Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Химико-технологический институт

Кафедра органической и биомолекулярной химии

Лаборатория перспективных материалов, зеленых методов и биотехнологий

На правах рукописи

Мохаммед Мохаммед Самир Мохаммед

Новые функционализированные 1,3,4-оксадиазолы- и 1,2,3-триазолы: синтез и фотофизические свойства

Специальность 1.4.3. Органическая химия

Диссертация

на соискание ученой степени кандидата химических наук

Научный руководитель; доктор химических наук, профессор РАН Зырянов Г. В.

Екатеринбург – 2023

Оглавление

ВВЕДЕНИЕ4
1. Литературный обзор. Основные методы получения соединений,
содержащих 1,3,4-оксадиазольный и/или 1,2,3-триазольный фрагмент 10
1.1. Синтез 1,2,3-триазолов и применение 10
1.2. Синтез и примение 1,3,4-оксадиазолов 12
1.3. Синтез гибридных соединений содержащих 1,3,4-оксадиазолы и 1,2,3-
триазолы
1.4. Бола-соединения на основе полиэтиленгликоля (ПЭГ) и других гибких
линкеров
Выводы
2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ 40
2.1. Синтез аналогов красителя РОРОР 40
2.2. Синтез ПЭГ-связанных бис-1,2,3-триазолов с геометрией типа бола 42
2.2.1. Синтез 1,3,4-оксадиазол-замещенных бис-1,2,3-триазолов 7а,б 43
2.2.2. Синтез ПАУ-замещенных бис-1,2,3-триазолов 10а-в, 13а-б, 14а-б 44
2.3. Изучение фотофизических свойств соединений 3 48
2.3.1. Изучение фотофизичесих свойств соединений 3 в отсутствие
аналитов
2.3.2. Исследование фотофизических свойств соединений 3 в присутствие
нитросоединений
2.4. Исследование фотофизических свойств соединений 7а,б 56
2.4.1.Исследование фотофизических свойств соединений 7а,б в отсутствие
анлитов
2.4.2.Исследование фотофизических свойств соединений 7а-б в присутствии
нитросоединений

2.4.3.Исследование фотофизических свойств соединений 7а,б в присутствии
катионов металлов
2.5.Исследование фотофизических свойств соединений 10а-в
2.5.1. Исследование фотофизических свойств соединений 10а-в в отсутствие
аналитов
2.5.2.Исследование фотофизических свойств соединений 10а-в в присутствии
нитросоединений74
2.5.3.Исследование фотофизических свойств соединений 10а-в в присутствии
катионов металлов
3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 83
Заключение
Список использованных сокращений95
СПИСОК ЛИТЕРАТУРЫ97
Приложение 1. Рисунки 1Н ЯМР спектров соединений
3,7,10,13,14

ВВЕДЕНИЕ

Актуальность и степень разработанности темы исследования.

Производные природных или синтетических азолов представлены в обширном количестве лекарственных кандидатов различного типа действия, лигандов для катионов металлов, хемосенсоров, а также флуорофоров. В связи с вышеизложенным востребованными для современного общества являются как поиск новых синтетических подходов К азолам И ИХ мультифункционализированным производным, путей так И развитие применения как вновь синтезированных, так и уже известных азолсодержащих производных в различных отраслях науки и техники. Касаемо синтетических методов, особый упор делается на такие, которые протекают с использованием зеленых/рациональных синтетических протоколов и/или превращений, протекающих с высокой степенью атомной экономии/низких Е-факторов, например, так называемых клик-реакций. В ряду последних реакции азидалкинового циклоприсоединения достаточно хорошо зарекомендовали себя для синтеза 1,2,3-триазолов. Если говорить о применении, то здесь, наряду с проявлением различных видов биологической активности, наиболее важным и перспективным является присутствие азолов в составе лигандов катионов металлов, а также флуоресцентных хемосенсеров для обнаружения различных (био)аналитов, включая органические и неорганические экотоксиканты, а взрывчатые вещества, с высокой степенью также селективности И чувствительности. Флуоресцентный отклик может быть двух типов: «turn-on» «turn-off» (по увеличению или снижению эмиссии в результате И взаимодействия с аналитами соответственно). Азолсодержащие сенсорыфлуорофоры на основе трифенилена, нафталина, пирена, перилена и др. полициклических ароматических углеводородов способны компенсировать недостаток интенсивности аналитического сигнала и чувствительности из-за своей способности в формировании эксимеров, характеризуются высокой чувствительностью к изменениям окружающей среды и представляют собой «turn-off» сенсоры. Такие соединения способны давать сенсорный отклик на

присутствие π-дефицитных молекул, к которым относятся многие взрывчатые вещества, а за счет присутствия атомов азота и/или кислорода/серы они способны координировать с катионами металлов.

В связи с вышеизложенным, синтез новых полиароматических производных азолов и исследование их прикладных свойств являются весьма актуальными. Оценивая степень разработанности темы исследования, можно отметить работы группы Б. Шарплеса (США), Т. Ямато (Япония), работы исследователей из Китая и Индии. Среди российских ученых соединения на основе азолов исследуются в качестве флуорофоров/материалов для молекулярной электроники группами чл.-корр. РАН Пономаренко (Москва), А.С. Фисюка (Омск) и других.

Предмет и объект исследования. Объектом исследования являются бис-азольные системы включающие фрагменты 1,3,4-оксадиазол и/или 1,2,3-триазол, соединенные ароматическими фрагментами или фрагментами полиэтиленгликолей. Предметом исследования являются разработка методов синтеза данных соединений, а также исследование их фотофизических свойств и флуоресцентного отклика на катионы металлов и нитросоединения.

Целью диссертационной работы является направленный синтез хемосенсоров-флуорофоров ряда 1,3,4-оксадиазола и/или 1,2,3-триазолов, содержащих флуорофорные группы на основе полициклических ароматических углеводородов, изучение фотофизических свойств данных соединений и их сенсорного отклика на присутствие электрон-дефицитных аналитов: нитросодержащих (взрывчатых) веществ, а также катионов металлов.

Для достижения целей работы планировалось решение следующих задач:

1) Изучение и анализ литературы и теоретических данных для исследования синтеза и разработки химических сенсорных структур на основе

1,3,4-оксадиазолов и /или 1,2,3-триазолов, в том числе способных обнаруживать взрывчатые вещества, а также катионы металлов

2) Синтез новых адаптирующихся сенсоров-флуорофоров на базе пирена, перилена, трифенилена и т.д.

3) Анализ строения и фотофизических свойств полученных соединений.

 Изучение фотофизических свойств полученных соединений в присутствии катионов металлов

5) Изучение фотофизических свойств полученных соединений в присутствии электрон-дефицитных нейтральных молекул, таких как нитросодержащие (взрывчатые) вещества.

Научная новизна и теоретическая значимость исследования.

Впервые были синтезированы новые аза-аналоги флуоресцентного красителя РОРОР (1,4-бис(5-фенил-2-оксазолил)бензол), а также производные адаптирующейся структурой (типа бола), содержащих фрагменты трифенилена, пирена и 1,3,4-оксадиазол-замещенного бензола. Впервые были предложены методы синтеза данных соединений с использованием методов устойчивой и зеленой химии, а именно использованием «клик»-реакций и механосинтеза в условиях шарового измельчения в отсутствии растворителя и предвнесенного катализатора. Полученные соединения продемонстрировали свою применимость для «turn-off» обнаружения в водных растворах нитросодержащих (взрывчатых) веществ, трудно В том числе обнаруживаемого тетранитрата (TH). Была пентаэритрит продемонстрирована применимость некоторых из полученных соединений для «*turn-off*»-обнаружения катиона Hg^{2+} в водных средах.

Практическая значимость работы.

Предложены эффективные синтетические подходы для синтеза новых производных 1,3,4-оксадиазолов и 1,2,3-триазолов, в том числе в условиях механосинтеза в отсутствие растворителя и предвнесенного катализатора.

Получены новые производные, содержащие фрагменты полиароматических соединений, 1,3,4-оксадиазола, а также полиэтиленгиликолей. Новые соединения являются перспективными флуорофорами, в том числе аналогами флуоресцентного красителя РОРОР, лигандами катионов металлов, а также хемосенсорами/зондами и могут использоваться в аналитической практике, например, для селективного обнаружения нитросодержащих (взрывчатых) веществ и катионов металлов, например Hg²⁺.

Личный вклад автора.

Сбор и анализ литературных источников по методам органического синтеза, оптическим и физическим свойствам флуорофоров, содержащих в своем составе фрагменты 1,3,4-оксадиазола и/или 1,2,3-триазола. Проведение экспериментальных исследований с обработкой и анализом результатов, подготовка публикаций, представление и подтверждение результатов на научных конференциях.

Методология и методы диссертационного исследования.

