Рисунок 11 – Температурные зависимости: *a*) ионных *чисел переноса* образцов состава *LIZ07* и *LIZ50*; *б*) общей (1), ионной (2) и электронной (3) проводимостей *LIZ50*; в) ионной проводимости *LIZ07* и *LIZ50* в сравнении с *LIO* (*p*H₂O=3.5·10⁻⁵ атм)

Сравнение ионных проводимостей $\sigma_{ион}$ фаз *LIO*, *LIZ07* и *LIZ50* показано на рис. 11*в*. Введение цинка в структуру перовскита LaInO₃ повысило уровень кислород-ионного транспорта. Рост кислород-ионной проводимости образцов *LIZ50* и *LIZ07* относительно базового состава LaInO₃ составил до *1* и *1.5* порядков величины, соответственно.

Рисунок 12 – Изотермы проводимости в сухой (закр. симв.), и во влажной (откр. симв.) атмосферах при различных значениях температуры для образцов *LIZ07* (*a*) и *LIZ50* (б)

Электропроводность образцов *LIZ07* (рис. 12*a*) и *LIZ50* (рис. 12*б*) в широком интервале pO_2 возрастает при повышении влажности. При температуре 400 °C изотермы проводимости не зависят от парциального давления кислорода, что свидетельствует о доминировании ионного переноса. Рост ионной электропроводности при смене влажности доказывает появление подвижных ионных носителей заряда – протонов (H⁺) в системе согласно уравнению *1*. На воздухе (pO_2 =0.21 атм) образец *LIZ07* слабо реагирует на смену влажности. Это обусловлено снижением концентрации дырочных носителей по сравнению с протонными дефектами в условиях повышенного pH_2O в соответствии с уравнением:

Рисунок 13 – Температурные зависимости: *a*) ионных *чисел переноса* в сухом (закр. симв.) и влажном (откр. симв.) воздухе, протонных чисел переноса, рассчитанных из σ -*f*(*p*O₂) и по методу ЭДС для *LIZ50*; *b*) общей (1), протонной (2) (влажный воздух) и кислород-ионной (3) (сухой воздух) и проводимостей для *LIZ50*; *b*) протонных проводимостей образцов *LIZ07* и *LIZ50*

На рисунке 13а изображены температурные зависимости ионных чисел переноса для образцов LIZ07 и LIZ50 для различных pH_2O . Значения t_{uoh} увеличиваются со снижением температуры. Во влажной атмосфере значения t_{uoh} выше, чем в сухой, вследствие появления протонного вклада. Ионная проводимость преобладает при температурах ниже 600 °C и 650 °C для LIZ07 и LIZ50, соответственно.

Расчеты протонной проводимости выполнены исходя из предположения, что уровень кислород-ионного переноса не изменяется при повышении влажности. Рассчитаны протонные *числа переноса* для образца *LIZ50* t_{H^+} (рис. *13a*). Эти данные подтверждены измерением протонных чисел переноса методом ЭДС. На рисунке *136* приведены парциальные проводимости во влажной атмосфере на примере образца *LIZ50*, протонный транспорт становится доминирующим при температурах ниже 450 °C (E_a =0.45 эВ). Протонный перенос образца *LIZ07* характеризуется значением E_a =0.59 эВ. Сравнение протонных проводимостей образцов с разным содержанием цинка показано на рисунке *136*.

<u>В главе 5</u> представлены исследования физико-химических характеристик фаз LaScO₃ (*LSO*) и LaSc_{0.5}Zn_{0.5}O_{2.75} (*LSZ50*). Обработка рентгенограммы на примере *LSZ50* приведена на рисунке 14a, параметры решетки представлены в таблице 6. Близкие значения объема ячейки *LSO* и *LSZ50* обусловлены сопоставимыми размерными характеристиками *B*-катионов.

фаза	пр. гр	a, Å	b, Å	c, Å	Ũяч, Å ³	Vcb, Å ³
LSO	D	5.788(7)	8.095(9)	5.678(4)	66.52(9)	19.80(2)
LSZ50	Pnma	5.771(2)	8.081(9)	5.671(9)	66.13(7)	22.28(2)

Таблица 6 – Кристаллохимические параметры *LSO* и *LSZ50*

Рисунок 14 – Данные для *LSZ50*: *a*) Обработка рентгенограммы, показаны экспериментальные (точки), расчетные (линия), разностные (внизу) данные и угловые положения рефлексов (штрихи) и *hkl*; *б*) Данные ТГ (зеленые кривые) в режима нагреваохлаждения для гидратированного образца и после выдержки образца при 1000 °С и последующим охлаждением в сухом воздухе (синяя кривая) и аргоне (красная кривая)

Процессы гидратации

По результатам ТГ установлено, что образец *LSZ50* способен к диссоциативному внедрению паров воды (ур. 4), степень гидратации составляет 0.17 моль H₂O на формульную единицу. Потеря массы на ТГ-кривой (рис.*146*) происходит в одну стадию в температурном интервале 450–550 °C, а при внедрении воды в структуру образца масса изменяется более монотонно в более широком температурном интервале 200–500 °C. Масса образца при выдержке на 1000 °C и последующем охлаждении в сухом воздухе или аргоне остается постоянной. Согласно данным ИК-спектроскопии, вода в структуре присутствует в виде OH⁻групп, чему соответствует появление полос в области деформационных колебаний ~1460 см⁻¹ и 1409 см⁻¹. Одна широкая полоса наблюдается в области валентных колебаний кислородно-водородных групп (3260 см⁻¹).