Для проведения исследований был использован набор традиционных методов синтеза, выделения и очистки органических соединений. Для установления структурных особенностей и чистоты соединений использован комплекс физико-химических методов: ¹H, ¹³C {¹H}, ¹⁹F {¹H}, ³¹P {¹H}, 2D ЯМРспектроскопия, масс-спектрометрия высокого разрешения, элементный и рентгеноструктурный анализ. Для исследований механизмов реакций была совокупность спектроскопии ЯМР использована методов И массспектрометрии высокого разрешения, а также квантово-химические расчеты. Степень достоверности результатов. Структура всех полученных в ходе работы соединений была доказана с использованием необходимого набора физико-химических методов анализа (ЯМР-, масс-спектрометрия, элементный анализ; при ЭТОМ использовано оборудование центр коллективного пользования САОС ИОС УрО РАН)

Публикации. По материалам диссертации опубликовано 11 публикаций, из них 3 статьи опубликованы в рецензируемых научных журналах, определенных ВАК РФ и Аттестационным советом УрФУ и входящих в международные базы цитирования Scopus и Web of Science, 1 заявка на патент РФ, 7 тезисов докладов на международных конференциях.

Объем и структура работы. Диссертация выполнена на 123 страницах, состоит из введения, трех глав: литературный обзор (глава 1), обсуждение результатов (глава 2), экспериментальная часть (глава 3), а также списка сокращений и условных обозначений, выводов и списка литуретуры и одного приложения. Работа содержит 46 схем, 12 таблиц, 41 рисунков. Библиографический список цитируемой литературы состоит из 162 наименований.

Апробация результатов. Основные результаты были представлены на конференциях: Π Международная научно-практическая конференция «Современные синтетические методологии для создания лекарственных препаратов и функциональных материалов» (MOSM 2018) (Екатеринбург, 2018). III Международная научно-практическая конференция «Современные синтетические методологии для создания лекарственных препаратов и функциональных материалов» (MOSM 2019) (Екатеринбург, 2019), IV Международная научно-практическая конференция «Современные синтетические методологии для создания лекарственных препаратов и функциональных материалов» (MOSM 2021) (Екатеринбург, 2021), VIII Международная научно-практическая конференция «Современные синтетические методологии для создания лекарственных препаратов и функциональных материалов» (MOSM 2022) (Екатеринбург, 2022), VI международная научная конференция «Успехи синтеза И комплексообразования» (Москва, 2022).

Благодарность. Автор выражает глубокую и искреннюю благодарность своему научному руководителю д.х.н. профессору РАН Зырянову Г.В., а также

к.х.н. Ковалеву И.С. за научное руководство и неоценимую помощь в проведении исследований, к.х.н. Садиевой Л.К, Платонову В.А. Ельцову О.С. и всему коллективу лаборатории ЯМР ХТИ УрФУ за проведение анализа продуктов и интермедиатов с использованием спектроскопии ЯМР, а также заведующему кафедрой органической и биомолекулярной химии чл.-корр. РАН Русинову В.Л., профессору кафедры органической и биомолекулярной химии чл.-корр камедемику РАН Чупахину О.Н., академику РАН Чарушину В.Н. и всему коллективу кафедры органической и биомолекулярной химии за помощь и поддержу при выполнении данных исследований.

Работа выполнена при поддержке Гранта Президента Российской Федерации для государственной поддержки ведущих научных школ Российской Федерации НШ-1223.2022.1.3.

Работа выполнена при поддержке Министерства науки и Высшего образования РФ (мегагрант в рамках 220 Постановления Правительства РФ), соглашение № 075-15-2022-1118 от 29.06.2022.

1. Литературный обзор. Основные методы получения соединений, содержащих 1,3,4-оксадиазольный и/или 1,2,3-триазольный фрагмент

1.1. Синтез 1,2,3-триазолов и применение

«Клик»-реакция, азидо-алкиновое циклоприсоединение, катализируемое медью (CuAAC), широко используется в синтетической химии для получения 1,2,3-триазолов различной структуры, в том числе для нужд фотохимии (флуорофоры), координационной химии (лиганды и хемосенсоров), биохимии (метки для биовизуализации), производстве биофармацевтических препаратов и др. Достоинством CuAAC-реакции является высокая атомная эффективность, причем при своевременном развитии Мелдалом реакции CuAAC в 2001 [1-8], это удобно совпало с общим определением Шарплесса необходимости самого подхода «клик»-химии. При этом, несмотря на то, что CuAAC [9] основано на процессе 1,3циклоприсоединения Хьюсгена [10], в случае «клик»-реакции процесс протекает с исключительной региоселективностью.

Ниже представлены основные синтетические подходы к 1,2,3-триазолам (Рисунок 1) с использованием реакций азид-адкинового циклоприсоединения. Так, производные 1*H*-1,2,3-триазола в основном могут быть получены катализе солями меди (I) путем 1,3-диполярного циклоприсоединения между органическими азидами и терминальными алкинами, катализируемыми медью [11]. Реакция CuAAC, может быть осуществлена в многокомпонентном варианте [12]. Также описаны примеры получения 1,2,3-триазолов в водных условиях, что отвечает методом «зеленой» химии [13].

Сравнительно небольшое развитие получили реакции CuAAC в условиях механосинтеза. Так, Штолле и со-авторами описан способ получения 1,2,3-триазолов путем измельчения соответствующих азидо- и этинильных компонент, включая пропрагил-замещенный полистирол и диэтинилзамещенный бензол в шаровой мельнице в присутствии медного каталиазтора [14]. Кравотто и соавторами [15] был осуществлен механосинтез 1,2,3-

триазолов в присутствии медного порошка. Наконец, нашей группой был разработан метод синтеза 1,2,3-триазолов, включая аналоги противоэпилептического препарата Руфинамид [16] путем измельчения азидои алкинильной компонент в шаровой мельнице с медными шарами.

Описано также несколько примеров синтеза 1,2,3-триазолов в условиях фотоактвации. Так, Щераняк и Дас опубликовали инициированный присутствием пирувата натрия, как восстановителя, фотоиндуцированный CuAAC процесс [17]. Французскими авторами описан пример получения гибридного полимерного материала на основе 1,2,3-триазолов путем комбинированой золь-гель полимериазации и фотоиндуцированго CuAAC процесса [18].

Рисунок 1. 1,2,3-Триазолы: ключевые синтетические стратегии.

Следует отметить, что в последнее время развитие также получили процессы азид-алкинового циклоприсоединения как способа синтеза 1,2,3триазолов в присутствие других переходных металлов (МААС-процессы) [19]. 1,2,3-Триазолы обладают широким спектром свойств, открывающих перспективные возможности для применения в медицине, биологии и материаловедении [20 - 21].

Другое практическое применение 1,2,3-триазолов связано с их способностью образовывать донорно-акцепторые или координационные комплексы с катионами металлов и (био)аналитами, что открывает путь для использования данных азагетероциклов в качестве хемосенсоров для качественного или количественного анализа или в качестве лигандов в комплексах металлов [22-24]. Кроме того, 2-замещенные 1,2,3-триазолы являются эффективными синими флуорофорами и демонстрируют высокие квантовые выходы [25].

1.2. Синтез и применение 1,3,4-оксадиазолов

Оксадиазолы представлены в виде четырех изомеров (Рисунок 2) из которых 1,3,4-оксадиазол наиболее исследован из-за доступности методов синтеза и широкого спектра применения:

Рисунок 2. Возможные изомеры оксадиазола: 1,2,3-оксадиазол **A**, 1,2,4 оксадиазол **Б**, 1,2,5-оксадиазол **B**, и 1,3,4-оксадиазол **Г**.

Существуют два основных метода получения 1,3,4-оксадиазолов:

1. Реакции окислительной циклизации [26] (Схема 1).

Схема 1. Синтез 2,5-дизамещенных 1,3,4-оксадиазолов методом окислительной циклизации с использованием различных реагентов

2. Реакции циклодегидратации [26] (Схема 2).

Схема 2. Реакция циклодегидратации 2,5-дизамещенных 1,3,4-оксадиазолов различными методами

1,3,4-Оксадиазол, впервые полученый Эйнсвортом в 1965 г. был описан под таким названиями, как оксибиазол и диазоксол, однако, согласно IUPAC, наиболее корректно название 1,3,4-оксадиазол [27].

Соединения, содержащих 1,3,4-оксадиазолбный каркас, проявляют широкий спектр биологической активности, такой как антимикробной [28-31], противовоспалительной [32-34], антиоксидантной [35] противосудорожной [36], противогрибковой [37], а также противоопухолевой [38-40] и антипролиферативной [41-47] активностью. Материалы, содержащие 1,3,4оксадиазольное ядро, обладают хорошей пленкообразующей способностью, высокой термической стабильностью, хорошими механическими И отличными оптоэлектронными свойствами (электронодонорным характером, высоким квантовым выходом фотолюминесценции). Сочетание этих свойств привело к широкому использованию этих соединений в качестве: красителей для электроно-транспортных слоев в тонкопленочных лазеров, электролюминесцентных устройствах, в полимерных светоизлучающих (OLED), В светочувствительных диодах качестве материалов И фотогальванических элементов [48-50]. Из-за электронодонорной природы гетероциклического кольца 1,3,4-оксадиазола и относительно-высокой подвижности электронов молекулы, содержащие 1,3,4-оксадиазол, могут способствовать транспорту электронов в оптоэлектронной устройствах [49],[51-55].