Электропроводность образца **LSZ50** в сухой ($pH_2O=3.5\cdot10^{-5}$ атм) и во влажной атмосферах ($pH_2O=2\cdot10^{-2}$ атм) показана на рисунке 15*a* в сравнении с фазой **LSO**. Наблюдаемое увеличение проводимости до ~4 порядков величины при 600 °C связано с наличием кислородного дефицита. При увеличении pH_2O у образца **LSZ50** ниже 500 °C возрастает электропроводность как результат появления протонного переноса.

Рисунок 15 – *а)* Сравнение политерм проводимости *LSO* и LSZ50; *б*) Изотермы проводимости при 400 °C (1), 500 °C (2), 600 °C (3), 700 °C (4); Данные приведены для сухой (закр. симв.) и влажной (откр. симв.) атмосферы

Результаты исследования транспортных свойств фазы *LSZ50* при варьировании pO_2 в атмосферах различной влажности показаны на рисунке *156*. При понижении температуры область электролитической проводимости расширяется, и ниже 400 °C ионный перенос доминирует в широкой области pO_2 . При повышении pH_2O электропроводность образца в

электролитической области увеличивается как результат появления протонного вклада, и ниже 500 °C не зависит от pO_2 . Разделение общей электропроводности на парциальные вклады для образца *LSZ50* показано на рисунке *16*.

В сухой атмосфере ($pH_2O=3.5\cdot10^{-5}$ атм) на воздухе (рис. *16a*) при температурах выше 600 °C значения общей проводимости определяются дырочной проводимостью. При снижении температуры ионный транспорт становится доминирующим (ниже 500 °C). Значения энергии активации для кислород-ионного ($E_a=0.80$ эВ) и электронного ($E_a=1.37$ эВ) вкладов являются типичными для перовскитоподобных материалов на основе $A^{+3}B^{+3}O_3$. При увеличении влажности (рис. *16б*) электропроводность увеличивается, ионный транспорт преобладает ниже температуры 600 °C, значения энергии активации составили $E_a=0.62$ эВ. На рисунке *16в* приведены температурные зависимости ионных *чисел переноса*: значения t_{uon} возрастают с уменьшением температуры, ионный перенос преобладает при T \leq 500 °C в сухом воздухе ($pO_2=0.21$ атм), а во влажном ниже 600 °C.

Рисунок 16 – Температурные зависимости для *LSZ50*: *a*) общей (1), электронной (2) и ионной (3) проводимостей в *сухой* атмосфере; *б*) общей (1), электронной (2) и кислород-ионной (3) (*сухой воздух*) и протонной (4) (*влажный воздух*) проводимостей во *влажной* атмосфере; *в*) ионных *чисел переноса* в сухой (закр. симв.) и во влажной (откр. симв.) атмосфере

Уточненные параметры структуры	Фаза La $M^{+3}_{0.5}Zn_{0.5}O_{2.75}$		
	Al	Sc	In
радиус <i>B</i> -катиона, $r(M^{+3})$, Å	0.535	0.745	0.800
фактор толерантности, <i>t</i>	0.96	0.92	0.90
пространственная группа	Pm3m	Pnma	
число формульных единиц, Z	1	4	4
объем ячейки, рассчитанный как V _{яч} =а×b×c, Å ³	54.57(8)	264.55(0)	272.42(8)
<i>приведенный</i> объем ячейки, $ ilde{V}_{ m srg}$ = $a \times b \times c/Z$, A^3	54.57(8)	66.13(7)	69.85(7)
псевдокубический параметр, $\tilde{a} = \sqrt[3]{\tilde{V}_{_{HY}}}$, Å	3.793(2)	4.056(1)	4.118(5)
свободный объем ячейки, V_{cB} , Å 3	11.27(7)	22.28(2)	25.81(3)
критический радиус, <i>г</i> _{крит} , Å	0.8706	0.9727	0.9965
эффективный радиус вакансии, r _v , Å	0.5728	1.6828	1.9281

Таблица 7 – Кристаллохимические параметры для фаз $LaM_{0.5}^{+3}Zn_{0.5}O_{2.75}$ (M^{+3} =Al, Sc, In)

<u>В главе 6</u> проведено сопоставление данных по структуре (табл. 7), гидратации и электропроводности соединений $LaM_{0.5}^{+3}Zn_{0.5}O_{2.75}$ (M^{+3} =Al, Sc, In). Структура фаз отличается: *LSZ50* и *LIZ50* обладают ромбической структурой, образец *LAZ50* – кубической. Это согласуется с расчетами фактора толерантности: с уменьшением размера

B-катиона $In^{3+}-Sc^{3+}-Al^{3+}$ в этих фазах значение *t* увеличивается, приближаясь к 1. При увеличении размера *B*-катиона значения \tilde{V}_{sy} и \tilde{a} закономерно увеличиваются.

Различия в структуре фаз предполагают различия и в процессах гидратации. Так как номинальная концентрация вакансий кислорода в фазах $LaM_{0.5}^{+3}Zn_{0.5}O_{2.75}$ (M^{+3} =Al, Sc, In) одинакова (1/12), то теоретический предел гидратации соответствует 0.50 моль H₂O. Однако-образец LAZ50 не способен к значимому водопоглощению, образцы LSZ50 и LIZ50 проявляют близкие степени гидратации ~0.35 моль H₂O (рис. 17).

$$r_A = x \cdot r_A^s + (1 - x) \cdot r_A^h, \tag{3}$$

$$r_B = y \cdot r_B^s + (1 - y) \cdot r_B^h, \tag{4}$$

$$r_{\rm aH} = \frac{3 - 0.5x - 0.5y}{3} r_0 + \frac{0.5x + 0.5y}{3} r_V, \tag{5}$$

$$a_{AO} = \sqrt{2}p_1(r_A + r_{\rm aH}), \tag{6}$$

$$a_{BO} = 2p_2(r_B + r_{\rm aH}),\tag{7}$$

$$\tilde{a} = \frac{a_{AO} + a_{BO}}{2},\tag{8}$$

400

600

800

200

$$_{\rm HT} = \frac{\tilde{a} \Big((3/4)\tilde{a} - \sqrt{2}r_A \Big) - [(r_A - r_B)(r_A + r_B)]}{[2(r_A - r_B) + \sqrt{2}a]}, \qquad (9)$$

Способность к гидратации будет определяться оптимальным пространством для расположения OH⁻-группы в кристаллической решетке. т. е. сушествует некоторый критический размер вакансии кислорода, когда процесс ее заполнения ОН-группами по геометрическим критериям не реализуется. В качестве критерия для оценки свободного пространства между полиэдрами можно использовать эффективный радиус вакансии *кислорода* r_V . Эта величина может быть рассчитана в соответствии с уравнениями 3–8 [18] для перовскитов состава $A_{1-x}^h A_x^s B_{1-y}^h B_y^s O_{3-0.5x-0.5y}$, где A^h , B^h , r_A^h и r_B^h – исходные атомы Aи *B-подрешеток* и их радиусы, A^s , B^s , r_A^s и r_B^s – допанты и их радиусы, r_A и r_B – средневзвешенные радиусы катионов; x и y – соответствующие концентрации допантов, p_1 и р₂ – константы.

Рисунок 18 – Зависимости: а) эффективного радиуса вакансии кислорода от радиуса аниона в перовскитах LaM⁺³O₃, где M⁺³=Al [6-8], Ga [18], Sc [9-11], In [12,14,15], а также для образцов LAZ50, LSZ50 и LIZ50

Величина r_V связана с радиусом аниона r_{ah} и радиусом кислорода r_O (1.4 Å) по формуле (8) [18]. На рисунке 18 показана зависимость $r_V - f(r_{ah})$ для исследуемых образцов $LaM_{0.5}^{+3}Zn_{0.5}O_{2.75}$ (M^{+3} =Al, Sc, In), а также для твердых растворов на основе различных фаз $LaM^{+3}O_3$ с близкими концентрациями допантов [6–9, 11, 14, 18]. Как видно из графика, замещенные алюминаты и галлаты лантана имеют низкие значения r_v, допированные скандаты и индаты – более высокие значения r_V . Таким образом, существует граница r_V , ниже которой вакансии кислорода не заполняются ОН-группами. Эта граница определяется размером $r_V = 1.35$ Å, что коррелирует с размером OH⁻-группы $r_{OH} = 1.35$ (IV) – 1.37 (VI) Å [19].

Так как параметр r_V зависит от размера иона кислорода, то параметр r_{aH} может быть использован как критерий способности к гидратации у фаз с различными катионами *А*-и/или *В-подрешеток*. А так как величина r_{aH} связана с размерами катионов в соответствии

Рисунок 19 – Зависимость r_{aH} – $f(r_{M3+})$ в перовскитах La $M^{+3}O_3$, [6–12,14–18] и в *LAZ50*, *LSZ50* и *LIZ50*

с формулами 6-8, в работе обобщены данные по $r_{\rm aH}$ для различных составов на основе La M^{+3} O₃ в зависимости от радиуса M^{+3} . На рисунке 19 приведены значения r_{ан} для образцов LAZ50, LSZ50 и LIZ50, а также перовскитов $LaM^{+3}O_3$: алюминатов [6-8], галлатов [18], скандатов [9-11], индатов [12,14,15] иттербатов [17] и иттратов [16]. На основании этих данных можно отметить, что величина r_{ан} зависит от размера катиона, расположенного в В-подрешетке. С увеличением размера *В*-катиона от алюминия (*r*=0.535 Å) до иттрия (*r*=0.900 Å) размер аниона увеличивается. На графике 19 серым выделено поле, где величина r_{aH} меньше r_O (1.4 Å), что показывает, что существует граница для радиуса катиона Вподрешетки (0.65-0.68 Å), выше которой, фаза способна к интеркалации паров воды. Таким

образом, использование величины r_V , как геометрического критерия позволяет адекватно предсказать принципиальную способность фазы к гидратации.