Соединения, функционализированные 1,3,4-оксадиазольными фрагментами, часто используются в устройствах и материалах, применяемых в мониторинге окружающей среды [56-58]. Кроме того, легкий синтез и возможность добавления различных *π*-сопряженных групп мотивируют исследователей использовать 1,3,4-оксадиазольное кольцо в качестве

исходных материалов (предшественников) в органическом синтезе других многочисленных продуктов [59].

1.3. Синтез гибридных соединений содержащих 1,3,4-оксадиазолы и/или 1,2,3-триазолы

Согласно литературным данным, для синтеза гибридных соединений содержащих 1,3,4-оксадиазолы и 1,2,3-триазолы могут использоваться две стратегии: путем достройки 1,2,3-триазольного цикла на 1,3,4-тиадиазольном каркасе и, наоборот, достройкой 1,3,4-тиадиазольного цикла на 1,2,3триазольном. Так, например, карбогидразиды 1Л в реакции ацилирования с хлорацетилхлоридом легко превращается в хлорацетил и дихлорацетил (Rбензо)гидразиды. Последующая фосфора дегидратация хлорокисью позволила получить оксадиазолы 2Л. Реакция последних с азидом натрия *in* situ приводила к тиадиазолсодержащидам азидам, которые реагировали с фенилацетиленом в присутствии иодида меди (I) при комнатной температуре в системе *t*-BuOH : H_2O (1:1 или 2:1), с образованием 1,2,3-триазолов **3**Л с хорошими выходами (Схема 3) [60].

Схема 3. Синтез производных хлорметил-1,3,4-оксадиазола 3Л

5-Замещенные тетразолы 8Л в реакции с 1-арил-5-метил-1*H*-1,2,3триазол-4-карбонилхлоридами 7Л давали соответствующие 1,3,4-оксадиазолы 9Л, имеющие 1,2,3-триазолильный заместитель (Схема 4). 1,2,3-Триазолкарбоновые кислоты 6Л были получены циклоприсоединением арилазидов 5Л к этилацетоацетату. Соединение 5Л синтезировали из замещенных анилинов 4Л диазотированием с последующей обработкой азидом натрия [61].

Схема 4. Синтез 1,2,4- и 1,3,4-оксадиазолов **9**Л

В источнике [62] описан синтез соединений ряда 2-(1,2,4-производных триазол-5-ил)-1,3,4-оксадиазола (Схема 5). Так, взаимодействие 1,2,4триазола **10Л** с бромистым цианом приводило к гибридной структуре **11Л**, которую нитровали дымящей азотной кислотой (98%) с получением нитрамина **12**Л.

Схема 5. Синтез N-(5-(5-(2-диазанил)-1,2,4-триазол-3-ил)-1,3,4оксадиазол-2-ил)нитрамид 12Л

Многие бис-азолы или аннелированые азолы используются в качестве в качестве компонентов взрывчатых веществ. Например, недавно был описан пример получения фуразаноаннелированного 1,2,3-триазол-2-оксида **13Л** путем реакции 3-амино-4-метиламинофуразана с тетрафторборатом нитрония (Схема 6) [63].

Схема 6. Синтез 4-метил-4*H*-1,2,3триазоло[4,5-с]1,2,5оксадиазол **13**Л

Реакции CuAAC могут использоваться для синтеза бисазольных систем, соединенных линкерами различной длины. Так, на схеме 7 представлен

пример «клик»-синтеза гибридного бис-азола 16Л путем взаимодействия между азидокомпонентой, 2-(2-азидоэтил)-5-(4-хлорфенил)-1,3,4оксадиазолом 15Л, и фенилацетиленом 14Л. Реакция протекает в присутствии катализатора СиІ и ДИПЭА в сухом ДХМ в инертной атмосфере при комнатной температуре [64].

Схема 7. Синтез 2-(2-(4-бензил-1*H*-1,2,3-триазол-1-ил)этил)-5-(4хлорфенил)-1,3,4-оксадиазола 16Л

Моханом и соавторами описан метод получения 1,3,4-оксадиазол/1,2,3триазольного гибрида **21Л**. Для этого путем CuAAC был получен 1,2,3триазол **19Л**, дальнейшее взаимодействие которого с арилнитрилами и гидроксиламином давало целевой продукт **21Л** (Схема 8) [65].

Схема 8. Синтез 3-фенил-5-(5-(1-(3,4,5-триметоксифенил)-1*H*-1,2,3триазол-4-ил)пиразол-3-ил)-1,2,4-оксадиазол **21**Л

Бис-азолы, соединенные гибкими линкерами, являются перспективными лекарственными кандидатами, в частности такие гетероциклы проявляют антибактериальную и противогрибковую активность. Так, Туруарабетту и соавторами описан синтез 1,3,4-оксадиазол-замещенного 1,2,3-триазола **25Л** путем «клик»-реакции между 5-(проп-2-ин-1-илтио)-1,3,4- **23Л**, полученного путем алкилирования пропаргилбромидом тиола **22Л**, с азидами в присутствии Cu(I), генерированного *in situ* из сульфата меди (II) и аскорбата натрия (Схема 9) [66].

Схема 9. Синтез 2-арил-5-(((1-метил-1*H*-1,2,3-триазол-4-ил)арил)тио)-1,3,4-оксадиазола **25**Л

Другим примером антибактериального кандидата на основе бис-азола является синтез 2-((4-аргио-1H-1,2,3-триазол-1-ил)метил)-5-фенил-1,3,4оксадиазола **27Л** путем циклизации 1,2,3-триазол-содержащего гидразида **26Л** (Схема 10) [67].

Подобным образом 5-метил-1-(пиридин-3-ил)-1*H*-1,2,3-триазол-4карбогидразид **28**Л взаимодействовал с бензойными кислотами в растворе оксихлорида фосфора с образованием 1,3,4-оксадиазол-замещенного 1,2,3триазола **30Л** (Схема 11) [68].

Схема 11. Синтез 1,3,4-оксадиазол-замещенного 1,2,3-триазола 30Л

Наряду с получением мономолекулярных 1,2,3-триазолов «клик»реакции могут быть использованы для синтеза политризолов [69], которые в свою очередь могут быть использованы в качестве полупроводниковых [70] и жидкокристаллических материалов [71], материалов для биовизуализации [72], хемосенсоров для обнаружения взрывчатых веществ [73-74], а также лигандов для селективного распознавания/экстракции катионов металлов [75]. Пей и соавторами были синтезированы политриазолы **33Л**, содержащие 1,3,4оксадиазольный и 1,2,3-триазольный фрагменты путем взаимодействия диазидо-компоненты на основе 1,3,4-оксодиазола **31Л** и 1,4-диалкинилзамещенных бензолов **32Л** путем «клик»-полимеризации (Схема 12). Авторами был обнаружен флуоресцентный отклик полимера **33Л** на протонирование, а также на «*turn-off*»-отклик на катион Аg⁺ [75].

Схема 12. Синтез полимера 33Л

Оксазолы и триазолы могут успешно использоваться в качестве лигандов, например, для получения катализаторов на основе палладия для реакций кросс-сочетания. Бумагиным и со-авторами был описан [76] синтез серии 1-(изоксазол-3-ил)метил-1*H*-1,2,3-триазолов в качестве лигандов для высокоэффективных катализаторов на основе палладия(II) для реакций кросссочетания в водных условиях. Для этого был синтезирован изоксазолзамещенный тетразол 36Л, который вступал в реакцию рециклизации с пент-4-иловой кислотой c выделением азота с образованием ЭТИНИЛмодифицированого оксадиазола 37Л и на последней стадии «клик»-реакцией был синтезирован целевой лиаганд 39Л (Схема 13). Полученные с использованием **39Л**, а также других азолов стабильные на воздухе комплексы палладия (II) демонстрировали высокую каталитическую активность в реакциях кросс-сочетания Сузуки, Хека и Соногаширы.

Жоу и соавторами опубликован [77] метод получения новых электролюминесцентных материалов на основе гибридов 1,3,4-оксадиазола-1,2,3-триазола **43**Л. Для этого авторами была осуществлена достройка 1,3,4оксадиазольного цикла на платформе 4-ариламино-1,2,3-триазолов **40**Л через гидразон **41**Л, его бензоильное производное **42**Л, циклизация которого обработкой POCl₃ давало целевой продукт **43** (Схема 14).

Схема 14. Синтез гибридов 1,3,4-оксадиазола-1,2,3-триазола 43Л

Аналогичным образом, конденсацией 1,2,3-триазол-замещенного гидразида **45Л**, полученного из эфира **44Л**, с некоторыми ароматическими кислотами в РОС1₃ были получены производные оксадиазола **46Л**, с выходами 70% (Схема 15) [78].

Схема 15. Синтез 2-метил-5-(2-фенил-2*H*-1,2,3-триазол-4-ил)-1,3,4оксадиазол 46Л

Интересный пример потенциально биологически-активных бис-1,2,3триазолов **50**Л соединенных гетероциклическим линкером, 1,2,5оксадиазолом (фуразаном) представлен Розаковым и со-авторами (Схема 16) [79]. Для этого авторы осуществили синтез 1,2,3-триазол-замещенного азидофуразана **48**Л, исходя из аминопроизводного **47**Л, циклизация которого с ацетилацетоном **49**Л и ацетоуксусным эфиром приводит к образованию целевого продукта, обладающего потенциальной биологической активностью. Дополнительно были синтезированы 1,2,3-триазол-замещенные фуразаны, модифицированные фрагментами пиррола и 1,3,5-оксазола.