Способность к поглощению паров воды напрямую связана с возможностью формирования протонных дефектов, и, как следствие, проявлению протонной проводимости. Изучение электропроводности показало, что сложные оксиды $LaM_{0.5}^{+3}Zn_{0.5}O_{2.75}$ на воздухе обладают смешанным типом проводимости, вклад дырочной проводимости увеличивается с ростом температуры. В сухой атмосфере ниже 500 °С преобладает О²⁻-ионный перенос. На рисунке 20а показаны температурные зависимости кислород-ионных проводимостей для фаз LAZ50, LSZ50 и LIZ50. При температурах ниже 500 °С значения электропроводностей близки. Различия увеличиваются с увеличением температуры, что объясняется разницей в энергиях активации. Для ромбических фаз LSZ50 и *LIZ50* разница в значениях проводимостей может быть объяснена различиями свободного объема ячейки и критического радиуса канала миграции иона кислорода, рассчитанного по уравнению 9. Значение V_{св} и r_{крит} (табл. 7) для In-содержащего образца больше, как следствие, ионная проводимость выше. Образец состава LAZ50, с одной стороны, характеризуется небольшим свободным объемом, но в то же время, кристаллизуется в кубической сингонии. Как известно, высокосимметричные фазы характеризуются более высокой ионной проводимостью. Для таких структур реализуются близкие расстояния М-О, соответственно, все направления миграции равновероятны, вследствие чего для кубического перовскита характерна высокая подвижность ионов. Таким образом, кристаллохимические особенности фазы LaAl_{0.5}Zn_{0.5}O_{2.75} благоприятны для кислородионного транспорта.

Протонная проводимость у образца *LAZ50* не реализуется, но у фаз *LSZ50* и *LIZ50* наблюдается рост ионной электропроводности во влажной атмосфере за счет появления протонного переноса. На рисунке 20б показаны температурные зависимости протонной проводимости для образцов *LSZ50* и *LIZ50*. Значения протонной проводимости довольно близкие, что объясняется близкими концентрациями протонов (в соответствии с ТГ-исследованиями). Следовательно, уровень протонной проводимости в исследуемых

образцах сопоставим. Однако фазы характеризуются разными значениями энергий активации: $E_a=0.45$ эВ для *LIZ50*, и $E_a=0.62$ эВ для *LSZ50*, поэтому протонная проводимость фазы *LIZ50* при пониженных температурах выше. Очевидно увеличение структурных факторов V_{св} и $r_{крит}$ от Sc к In обуславливают уменьшение энергии активации протонного транспорта.

Рисунок 20 – *a*) Политермы O^{2–}-ионных проводимостей образцов La $M_{0.5}^{+3}Zn_{0.5}O_{2.75}$ (M^{+3} =Al, Sc, In); δ) Политермы протонной проводимости для образцов *LSZ50* (1) и *LIZ50* (2); *в*) Протонные *числа переноса* в зависимости от ионного радиуса *B*-катиона для соединений La $M^{+3}O_3$ [5] и для La $M_{0.5}^{+3}Zn_{0.5}O_{2.75}$ (M^{+3} =Al, Sc, In)

На рисунке 20в показаны максимальные значения протонных чисел переноса для допированных La $M^{+3}O_3$ [5], а также для LAZ50, LSZ50 и LIZ50, в зависимости от природы *B*-катиона. Как видно, с увеличением размера катиона *B*-подрешетки, увеличиваются значения t_{H^+} , что демонстрирует роль геометрического фактора в реализации протонного переноса.

<u>В главе 7</u> общая электропроводность цинк-замещенных твердых растворов сопоставлена с другими твердыми растворами на основе алюмината и индата лантана (рис. 21а). Наблюдается общая тенденция роста электропроводности с увеличением значения свободного объема ячейки твердых растворов как на основе LaAlO₃, так и LaInO₃. Среди допантов *В-подрешетки* цинк оказал наибольший эффект на увеличение электропроводности. Это коррелирует со значениями V_{cB} .

Рисунок 21 – *a*) Электропроводность в зависимости от значения V_{св} при 650 °C для фаз на основе (*I*) *LIO* и (*I0*) *LIZ07* в сравнении с допированными LaInO₃ [12–15]; δ) Рентгенограммы для образцов *LIO*, *LIZ07* и *LIZ50*, выдержанных в атмосфере CO₂:воздух (1:1) в течение 10 ч при 500 °C

Эта стратегия замещения может быть перспективна при реализации совместного допирования. Наивысшие значения проводимости реализуются именно для содопированных образцов, для которых характерны как высокая концентрация дефектов, так и их высокая подвижность за счет больших размеров элементарной ячейки. Таким образом, уровень проводимости в исследуемых фазах сопоставим со значениями электропроводности известных электролитов, используемых в ТОТЭ.

<u>В главе 8</u> приведено описание исследований химической устойчивости цинксодержащих фаз на основе перовскитов LaMO₃ (*M*=Al, Sc, In) в сравнении с базовыми соединениями. Установлено, что ни один из исследуемых составов не подвергается гидролизному разложению при $pH_2O=2\cdot10^{-2}$ атм. Матричные фазы LaMO₃ (*M*=Al, Sc, In), а также образцы с цинком, были выдержаны в атмосфере, содержащей смесь газов CO₂ и воздух в соотношении 1:1 при температуре 500 °C в течение 10 ч. Результаты РФА (рис. 22) после данной обработки показаны на примере составов LaIn_{1-y}Zn_yO_{3-1/2y} (*y*=0, 0.07, 0.5). Все исследуемые образцы сохраняют фазовый состав без присутствия каких-либо примесей.

Рисунок 22 – Рентгенограмма La_{0.9}Sr_{0.1}InO_{2.95}, выдержанного в атмосфере CO₂:воздух (1:1) в течение 10 ч при 500 °C

Для сравнения химической стабильности был получен образец La_{0.9}Sr_{0.1}InO_{2.95}, содержащий щелочноземельный элемент. По результатам РФА (рис. 22) установлено, что состав La_{0.9}Sr_{0.1}InO_{2.95} подвергался к разложению в атмосфере CO₂:воздух (1:1). Таким образом, введение цинка в структуру сложных оксидов сохраняет химическую устойчивость к CO₂ перовскитов La M^{+3} O₃ (M^{+3} =Al, Sc, In) в отличие от щелочноземельных допантов.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Впервые получены твердые растворы: LaAl_{1-x}Zn_xO_{3-½x} (0≤x≤0.05), LaIn_{1-y}Zn_yO_{3-½y} (0≤y≤0.07). Впервые получены фазы состава La $M_{0.5}^{+3}Zn_{0.5}O_{2.75}$ (M^{+3} =Al, Sc, In) со структурой перовскита. Определены оптимальные температурные режимы синтеза, позволяющие сохранить заданную стехиометрию. Введение цинка в структуру перовскитов La M^{+3} O₃ (M^{+3} =Al, In) снижает температуры синтеза и спекания высокоплотной (98 %) керамики на 50–100 °C и 200–300 °C, соответственно.

2. Структура сложного оксида LaAl_{0.5}Zn_{0.5}O_{2.75} определена как кубическая. Образцы составов LaSc_{0.5}Zn_{0.5}O_{2.75} и LaIn_{0.5}Zn_{0.5}O_{2.75} кристаллизуются в ромбической симметрии. Для составов из области гомогенного твердого раствора LaIn_{1-y}Zn_yO_{3-¹/2} снижается объем элементарной ячейки и увеличивается свободный объем ячейки. Введение цинка в решетку гексагонального перовскита LaAlO₃ приводит к стабилизации кубической модификации *LAZ05* (пр. гр. *Pm3m*).

3. Все исследованные фазы, кроме алюминатов, проявляют способность к гидратации. Основной формой нахождения протона в структуре сложных оксидов составов

LaIn_{1-y}Zn_yO_{3- $\frac{1}{2}y}$ и La $M_{0.5}^{+3}Zn_{0.5}O_{2.75}$ (M^{+3} =Sc, In) являются энергетически неэквивалентные гидроксо-группы, вовлеченные в разные по силе водородные связи.</sub>

4. Проведена комплексная аттестация электрических свойств твердых растворов: LaAl_{1-x}Zn_xO_{3- $\frac{1}{2x}$} (0 \leq x \leq 0.05) и LaIn_{1-y}Zn_yO_{3- $\frac{1}{2y}$} (0 \leq y \leq 0.07), а также фаз La $M_{0.5}^{+3}Zn_{0.5}O_{2.75}$ (M^{+3} =Al, Sc, In):

4.1 Допирование цинком увеличивает электропроводность на 3.5 и 2 порядков величины относительно матричных фаз LaAlO₃ и LaInO₃, соответственно. Наблюдается общая тенденция роста электропроводности с увеличением значения свободного объема ячейки твердых растворов на основе La M^{+3} O₃ (M^{+3} =Al, In).

4.2 В атмосфере с *низким* парциальным давлением паров воды ($pH_2O=3.5\cdot10^{-5}$ атм) при $pO_2=0.21$ атм полученные твердые растворы обладают смешанным ионно-дырочным типом проводимости во всем исследуемом интервале температур. Доминирование кислородионного транспорта реализуется ниже ~450 °C.

4.3 Для фаз La $M_{0.5}^{+3}Zn_{0.5}O_{2.75}$ (M^{+3} =Al, Sc, In) характерен ионно-дырочный тип проводимости в области высоких температур на воздухе, ниже 500 °C преобладает O²⁻ионный перенос. Кислород-ионная проводимость в фазах La $M_{0.5}^{+3}Zn_{0.5}O_{2.75}$ (M^{+3} =Sc, In) увеличивается с ростом величины свободного объема ячейки и критического радиуса канала миграции.

4.4 При повышении влажности ($pH_2O = 2.0 \cdot 10^{-2}$ атм) при температурах ниже 600 °C фазы *LIZ05*, *LIZ07*, *LIZ50*, *LSZ50* способны к реализации протонной проводимости. Концентрация протонных носителей заряда растет с понижением температуры и обуславливает рост ионной составляющей проводимости, и ниже ~500 °C в фазах доминирует протонный транспорт. В алюминатах протонный перенос не реализуется.

5. Предложена концепция оценки возможности инкорпорирования воды из газовой фазы и способности к протонной проводимости в перовскитах $LaM_{0.5}^{+3}Zn_{0.5}O_{2.75}$ (M^{+3} =Al, Sc, In). Показано, что протонный транспорт не реализуется в фазах с величиной эффективного радиуса кислородных вакансий меньше ~1.35 Å.

6. Допирование цинком сохраняет химическую устойчивость перовскитов $LaM^{+3}O_3$ ($M^{+3}=Al$, Sc, In) к CO₂ в отличие от щелочноземельных допантов.