Схема 16. Синтез бис-1,2,3-триазолов 50Л

Куном и со-авторами опубликован синтез различно связанных конъюгатов *D*-глюкозы, 1,3,4-оксадиазола и 1,2,3-триазола для ингибирования гликогенфосфорилазы. Например, 2-азидометил-5-фенил-1,3,4-оксадиазол реагировал с фенилацетиленом в присутствии Cu(I) и тетраметилэтилендиамина (ТМЭДА) с образованием 1,2,3-триазола **52**Л (Схема 17) [80]. Аналогично были синтезированы триазолы, содержащие остатки *D*-глюкозы.

Схема 17. Синтез бис-азолов 52Л

Венкатагири и со-авторами [81] была синтезирована серия 2,5-диарил-1,3,4-оксадиазолов **57Л**, с введенным в один из ароматических заместителей 1,2,3-триазольным фрагментом посредством аминометильного линкера. Для этого циклизацией **53Л** был синтезирован амино-замещенный 1,3,4оксадиазол **54Л**, *N*-алкилирование которого пропаргилбромидом давало этинильную компоненту **55Л**, а последующая «клик»-реакция с азтидокомпонентами давала целевые бис-азолы, которые демонстрировали антимикробную активность (Схема 18).

Схема 18. Синтез *N*-((1-метил-1*H*-1,2,3-триазол-4-ил)метил)-2-(5фенил-1,3,4-оксадиазол-2-ил)анилина **57**Л

Комарайхом и др. с использованием подобной платформы на 1,3,4оксадиазоле был синтезирован бис-1,2,3-триазол 61Л [82]. Для этого был использован 2,2'-(1,3,4-оксадиазол-2,5-диил)дианилин 58Л. который подвергали *N*-ацилированию хлоруксусной кислотой, с последующим хлора в 59Л на азидогруппы реакции замещением атомов И 1,3циклоприсоединения между бис-азидом 60Л И (ДМАД) диметилацетилендикарбоксилатом образованием с целевого продукта (Схема 19).

Схема 19. Синтез 1,3,4-оксадиазол-связанных бис-1,2,3-триазолов 61Л

1,2,4-Оксадиазолы представлены в большом количестве биоактивных соединений. В связи с этим, комбинирование данных гетероциклов с 1,2,3триазолами представляется перспективным. Дуруст и Каркус опубликовали однореакторный [83] синтез гибридных систем типа **64Л** посредством «клик»реакции между азидометил-1,2,4-оксадиазолами **62Л** и фенилпропиоловой кислотой **63Л** в условиях микроволнового облучения (Схема 20).

Схема 20. Синтез 5-((4-фенил-1Н-1,2,3-триазол-1-ил)метил)-3-Ar-1,2,4оксадиазол 64Л

Ферштатом и соавторами был опубликован [84] синтез гибридной гетероциклической системы **67Л** состоящей из фуразан-оксида, 1,3,4-оксадиазола и 1,2,3-триазола. С этой целью 4-[(5-хлорметил)-1,3,4-

оксадиазол-2-ил]-3-метилфуроксан **65**Л вводили в реакцию с азидом натрия и полученную азидокомпоненту **66**Л вводили в реакцию [3 +2]циклоприсоединения с диметиловым эфиром ацетилендикарбоновой кислоты с образованием целевого продукта (Схема 21).

Схема 21. Синтез гибридной системы 67Л

Наконец, Дурустом соавторами была И продемонстрирована применимость достаточно редкого представителя азагетероциклов, а именно 1,2,4-оксадиазолиметилсиднонов 70Л, несущих азидогруппу, в реакциях алкеновыми ацетиленовыми диполярофилами, N-И такими как фенилвинилсульфон фенилпропиоловая фенилмалеимид, И кислота с азидосиднонами (Схема 22) [85]. В результате были циклоаддуктов получены олигоазольные продукты 71-73Л.

Схема 22. Синтез олигоазолов 71-73Л

1.4. Бола-соединения на основе полиэтиленгликоля (ПЭГ) и других гибких линкеров

Полиэтиленгликоль (ПЭГ) является перспективным растворителем для зеленого синтеза [86], а также компонентом для создания супрамолекулярных архитектур. Особенное место занимают соединения типа бола, которые сконструированы из ПЭГ, дизамещенных (гетеро)ароматическими заместителями – хемосенсорами, лигандами или флуорофорами.

Так, Хьюн с соавторами [87] описали синтез ряда *бис*(1пиренилметиловых) эфиров полиэтиленгликолей **Л76-80** (Схема 23) путем модифицированной реакцией Вильямсона между 1-пиренметанолом **Л75** и соответствующими полиоксиэтилендитозилатами. Соединения **Л76-80** были исследованы в качестве флуоресцентных хемосенсоров на ионы металлов, в частности, на катион A1³⁺. Согласно авторам, имеет место формирование

внутримолекулярного эксимера с интенсивной флуоресценцией в результате *π*-*π*-стекинга пиреновых колец **Л76-80** в основном состоянии.

Схема 23. Синтез 1,1'-((оксибис(этан-2,1 диил)) бис(окси)) бис (метилен)) дипирен **Л76-80**

В источнике [88] (Схема 24) описан пример получения водорасторимого пирен-замещенного бис-имилазолиевого катиона **83**Л путем взаимодействия 1,4-бис(имидазол-1-ил)бутана **81**Л и 1 пиренилметилхлорида **82**Л. Соединение **83**Л показало применимость для флуоресцентноого обнаружения катионов Cu²⁺ и Co²⁺ в воде.

Схема 24. Синтез пирен-замещенного бис-имилазолиевого катиона 83Л

«Клик»-реакцией между азидозамещенным пиреном **84Л** и бисэтинилзамещенным компонентом **85Л** был синтезирован бола-сенсор **86Л** (Схеме 25), который продемонстрировал интенсивный «*turn-off*» отклик на присутствие катиона Cu²⁺. Причем, в сборках с анионогенным поверхностноактивным веществом (лаурилсульфат натрия) авторами наблюдалось усиление сенсорного отклика [89].

86Л (94%)

Схема 25. Синтез пирен-замещенных бис-1,2,3-триазолов 86Л

Подобная архитектура сенсора может быть сформирована и путем «клик»-реакции этинил-замещенного пирена **87Л** с бисазидом **88Л** Полученный бола-сенсор **89Л** (Схема 26) продемонстрировал сенсорные свойства на некоторые переходные металлы, в частности интенсивный «*turn-off*» - отклик на Hg²⁺ к **89Л** с низким порогом обнаружения [90].

Схема 26. Синтез бис-1,2,3-триазола 89Л

Аналогичным образом с использованием 9,10*бис*((2азидоэтокси)метил)антрацена **90Л** был синтезирован бола-сенсор **91Л** [91] (Схема 27), который проявил колориметрический и флуоресцентный *«turn-off»* отклик на катионы Fe²⁺/Fe³⁺.

Схема 27. Синтез 4-(пирен-1-ил)-1-(2-((10-((2-(4-(пирен-2-ил)-1*H*-1,2,3триазол-1-ил)этокси)метил)антрацен-9-ил)метокси)этил)-1*H*-1,2,3-триазол 91Л

Сравнительно редкими примерами представлены треножниковые структуры, содержащие пирен-замещенные 1,2,3-триазолы. Так, Ингале и соавторами была осуществлена «клик»-реакция между трипропаргиламина **92**Л и 1-азидометилпиреном **93**Л (Схема 28) с образованием *mpuc*((1-(пирен-1илметил)-1*H*-1,2,3-триазол-4-ил) метил) амина **94Л**, а также *N,N-бис*((1-(пирен-1-илметил)-1*H*-1,2,3-триазол-4-ил)метил)проп-2-ин-1-амина **95Л** (Схема 28). Соединение **94Л** демонстрировало высокую селективность по отношению к Zn^{2+} , что выражалось в разгорании мономерной флуоресценции, при затухании эксимерной эмиссии. Согласно авторам, 1,2,3-триазольные звенья соединения **94Л** образуют полость для селективного связывания ионов Zn^{2+} , а при инкапсулировании данного катиона происходит разрушение эксимеров и затухание эксимерной эмиссии. Поэтому сенсор **94Л** является высокоселективным *«оп-off»* сенсором в отношении Zn^{2+} [92].

Схема 28. Синтез треножниковых молекул 94Л и 95Л

Манандхаром и со-авторами были синтезированы пирензамещенные бис-1,2,3-триазолы **98Л**, соединенные посредством *орто*- (**98Л-а**) и *мета*-замещенного (**98Л-б**) бензольного каркаса (Схеме 29) [93]. Полученные соединения демонстрировали селективный флуоресцентный отклик на Zn²⁺.