Перспективы дальнейшей разработки темы.

В данной работе основное внимание было сосредоточено на фазовом и термическом поведении цинксодержащих кислород-дефицитных перовскитов, а также на изучении их транспортных свойств. Установленные закономерности формирования ионного (O²⁻ и H⁺) транспорта позволяют прогнозировать свойства потенциальных твердых электролитов с высокой ионной проводимостью и могут быть использованы в дальнейшем поиске перспективных фаз.

Дальнейшее развитие направления настоящей диссертационной работы может быть связано с разработкой Zn-содержащих материалов на основе $LaM^{+3}O_3$ ($M^{+3}=Al$, Sc, In) с применением стратегии *совместного допирования*. Работа может быть продолжена в рамках исследований электрохимического поведения электролитов, сформированных из изученных материалов, и изучением влияния состава и микроструктуры таких электролитов на основные характеристики твердооксидных топливных элементов.

Цитируемая литература

1. Hanif, M. B. Mo-doped BaCe_{0.9}Y_{0.1}O_{3- δ} proton-conducting electrolyte at intermediate temperature SOFCs. Part I: Microstructure and electrochemical properties / M. B. Hanif, S. Rauf, M. Mosiałek [et al.] // Int. J. Hydrogen Energy. -2023. - V. 48, No. 96. - C. 37532-37549.

2. Fop, S. Solid oxide proton conductors beyond perovskites / S. Fop // J. Mater. Chem. A. Royal Society of Chemistry. -2021. - V. 9, No 35. - P. 18836-18856.

3. Duan, C. Proton-conducting oxides for energy conversion and storage / C. Duan, J. Huang, N. Sullivan [et al.] // Appl. Phys. Rev. – 2020. – V. 7, № 1. – P. 011314.

4. Sažinas, R. Surface reactivity and cation non-stoichiometry in BaZr_{1-x}Y_xO_{3- δ} (x=0–0.2) exposed to CO₂ at elevated temperature / R. Sažinas, M. F. Sunding, A. Thøgersen [et al.] // J. Mater. Chem. A. – 2019. – V. 7, No 8. – P. 3848–3856.

5. Okuyama, Y. Incorporation and conduction of proton in Sr-doped LaMO₃ (M=Al, Sc, In, Yb, Y) / Y. Okuyama, T. Kozai, S. Ikeda [et al.] // Electrochim. Acta. -2014. -V. 125. -P. 443–449.

6. Lybye, D. Conductivity of A- and B-site doped LaAlO₃, LaGaO₃, LaScO₃ and LaInO₃ perovskites / D. Lybye, F.W. Poulsen, M. Mogensen // Solid State Ion. -2000. - V. 128, No 1–4. -P. 91-103.

7. Nguyen, T. L. The effect of oxygen vacancy on the oxide ion mobility in LaAlO₃-based oxides / T. L. Nguyen, M. Dokiya, S. Wang [et al.] //Solid State Ion. – 2000. – V. 130. – P. 229–241.

8. Villas-Boas, L. A. Effects of Sr and Mn co-doping on microstructural evolution and electrical properties of LaAlO₃ / L. A.Villas-Boas, C. A. Goulart, D. P. F. De Souza // Process. Appl. Ceram. -2019. - V. 13, No 4. - P. 333-341.

9. Nomura, K. Neutron diffraction study of LaScO₃-based proton conductor / K. Nomura, H. Kageyama // Solid State Ion. – 2014. – V. 262. – P. 841–844.

10. Stroeva, A. Yu. Phase composition and conductivity of $La_{1-x}Sr_xScO_{3-\alpha}$ (x=0.01–0.20) under oxidative conditions / A. Yu. Stroeva, V. P. Gorelov, A. V. Kuz'min [et al.] // Russ. J. Electrochem. – 2012. – V. 48, No 5. – P. 509–517.

11. Stroeva, A. Yu. Effect of scandium sublattice defectiveness on ion and hole transfer in LaScO₃-based proton-conducting oxides / A. Yu. Stroeva, V. P. Gorelov, A. V. Kuz'min [et al.] // Russ. J. Electrochem. -2011. - V. 47, No 3. - P. 264-274.

12. Sood, K. Preferential occupancy of Ca²⁺ dopant in La_{1-x}Ca_xInO_{3-δ} (x = 0−0.20) perovskite: structural and electrical properties / K. Sood, K. Singh, S. Basu, O. P. Pandey // Ionics. – 2015. – V. 21, № 10. – P. 2839–2850.

13. He, H. The effects of dopant valence on the structure and electrical conductivity of LaInO₃ / H. He, X. Huang, L. Chen //Electrochim. acta. – 2001. – V. 46, №. 18. – P. 2871–2877.

14. He, H. Sr-doped LaInO₃ and its possible application in a single layer SOFC / H. He, X. Huang, L. Chen // Solid State Ion. -2000. - V. 130, No 3. - P. 183-193.

15. Sood, K. Co-existence of cubic and orthorhombic phases in Ba-doped LaInO₃ and their effect on conductivity / K. Sood, K. Singh, O. P.Pandey // Phys. B Condens. Matter. -2015. - V. 456. -P. 250–257.

16. Kalyakin, A. Characterization of proton-conducting electrolyte based on $La_{0.9}Sr_{0.1}YO_{3-\delta}$ and its application in a hydrogen amperometric sensor / A. Kalyakin, J. Lyagaeva, D. Medvedev [et al.] // Sens. Actuators B Chem. – 2016. – V. 225. – P. 446–452.

17. Kasyanova, A. V. Transport properties of LaYbO₃-based electrolytes doped with alkaline earth elements / A. V. Kasyanova, J. G. Lyagaeva, G. K. Vdovin [et al.] // Electrochim. Acta. – 2023. – V. 439. – P. 141702.

18. Chatzichristodoulou, C. Size of oxide vacancies in fluorite and perovskite structured oxides / C. Chatzichristodoulou, P. Norby, P. V. Hendriksen, M. B. Mogensen // J. Electroceramics. -2015. - V. 34, $N_{0} 1. - P. 100-107$.

19. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides / R. D. Shannon // Acta Crystallogr. Sect. A. -1976. - V. 32, No 5. -P.751-767.

Основное содержание диссертации опубликовано в работах:

Статьи, опубликованные в рецензируемых научных журналах, определенных ВАК РФ и Аттестационным советом УрФУ:

1. **Égorova**, A. V. New oxygen-deficient perovskite $La(Al_{0.5}Zn_{0.5})O_{2.75}$: synthesis, structure, transport properties / A. V. Egorova, K. G. Belova, I. E. Animitsa // Russ. J. Phys.

Сhem. А. – 2020. – V. 94, № 12. – Р.2480–2486. (0.474 п.л. / 0.158 п.л.) (Web of Science, Scopus)

2. Egorova, A. V. Effect of zinc doping on electrical properties of LaAlO₃ perovskite / A. V. Egorova, K. G. Belova, I. E. Animitsa [et al.] // Chim. Tech. Acta. – 2021. – V. 8, № 1. – P. 20218103. (0.907 п.л. / 0.181 п.л.) (Scopus)

3. **Egorova, A. V.** Oxygen ionic transport in LaInO₃ and LaIn_{0.5}Zn_{0.5}O_{2.75} perovskites: theory and experiment / **A. V. Egorova**, Y. A. Morkhova, A. A. Kabanov [et al.] // Solid State Ion. – 2021. – V. 372. – P. 115790. (0.979 п.л. / 0.122 п.л.) (Web of Science, Scopus)

4. Belova, K. Crystal structure, electrical conductivity and hydration of the novel oxygendeficient perovskite La₂ScZnO_{5.5}, doped with MgO and CaO. / K. Belova, **A. Egorova**, S. Pachina, I. Animitsa // Appl. Sci. – 2022. – V. 12, No 3. – P. 1181. (1.251 п.л. / 0.312 п.л.) (Web of Science, Scopus)

5. **Egorova A. V.** Ionic (O^{2-} and H^+) transport in oxygen-deficient perovskites La₂Me⁺³ZnO_{5.5} / **A. V. Egorova**, K. G. Belova, N. V. Lakiza [et al.] // Russ. J. Electrochem. – 2023. – V. 59, No 4. – P. 276–283. (0.686 п.л. / 0.172 п.л.) (Web of Science, Scopus)

6. **Egorova A. V.** Ionic (O^{2-} , H^+) transport in novel Zn-doped perovskite LaInO₃ / A. V. **Egorova**, K. G. Belova, I. E. Animitsa // Int. J. Hydrogen Energy. – 2023. – V. 48. – P.22685–22697. (1.340 п.л. / 0.447 п.л.) (Web of Science, Scopus)

Другие публикации:

7. Егорова, А. В. Структура и электрические свойства нового перовскита La₄In₂Zn₂O₁₁ / А. В. Егорова, А. Р. Терещенко, К. Г. Белова, И. Е. Анимица // Тезисы докладов VII Международной молодежной научной конференции «Физика. Технологии. Инновации. ФТИ-2020». г. Екатеринбург. 18–22 мая, 2020. – С. 739–740. (0.07 п.л./0.018 п.л.)

8. Егорова, А. В. Влияние допирования цинком на физико-химические свойства LaAlO₃ / А. В. Егорова, К. Г. Белова, И. Е. Анимица // Сборник научных трудов XVIII Российской конференции с международным участием «Физическая химия и электрохимия расплавленных и твердых электролитов». г. Нальчик. 21–25 сентября, 2020. – С. 357–360. (0.179 п.л./0.059 п.л.)

9. Егорова, А. В. Твердые растворы LaIn_{1-y}Zn_yO_{3-½x} (синтез и аттестация свойств) / А. В. Егорова, А. Р. Терещенко, К. Г. Белова, И. Е. Анимица // Тезисы докладов XXX Российской молодежной научной конференции с международным участием «Проблемы теоретической и экспериментальной химии». г. Екатеринбург. 6–9 октября, 2020. – С. 343. (0.064 п.л./0.016 п.л.)

10. Егорова, А. В. Синтез и аттестация свойств новых фаз состава (La_{1-x}Ca_x)₂AlZnO_{5,5-x} / А. В. Егорова, А. Р. Терещенко // Материалы 59-й Международной научной студенческой конференции «МНСК-2021». г. Новосибирск. 12–23 апреля, 2021. – С. 186. (0.064 п.л./0.032 п.л.)