Схема 29. Синтез молекулярных рецепторов 98Л (а-б) (орто-изомер (а) мета-изомер(б))

Хунгом и соавторами были синтезированы пирен-замещенные бис-1,2,3-триазолы, соединенные алифатическими линкерами различной длины 104–107Л (для контроля полости для связывания катиона металла), посредством «клик»-реакции между этинильной компонентой, 1-(пропагилоксиметил)пиреном 103Л, и алифатическими бисазидами 99-102Л или бензилазидом (Схема 30). Согласно авторам, селективность распознавания катионов металлов зависит от длины алифатического линкера между 1,2,3-триазолами. Так, соединение 107Л имеющее самую длинную цепь демонстрировало тушение мономерной и эксимерной флуоресценции в полярных растворителях в присутствии катионов Ni^{2+} , Pb^{2+} , Cu^{2+} , Hg^{2+} и Cr^{3+} , однако оно обладало усиленной мономерной эмиссией, но уменьшенной эксимерной эмиссией при комплексообразовании с ионами Cd²⁺ и Zn²⁺ [94].

Схема 30. Синтез пирензамещенных бис-1,2,3-триазолов 104–107Л

В сообщении Хунга и соавторов [95] сообщается о синтезе подобных описанным выше структур, соединенных фрагментами ПЭГ различной длины с использованием «клик»-реакций между азид-дизамещенными ПЭГ **108-111Л**, или азид-дизамещенныи гексаном **112Л** и (пропагилоксиметил)пиреном **103Л** (Схема 31). Полученные бола-хемосенсоры демонстрировали интенсивную эксимерную эмиссию в растворах MeOH, а также «*turn-off*» отклик на присутствие Hg²⁺ или Ag⁺, причем с ростом цепи ПЭГ усиливался отклик на Ag⁺. Бола-сенсоры, соединенные линкером на основе гексана демонстрировали «*turn-off*» отклик на присутствие Hg²⁺.

Схема 31. Синтез ПЭГ-связанных бис-1,2,3-триазолов 113-116Л, 117Л

Образование оснований Шиффа является достаточно удобным методом введения фрагмента пирена в состав хемосенсора. Так, Сингла и соавторы опубликовали [96] синтез **120Л** путем катализируемой амберлитом-15 реакцией конденсации 5,5-(фенилметилен)бис(тиофен-2-карбоксальдегида) **119Л**, полученного действием реактива Вильсмаера на 2,2'- (фенилметилен)дитиофен **118Л**, с 1-аминопиреном (Схема 32). Полученное соединение демонстрировала разгорание мономерной эмиссии в присутствии Hg²⁺ на уровне несколько частиц на миллиард (ppb).

Схема 32. Синтез 1,1-((фенилметилен)бис(тиофен-5,2-диил))*бис*(*N*-(пирен-1-ил)метанимин) 120Л

Нашей группой было синтезировано соединение типа бола **122**Л на основе двух фрагментов пирена, соединенных пентановым линкером (Схема 33), путем восстановления кетона **121**Л. Соединение **122**Л является селективным хемосенсорам на 2,4-ДНТ и ТНТ, аналитический отклик основан на тушении эксимерной эмиссии в водных растворах. Причем, "*turn-off*" флуоресцентное детектирование ДНТ и ТНТ осуществляется в субнаномолярных концентрациях [97].

Схема 33. Синтез 1,5-ди(пирен-1-ил)пентана 122Л

122Л связана Эксимерная эмиссия с образованием возможным мицелл/мицеллоподобных частиц. Причем, наряду с ДНТ и ТНТ, интенсивное наблюдалось тушение эксимерной эмиссии присутствии В труднообнаруживаемого ТЭН. подтверждено образование Было

мицелл/мицелло-подобных частиц, а также низкая стабильность таких частиц в присутствии ДНТ [98].

Также нашей группой были успешно получены бола-сенсоры **125**Л на основе двух остатков 1-пиренкарбоновой кислоты, соединенных фрагментами ПЭГ, исходя из 1-пиренкарбонилхлорида **124**Л путем реакции Шоттена–Баумана (Схема 34). В водных растворах **125**Л (а-б) проявляли интенсивную эксимерную эмиссию, обусловленную агрегационно-индуцированной флуоресценцией димеров, предварительно ассоциированных в основном состоянии. В водных растворах в присутстви ДНТ и ТНТ, а также алифатических нитросоединений (взрывчатых веществ), таких как ТЭН, гексоген и маркер легально производимых взрывчатых веществ в США ДМДНБ наблюдалось интенсивное тушение эксимерной эмиссии **125**Л [99].

Схема 34. Синтез этан-1,2-диил-бис(пирен-1-карбоксилат) 125Л

Ванг и соавторы синтезировали пирен-замещенные бис-1,2,3-триазолы **127-129Л** путем «клик»-реакции 1-(азидометил)пирена с соответствующим этинил-замещенными ПЭГ. Полученные соединения демонстрировали интенсивный отклик на катионы Hg²⁺ (Схема 35) [100].

Схема 35. Синтез пирен-замещенных бис-1,2,3-триазолов 127-129Л

Лиу и со-авторами был разработан новый тип флуоресцентного сенсора **133Л и 134Л** путем «клик»-реакции между пропаргил-замещенным 1,1'-би-2нафтолом **131Л**, этинильной компонентой, и (азидометилом)пиреном **132Л** [101] (Схема 36). Соединение **134Л** демонстрировало флуоресцентный рациометрический отклик на Ag⁺ путем увеличения эмиссии мономера и снижения эмиссии эксимера, причем обнаружение происходит селективно в широком диапазоне конкурирующих катионов. Также соединение **134Л** демонстрировало избирательное тушение мономерной и эксимерной эмиссии в присутствии Hg²⁺.

Схема 36. Синтез [1,1-бинафталин]-соединенных пиренов 133-134Л

Кумаром и со-авторами [102] описан метод построения пирензамещенного бис-1,2,3-триазола **137Л** в качестве хемосенсора для катионов Cu²⁺. Для этого азидокомпонету, 2,6-бис(азидометил)-пиридин **135Л** подвергали взаимодействию с 1-((проп-2-ин-1-илокси)метил)пиреном **136Л** в присутствии аскорбата натрия и сульфата меди (II) с образованием целевого продукта (Схема 37).

Схема 37. Синтез пирен-замещенного бис-1,2,3-триазола 137Л

Выводы

Таким образом, по итогам анализа литературы заключить следующее. 1,2,3-Триазолы, 1,2,4-оксадиазолы и структуры, содержащие фрагменты обоих азолов представляют интерес в качестве лекарственных кандидатов, а также лигандов катионов металлов, флуорофоров и хемосенсоров. Для синтеза структур, содержащих оба типа азолов (1,3,4-оксадиазолов и 1,2,3-триазолов) можно выделить два основных направления: надстройка 1,2,3-триазольного фрагмента на 1,3,4-оксадиазольном (предпочтение отдается методам «клик»химии) или, наоборот, построение 1,3,4-оксодиазола на 1,2,3-триазольном каркасе. Многие из существующих методов синтеза соединений, содержащих 1,3,4-оксадиазолов и /или 1,2,3-триазолов обладают рядом недостатков: жесткие условия проведения реакций, многостадийный синтез, невысокий общий выход, продолжительное время реакции. Что касается создания бисазольных систем, содержащих, например, арил-замещенные 1,2,3триазольные фрагменты, в том числе соединенные алкильными или полиэтиленгликолевыми мостиками, то в литературе представлены лишь единичные примеры такого рода систем, а их прикладной потенциал полностью не раскрыт авторами.

2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

2.1. Синтез аналогов красителя РОРОР

Если говорить о бис-азольных системах, то наиболее ярким представителем таковых является 1,4-бис(5-фенилоксазол-2-ил)бензол (РОРОР) (Рисунок 3), который имеет широкий спектр применения в составе флуорофоров и сцинцилляторов.

Рисунок 3. 1,4-Бис(5-фенилоксазол-2-ил)бензол (РОРОР)

С другой стороны, 1,2,3-триазолы и 1,3,4-оксадиазолы также проявляют перспективные фотофизические свойства. В связи с этим в рамках работы была исследована возможность получения гибридных систем как своего рода аза-аналогов РОРОР (Схема 39).

Для этого была использована одна из описанных в литературе стратегий, заключающаяся в достройке 1,2,3-триазинового каракаса на соединениях, содержащих фрагменты 1,3,4-оксадиазола, путем «клик»-реакций. С этой целью были синтезированы азидокомпонентны, 4-азидофенилоксадиазолы **2а,6**, путем модификации синтетически легкодоступного 1,3,4-оксадиазола **1** (Схема 38).

1a: R₁ = H (95%), **16**: R₁ = OCH₃ (99%)

Схема 38. Синтез 1,3,4-оксадиазола **1а-б.** *Реагенты и условия: i*, Al⁽⁰⁾, HgCl₂, ТГФ, 45 °C, 3 ч

Так, соединения 2 были впервые получены путем модифицированной реакции Зандмейера [103] из 4-(5-фенил-1,3,4-оксадиазол-2-ил)анилинов 1. 1,2,3-триазольного POPOP Для построения кольца аза-аналогов использовались два разных варианта «клик»-реакции азид-алкинового циклоприсоединения, катализируемого Cu(I) (CuAAC) (Схема 39, Таблица 1). Первый подход заключается в использовании сульфата меди (I), полученного *in situ* при взаимодействии аскорбата натрия и сульфата меди (II) в водном ТГФ, с получением целевых 1,2,3-триазолов 3 с выходами 73-96%. Второй подход предполагал изменение условий реакции, а именно использование бромида меди (I) в сухом ДМФА. Целевые продукты 3 в этом случае были получены с более высокими выходами до 99% (Схема 39, Таблица 1). Полученные продукты были выделены в виде мелких кристаллов с окраской от светло-желтой до бежевой. Строение всех соединений подтверждено методами спектроскопии ¹Н и ¹³С ЯМР, масс-спектрометрии и элементного анализа. Так в спектрах ЯМР ¹Н продуктов **3** присутствуют сигналы протонов ароматических заместителей в виде мультиплетов в области 7.20-8.60 м.д. а также сигналы протонов азольных фрагментов 8.06-9.72 м.д. (см. Приложение 1), В масс-спектре присутствуют соответствующие приписываемой структуре пики молекулярного иона.

Схема **39.** Синтез аналогов РОРОР **3**. *Реагенты и условия: i*, PTSA, i-PrONO, AcOH, NaN₃, H₂O; *ii*, аскорбат натрия, CuSO₄×5H₂O (0.20 экв), TГФ:H₂O, 70 °C, Ar; *iii*, CuBr, TEA, ДМФА, 100 °C, Ar.

Продукт	\mathbf{R}_1	R_2	Выход, %
			(метод синтеза)
3 a	Н	Ph	96 (<i>ii</i>)
36	Н	Нафталенил-2	73 (<i>ii</i>)
3в	Н	Пиренил-1	85 (<i>iii</i>)
3г	Н	Трифениленил-2	70 (<i>iii</i>)
3д	OCH ₃	Ph	99 (<i>iii</i>)
3 e	OCH ₃	Нафталенил-2	80 (<i>iii</i>)
3ж	OCH ₃	Пиренил-1	50 (<i>iii</i>)

Таблица 1. Строение и выходы полученных 1,2,3-триазолов 3

Таким образом, в рамках данного раздела был осуществлен синтез азааналогов флуоресцентного красителя РОРОР посредством «клик»-реакции.

2.2. Синтез ПЭГ-связанных бис-1,2,3-триазолов с геометрией типа бола

Синтетический дизайн функциональных производных типа бола (содержащих два структурно-эквивалентных/неэквивалентных фрагмента (рецептора, лиганда и/или флуорофора), соединенных гибким (алифатическим) [98], ликером и изучение их конформационных изменений как отклик на присутствие (био)аналитов или изменение свойств среды имеют ключевое значение для применения для прикладных областей. Поэтому молекулы данного типа привлекли большое внимание для приложений в биологии, в фармацевтических препаратах и системах транспорта генов, а также в химическом зондировании, биомедицинских сенсорах и молекулярном распознавании [104-108]. Согласно данным обзора литературы, наиболее эффективным способом синтеза бола-хемосенсоров на основе 1,2,3-триазолов является достройка триазольного цикла на каркасе линкера с использованием «клик»-реакций. В связи с этим описанные выше подходы были исследованы в рамках диссертационной работы.

2.2.1. Синтез 1,3,4-оксадиазол-замещенных бис-1,2,3-триазолов 7а,б

Производные же поли(этиленгликоля) (ПЭГ) интересны прежде всего для создания ациклических аналогов краун-эфиров подандов, ациклических аналогов краун-эфиров, которые представляют являются эффективными и селективными комплексообразующими соединениями. Поэтому в рамках работы поли(этиленгликоли) были изучены в качестве синтонов в «клик» реакциях, для чего были синтезированы этинил-замещенные производные ПЭГов, а именно соединения **ба,б**, исходя их бис-тозилатов коммерческидоступных три- и тетраэтиленгликоля путем взаимодействия с 2-пропин-1олом. Соединения **6** были получены в виде желтых масел с превосходными выходами (Схема 40).

Схема 40. Синтез этинил-замещенных этиленгликолей 6. *Реагенты и условия: i*, KI, NaH, ТГФ сухой, к.т, 3 ч.

Для последующей «клик»-реакции построения 1,2,3-триазольного кольца, успешно была использована исследованная выше Cu(I)катализируемая схема синтеза (Схема 41), которая включает использование катализа йодидом меди(I) в водном растворе ТГФ.

Целевые бис-1,2,3-триазолы **7а,6**, бола-хемосенсоры, были получены в виде светло-желтых кристаллов с выходами 30–75% (Схема 41). Строение всех полученных соединений подтверждено методами спектроскопии ¹H и ¹³C ЯМР, масс-спектрометрии и элементного анализа. Так, в ЯМР ¹H спектрах соединений **7** присутствуют сигналы протонов ароматических заместителей в виде мультиплетов в области 4.80-8.29 м.д. а также сигналы протонов азольных фрагментов 8.15-8.29 м.д. (см. Приложение 1), В масс-спектрах соединений **7** присутствует пик молекулярного иона.

Схема 41. Синтез соединений 7а,6. *Реагенты и условия: i*, CuI (0.20 экв), ТГФ:H₂O = 10:1, 55 °C, Ar.

Таким образом, в рамках данного раздела были синтезированы 1,3,4оксазол-замещенные бис-1,2,3-триазол-содержащие молекулы типа бола, соединенные линкерами на основе ПЭГ.

2.2.2. Синтез ПАУ-замещенных бис-1,2,3-триазолов 10а-в, 13а-б, 14а-б

В рамках работы для развития рядов ПЭГ-связанных бис-1,2,3триазолов была также исследована применимость другой процедуры, основанной на «клик»-реакции между азид-замещенных ПЭГ с этинильной компонентой, на основе замещенных полиядерных аренов. С целью исследования применимости данного подхода был синтезирован 1-этинилпирен 8 путем реакции кросс-сочетания по методу Соногаширы, исходя из коммерчески-доступного 1-бромпирена (Схема 42). 1-Этинилпирен 8 был получен с выходом 77 % в виде бесцветного осадка. Азидо-компоненты на основе ПЭГ 9 были синтезированы путем действия азида натрия на тозилзамещенные этиленгликоли в присутствии иодида калия (Схема 43). Целевые азиды были выделены с выходами до 99% в виде светло-желтых масел.

Схема 42. Синтез 1-этинилпирена 8. *Реагенты и условия: i*, триметилсилилацетилен, PdCl₂(PPh₃)₂, PPh₃, CuI (0.03), ДМФА:(iPr)₂NH, 65 °C, 12 часов; *ii*, K₂CO₃, CH₃OH-TГФ, к.т., 3 часа.

Схема 43. Синтез азид-замещенных ПЭГ **7.** *Реагенты и условия: i,* NaN₃, KI, ТВАВ, ДМФА, 80 °С, 18 ч.

Для синтеза бис-1,2,3-триазолов **10а-в** были исследованы два подхода (Схема 44). Так, известно, что «клик»-реакции возможно проводить в соответствии с принципами зеленой химии, а именно без использования растворителей, например, в услвиях механосинтеза. Данный подход был исслендован в рамках работы. Причем, проведение реакции оказалось возможным в отсутствие катализа солями меди (I). С этой целью 1этинилпирен **8** и соответствующие азидокомпоненты **9а-в** в присутствии абразива (Силикагель Kiselgel 60 0.04-0.063 мм Macherey-Nagel или бронзовый порошок) перемешивали в стальной шаровой мельнице с пятью мелющими шарами (медь или сталь) при 500 об/мин. Результаты приведены в таблице 2.

Второй подход заключался в использовании одного из ранее разработанных в рамках работы методов, а «клик»-реакции между азидо- и этинильной компонентой в при нагревании в растворе ДМФА в присутствии аскорбата натрия, полученного *in situ* из NaOH и аскорбиновой кислоты, и

сульфата меди (II) пентагидрата с последующей хроматографической очисткой продуктов. Продукты **10а-в** были получены в виде желтых маслянистых субстанций.

Причем, основываясь на полученных данных (Таблица 2), можно утверждать, что наиболее высокий выход реакции наблюдается в условиях механосинтеза при использовании медных или стальных шаров в присутствии порошка бронзы (линии 2,6), тогда как в растворе во всех случаях выходы были сравнительно ниже (линии 10-12). Еще ОДНИМ несомненным преимуществом применения механосинтеза является значительное сокращение времени реакции, отсутствие растворителя, а также, самое главное, отсутствие необходимости вносить в реакционную массу медный катализатор и лиганды. Наилучший выход фиксировался при использовании порошка бронзы и стальных шаров, что можно объяснить переходом бронзы в мелкодисперсное каталитически-активное состояние при размалывании эффекта стальными шарами. Этого не достигалось твердыми при использовании относительно мягких медных шаров, даже в присутствии добавки абразива (силикагеля) или в присутствии добавки в виде порошка бронзы.

Схема 44. Синтез соединений 10 а-в. *Реагенты и условия:* [*i*, шаровое измельчение, 500 об/мин, 3 часа]; *ii*, аскорбат натрия, CuSO₄×5H₂O (0.40 экв), ДМФА, 65 °C, Ar.