11. Терещенко, А. Р. Парциальные проводимости твердых растворов LaIn_{1-x}Zn_xO_{3-x} / А. Р. Терещенко, **А. В. Егорова**, К. Г. Белова, И. Е. Анимица // Тезисы докладов XXXI Российской молодежной научной конференции с международным участием «Проблемы теоретической и экспериментальной химии», г. Екатеринбург, 20–23 апреля, 2021. – С. 208. (0.050 п.л./0.012 п.л.)

12. **Егорова, А. В.** Проводимость перовскитоподобных твердых растворов LaIn_{1-x}Zn_xO_{3-1/2x} / **А. В. Егорова**, А. Р. Терещенко, К. Г. Белова, И. Е. Анимица // Тезисы докладов VIII Международной молодежной научной конференции «Физика. Технологии. Инновации. ФТИ-2021». г. Екатеринбург. 17–21 мая, 2021. – С. 758–759. (0.100 п.л./0.025 п.л.)

13. Пачина, С. П. Проводимость допированного La₂ScZnO_{5.5} / С. П. Пачина, К. Г. Белова, **А. В. Егорова**, И. Е. Анимица // Тезисы докладов VIII Международной молодежной научной конференции «Физика. Технологии. Инновации. ФТИ-2021». г. Екатеринбург. 17–21 мая, 2021. – С. 864–865. (0.088 п.л./0.022 п.л.)

14. **Егорова, А. В.** Синтез и транспортные свойства новых цинк-допированных перовскитов LaIn_{1-x}Zn_xO_{3-1/2x} / **А. В. Егорова**, А. Р. Терещенко, К. Г. Белова, И. Е. Анимица // Доклады X Всероссийской конференции «Керамика и композиционные материалы». г. Сыктывкар. 26–27 октября, 2021. – С. 22. (0.072 п.л./0.018 п.л.)

15. Егорова А.В. Кислород-ионная проводимость перовскитов LaInO₃ и La₂InZnO_{5.5:} теоретическое и экспериментальное исследование / А. В. Егорова, Е. А. Морхова, К. Г. Белова, И. Е. Анимица // Тезисы докладов XXXII Российской молодежной научной конференции «Проблемы теоретической и экспериментальной химии». г. Екатеринбург. 19–22 апреля, 2022. – С. 255–255. (0.059 п.л./0.015 п.л.)

16. Verinkina, E. M. Synthesis, Structure and Conductivity of Solid Solutions Based on La₂ZnAlO_{5.5}. Doped with CaO / E. M. Verinkina, **A. V. Egorova**, K. G. Belova, I. E. Animitsa // Тезисы докладов VII Международной молодежной научной конференции «Физика. Технологии. Инновации. ФТИ-2022». г. Екатеринбург. 16–20 мая, 2022. – С. 858–859. (0.056 п.л./0.014 п.л.)

17. **Егорова, А. В.** Парциальные проводимости перовскитов La₂Me⁺³ZnO_{5.5} (Me⁺³=Al, Sc, In) / **А. В. Егорова**, К. Г. Белова, С. П. Пачина, И. Е. Анимица // Труды 16-го Совещания с международным участием «Фундаментальные проблемы ионики твердого тела». г. Черноголовка. 27 июня – 03 июля, 2022. – С. 571–572. (0.054 п.л./0.014 п.л.)

18. Егорова, А. В. Электрические свойства и химическая устойчивость новых перовскитных материалов La₄Zn₂Me₂O₁₁ (Me= Al, In, Sc) / А. В. Егорова, С. П. Пачина, К. Г. Белова, И. Е. Анимица // Материалы всероссийской научной конференции с международным участием «IV Байкальский материаловедческий форум». г. Улан-Удэ. 01– 07 июля, 2022. – С. 272–274. (0.196 п.л./0.049 п.л.)

19. **Егорова, А. В.** Синтез, гидратация и электропроводность в перовскитных материалах LaB_{0.5}Zn_{0.5}O_{2.75} (B=Al⁺³, Sc⁺³, In⁺³) / **А. В. Егорова**, К. Г. Белова, С. П. Пачина, И. Е. Анимица // Сборник трудов Первого Всероссийского семинара «Электрохимия в распределенной и атомной энергетике». г. Нальчик. 18–22 сентября, 2022. – С. 19–23. (0.189 п.л./0.047 п.л.)

20. **Егорова, А. В.** Формирование протонной проводимости в фазах LaZn_{0,5}Me_{0,5}O_{2,75} (Me= Al³⁺, Sc³⁺, In³⁺) / **А. В. Егорова**, К. Г. Белова, И. Е. Анимица // Тезисы докладов первой молодежной научной конференции «Водородная энергетика сегодня». г. Екатеринбург. 19 мая, 2023. – С. 38–40. (0.118 п.л./0.039 п.л.)

21. Егорова, А. В. Протонный перенос в перовскитах LaM_{0,5}Zn_{0,5}O_{2,75} (M=Al³⁺, Sc³⁺, In³⁺): новые материалы для водородной энергетики / А. В. Егорова, К. Г. Белова, И. Е. Анимица // Сборник материалов I всероссийской научно-практической конференции «Современные материалы и методы решения экологических проблем постиндустриальной агломерации». г. Челябинск. 12–14 декабря, 2023. – С. 160–163. (0.246 п.л./0.082 п.л.)