No.	Продукт	Метод	Материал	Добавка	Время, ч.	Выход, %
			шаров			
1	10a	i	Cu	Силикагель	3	59
2	10a	i	Cu	Бронза	3	91

Таблица 2. Условия реакции и выходы соединений 10 а-в

3	10a	i	Сталь ШХ15	Бронза	3	84
4	106	i	Cu	Силикагель	3	78
5	106	i	Cu	Бронза	3	65
6	106	i	Сталь ШХ15	Бронза	3	90
7	10в	i	Cu	Силикагель	3	68
8	10в	i	Cu	Бронза	3	75
9	10в	i	Сталь ШХ15	Бронза	3	87
10	10a	ii	-	-	16	40
11	106	ii	-	-	16	70
12	10в	ii	-	-	16	70

Для расширения рядов бис-1,2,3-триазолов был осуществлен синтез трифенилен- и перилен-замещенных бис-1,2,3-триазолов 13 и 14 путем 9а-б «клик»-реакции между азидокомпонентами И ЭТИНИЛЬНЫМИ компонентами 11,12 в растворе (Схема 46) аналогично синтезу продукта 10. Бис-1,2,3-триазолы 13,14 были выделены с выходами до 96% в виде желтоватых масел. Этинильные копоненты были предварительно получены с выходами 96% (11) и 83% (12) в виде бесцветных осадков с использованием процедуры кросс-сочетания по Сузуки, исходя бромзамещенных ИЗ прекурсоров (Схема 45).

Строение всех полученных соединений подтверждено методами спектроскопии ¹H и ¹³C ЯМР, масс-спектрометрии и элементного анализа. Так, в ЯМР ¹H спектрах продуктов **10,13,14** присутствуют сигналы протонов ароматических фрагментов в области (7.95-8.66), (7.17-8.84), (7.63-8.95) м.д., сигнал протона С-Н фрагмента 1,2,3-триазола в области (8.65-8.81), (8.16-9.19), (7.37-9.34) м.д., и сигналы протонов полтиэтиленгликоля в области (3.32-4.67), (3.52-4.61), (3.52-4.61) м.д. В масс-спектрах присутствуют пики молекулярных ионов.

Схема 45. Синтез этинил-замещенных продуктов 11, 12. *Реагенты и условия*: *i*, триметилсилилацетилен, PdCl₂(PPh₃)₂, PPh₃, CuI, ДМФА:(iPr)₂NH 1:1.5, 65 °C, 12 часов; *ii*, K₂CO₃, CH₃OH-TГФ, к.т, 3 часа.

Схема 46. Синтез соединений **13а-б** и **14а-б**. *Реагенты и условия: i*, CuSO₄×5H₂O (0.40 экв.), NaOH, аскорбиновая кислота, ДМФА, 55 °C.

Таким образом, в рамках данного раздела были синтезированы бола соединения на основе замещенных фрагментами ПАУ бис-1,2,3-триазолов, соединенных фрагментами ПЭГ.

2.3. Изучение фотофизических свойств соединений 3

На основании данных литературного обзора было выявлено, что производные 1,2,3-триазола и 1,3,4-оксадиазола обладают с одной стороны многообещающей биологической активностью, а с другой – эти гетероциклы могут быть использованы в качестве лигандов катионов металлов, а также в качестве флуорофоров и хемосенсоров. В связи с вышесказанным, в рамках работы были исследованы фотофизические свойства наиболее представительных из полученных соединений.

2.3.1. Изучение фотофизичесих свойств соединений 3 в отсутствие аналитов

Соединения **3** представляют аза-аналоги флуоресцентного красителя РОРОР, поэтому на начальном этапе были исследованы фотофизические свойства данных гетероциклов.

Так, было установлено, что среди флуорофоров **3**, только в случае пирензамещенных гетероциклов **3в** и **3ж** наблюдается смещение максимумов как поглощения поглощение, так и испускания в красную область по сравнению с POPOP, тогда как спектры испускания других флуорофоров смещены в синюю область по сравнению со спектром для POPOP. Среди всех флуорофоров наиболее ярко выраженный синий сдвиг спектра поглощения наблюдался у фенил-замещенного флуорофора **3**а.

Спектр испускания **3a** также наиболее сильно сдвинут в синюю область по сравнению со спектрами излучения всех других аналогов РОРОР. Причем, если спектры поглощения и испускания РОРОР имеют слабо выраженную вибронную структуру, то спектры поглощения и испускания всех флуорофоров **3**, в том числе и пиренсодержащих, размыты.

Интересно что если электронный переход S₀→S₁ имеет большую интенсивность, чем переход $S_0 \rightarrow S_2$ в РОРОР и его аналогах **3в** и **3**д, то в других аналогах наблюдалась обратная картина: переход $S_0 \rightarrow S_1$ имел меньшую чем переход S₀→S₂ интенсивность. Значения квантового выхода полученных флуорофоров варьируют от 17 до 98%, причем при введении метоксигруппы в ароматический заместитель в ядре 1,3,4-оксазола приводило к увеличению квантового Особенно отчетливо наблюдается выхода. ЭТО ДЛЯ пиренилсодержащих производных Зв (23%) и Зж (84%) – аналогично, введение метоксигруппы приводит к резкому увеличению квантового выхода. (Рисунок 4, Таблица. 3).

Рисунок 4. Спектры (**A**) поглощения и (**Б**) испускания РОРОР и его азааналогов **3** в CH₂Cl₂ (10⁻⁵M)

Таблица 3. Данные фотофизических свойств флуорофоров (3) и РОРОР (10⁻⁵ М) в CH₂Cl₂

Nº	Продукт	R ₂	$\lambda_{abs max}^{a}$, HM	$\lambda_{em max}^{b}$,	Стоксов	τ, ns ^c	$\Phi_{f}, (\%)^{d}$	
			(єм, М ⁻¹ см ⁻	HM	сдвиг,			
			1)		НМ			
		-	346 (99000)	395				
1	DODOD		361	416	07		07 5 ^e	
1	roror		(111400)	443	97	-	91.5	
			384 (68000)	(sh)				
2	30	Ph	248 (43300)	356	122		17	
	Ja		309 (61800)	370	122	-		
		Нафталенил-	248 (22500)					
3	36	2	259 (21600)	398	150	0.66	48	
			307 (14500)					
		Пиренил-1	245 (17800)					
4	3в		282 (35600)	441	159	4.52	23	
			348 (26300)					
5	35	Трифенилен	271 (56200)	202	111	1 22	20	
5	51	ил-2	317 (35900)	362	111	1.22	30	
6	3 п	Ph	259 (31500)	373	58	0.72	08 13 ^f	
0	ЭД		315 (75200)	515	50	0.72	70.15	

		Нафталенил-	228 (93400)				
7	30	2	247 (43400)	200	160	0.40	71
/	36		258 (39900)	300		0.49	/1
			315 (33200)				
		Пиренил-1	228 (39100)				
			245 (43200)	393			
8	3ж		282 (32400)	(sh)	172	4.34	84
			319 (26900)	417			
			346 (29900)				

^a Спектры поглощения были измерены при комнатной температуре. в CH₂Cl₂ в диапазоне от 200 to 450 nm, ^b Спектры испускания измерены при комнатной температуре. в CH₂Cl₂, ^c Средневзвешенное время затухания $\tau_{av} = \Sigma$ ($\tau i \times \alpha i$) в CH₂Cl₂ (LED 310 nm), ^d Абсолютные квантовые выходы измеряли с помощью интегрирующей сферы Horiba-Fluoromax-4 при комнатной температуре. в CH₂Cl₂, ^e В растворе циклогексана, ^f В растворе ТГФ.

Таким образом, первоначальные фотофизические исследования показали, что фотофизические свойства полученных соединений **3**, которые были синтезированы в качестве аналогов красителя РОРОР, не вполне аналогичны таковым для РОРОР, что, вероятно, связано с вкладом как периферических (поли)ароматических заместителей, так и обоих азольных фрагментов.

2.3.2. Исследование фотофизических свойств соединений 3 в присутствие нитросоединений

Материалы и устройства для дистанционного обнаружения взрывчатых веществ, в том числе флуоресцентные, пользуются повышенным спросом с точки зрения высокого риска терактов во всем мире [109-111]. Кроме того, известно, что производные пирена, в том числе производные азолов, демонстрируют хорошо выраженный «*turn-off*» флуоресценцентный отклик на известные нитроаналиты в растворах [99][112-116], а также на некоторые нитроалифатические взрывчатые компоненты [98][117]. Кроме того, флуорофоры, сенсоры и зонды на основе азолов и пирена [118-121], пользуются большим спросом в приложениях биовизуализации [122-128].

Ранее нашей группой была продемонстрирована применимость ПАУсодержащих флуорофоров для флуоресцентного обнаружения нитросодержащих соединений. Поэтому, в качестве заключительного шага, была изучена способность описанных выше аза-аналогов РОРОР **3** обнаруживать нитроаналиты.

Первичная оценка флуоресцентного отклика флуорофоров **За-ж** на присутствие нитросоединений показала, что только пирензамещенные 1,2,3триазолы **3 в,ж** демонстрируют выраженный "*turn-off*" флуоресцентный отклик (тушение флуоресценции) в присутствии нитросоединений. Далее флуорофор **3ж** был подробно исследован на предмет применимости в качестве хемосенсора для флуоресцентного "*turn-off*" обнаружения нитро-взрывчатых веществ. Полученные результаты интерпретированы с помощью модели статического тушения флуоресценции Штерна-Фольмера. Константы тушения флуоресценции Штерна-Фольмера (K_{sv}) рассчитывали как наклон графика интенсивности ((I₀/I)-1) в зависимости от концентрации тушителя ([Q]) (1):

$$\frac{I_0}{I} = 1 + K_{SV}[Q] \tag{1}$$

В качестве тушителей были исследованы представители наиболее распространенных взрывчатых веществ, а именно 2,4,6-тринитротолуол (ТНТ) 2,4-динитротолуол (ДНТ). Дополнительно был исследован И труднодетектируемый тетранитрат пентаэритрита (THC). Измерения проводили в режиме single-point при длине волны возбуждения $\lambda^{ex} = 300$ нм. На рисунке 5 представлены графики Штерна-Фольмера, полученные в условиях титрования соединения **3**ж (10⁻⁶ M) растворами ТНТ, ДНТ и ТЭН в ацетонитриле.

Полученные результаты свидетельствуют, что соединение **3**ж демонстрирует тушение флуоресценции в присутствии как нитроароматических соединений, а именно ТНТ ($K_{sv} = 12036 \text{ M}^{-1}$) и ДНТ ($K_{sv} = 8427 \text{ M}^{-1}$), так и в присутствии труднообнаруживаемого флуоресцентными

методами ТЭНа (K_{sv} =14078 М-¹), с пределами обнаружения (LOD) 182 ppb для ТНТ и 183 ppb для ТЭН. Вышеупомянутые результаты сопоставимы с самыми последними современными исследованиями [129-132].

Рисунок 5. Графики Штерна-Фольмера тушения флуоресценции хемосенсора 3ж в присутствии ДНТ (А), ТНТ (Б), ТЭН (В).

Исходя из линейности графика Штерна-Фольмера при низких концентрациях нитроаналитов (Рисунок 5), отклик **3**ж на вышеупомянутые нитроаналиты хорошо укладывается в модель статического или псевдо-/ложностатического тушения, когда в основном состоянии формируется безызлучательный молекулярный комплекс «сенсор – нитроаналит».

На Рисунке 6 представлены графики тушения флуоресценции хемосенсора **3ж** в присутствии ДНТ, ТНТ и ТЭНа, соответственно.

Рисунок 6. Тушение флуоресценции хемосенсора **3**ж (10⁻⁶ M) в присутствии ДНТ, ТНТ, ТЭН

Если тушение флуоресценции 3ж в присутствии нитроароматических соединений, THT ДHT, И хорошо укладывается В модель статического/псевдостатического тушкемя из-за образования молекулярного комплекса в основном состоянии, то наличие флуоресцентного отклика к ТЭНу требует обоснования. На основании данных литературы, можно предположить, что высокая чувствительность 3ж по отношению к ТЭНу связана с возможностью эффективного фотонно-индуцированного переноса (PET) HCMO **Зж** на НСМО ТЭН, электрона c что приводит К безызлучательному распаду возбужденного состояния сенсора. Этот процесс становится возможным только в тогда, когда HCMO сенсора намного выше по энергии. Для понимания такого эффективного сенсорного отклика соединения **3ж** на ТЭН, были проведены DFT¹ [133-137] расчеты на уровне теории B3LYP/def2-TZVP//PM6 с помощью функции Gaussian-09 [138] (Рисунок 7). Согласно данным рисунка 7, в пользу РЕТ механизма тушения в случае ТЭН [139-141], свидетельствует более высокие значения HCMO сенсора **3ж** (-2,34 эВ), что значительно превышает HCMO тушителя ТЭН (-2,84 эВ), а движущей силой процесса тушения является значительная разность энергий HCMO сенсора и тушителя (0,5 эВ) (Рисунок 7, Таблица 4).

Таблица 4. ВЗМО – НСМО уровень энергии д	цля 3ж и ТЭН	I (в эВ).
--	---------------------	-----------

Coordination	ВЗМО энергия,	НСМО энергия,	
Соединение	эВ	эВ	
3ж	-5.71	-2.34	

¹ Автор выражает благодарность к.х.н. Новикову А.С. за помощь в проведении квантово-химических расчетов.

ТЭН	-9.14	-2.84

Таким образом, в данном разделе была продемонстрирована применимость аза-аналогов РОРОР **3** в качестве флуорофоров и хемосенсоров для нитроаналитов.

2.4. Исследование фотофизических свойств соединений 7а,б

2.4.1. Исследование фотофизических свойств соединений 7а,б в отсутствие анлитов

В продолжение исследований были исследованы фотофизические свойства соединений типа бола, именно **7а,6**. Благодаря наличию фрагментов ПЭГ соединения **7а,6** растворимы при как в средне- и сильнополярных апротонных растворителях (ТГФ, дихлорметан, ДМСО, ацетонитрил), так и в сильнополярном протонном метаноле концентрациях ниже 2×10⁻⁵M. Были зарегистрированы спектры поглощения и испускания соединений **7** в данных растворах (Рисунки 8-9).

Так, в УФ-спектрах для каждого из флуорофоров фиксируется две аналогичные полосы поглощения, с более низкой по энергии при λ_{max} 216 нм и с более высокой - в области λ_{max} 300 нм, что соответствует S₀ \rightarrow S₂ и S₀ \rightarrow S₁ переходам. При этом оба образца демонстрируют доминирующую полосу, обусловленную переходом S₀ \rightarrow S₁ с ϵ_{M} > 80000 M⁻¹cm⁻¹. Высокие молярные коэффициенты поглощения (ϵ = 30800–91500 M⁻¹ см⁻¹), а также высокие значения силы осциллятора (f = 1.47–1.62), согласуются с сильным π - π *переходами с небольшим изменением геометрии между электронным основным и возбужденным состояниями.

Несмотря на присутствие донорных фрагментов (остатки ПЭГ и ароматические фрагменты) и акцепторных фрагментов (остатки 1,2,3-триазола и 1,3,4-оксадиазола) соединения 7 не проявляли выраженных свойств пушпульных флуорофоров, что выражалось в отсутствие выраженного сольватохромизма. Как показано на рисунках 8А и 9А для соединений **7а-6**,

полярность растворителя лишь незначительным образом влияет на положение максимумов поглощения, что указывает на слабополярный характер данных образцов в основном состоянии. С другой стороны, спектры флуоресценции более чувствительны к полярности растворителя. По мере увеличения полярности растворителя спектры эмиссии незначительно смещаются в красную область при существенном усилении интенсивности эмиссии (Рисунок 8Б). Соединения 7а,6 также обладают высокими молярными коэффициентами экстинкции в длинноволновой области (єм>80 000 М⁻¹ см⁻¹), а значения квантовых выходов флуоресценции достигали выше 60% (Таблица 5). При этом структурированные спектры излучения образцов 7а-б, с высокими с высокими значениями Стоксова сдвига < 100 нм ($\Delta v = 50 \div 58$ нм), позволиют сделать вывод о преобладании состояния флуорофоров в локальном состоянии возбуждения (LE). Ранее нами было показано, что флуорофоры с локальным состоянием возбуждения (LE) являются перспективными кандидатами для применения в качестве флуоресцентных сенсоров/проб, что можно предположить и для соединений 7а,6.

Рисунок 8. Спектры (А) поглощения и (Б) эмиссии **7a** (10⁻⁵М) в различных растворителях.

Рисунок 9. Спектры (А) поглощения и (Б) эмиссии **76** (10⁻⁵М) в различных растворителях.

7a	λ _{abs} max, HM	λ _{em max} , HM	Стоксов сдвиг, нм	76	λ _{abs max} , HM	λ _{em max} , HM	Стоксов сдвиг, нм
дмсо	301	337 354 366	65	дмсо	304	337 354 366	62
MeCN	296	333 349 365	69	H ₃ CCN	296	332 349 369	75
DCM	298	335 351 364	66	H ₂ CCl ₂	299	332 349 368	69
МеОН	296	334 351 364	68	МеОН	296	335 350 364	68

Габлица 5. Фо	тофизические	свойства	соединений	7а-б
---------------	--------------	----------	------------	------

		335				335	
ΤΓΦ	299	350	65	ΤΓΦ	300	350	64
		364				364	

Таблица 6. Фотофизические свойства соединений **7а,б** (10⁻⁵ M) в ТГФ и CH₂Cl₂

	$\lambda_{abs max}^{a}$, nm	$\lambda_{em max}^{b}$, HM	Стоксов	τ , ns ^c	$\Phi_{f}, (\%)^{d}$
Соединение	$(\epsilon_{M}, M^{-1} c m^{-1})$		сдвиг, нм		
7a	216 (0.308) 299 (0.915)	335, 350, 364	51	1.08	61.7
76	216 (0.360), 300 (0.835)	335, 350, 364	50	1.29	86.6

^a Спектры поглощения регистрировались при комнатной температуре в ТГФ в диапазоне от 200 до 350 nm; ^b Спектры испускания регистрировались при комнатной температуре в ТГФ; ^c Время жизни флуоресуенции $\tau_{av} = \Sigma (\tau_i \times \alpha_i)$ в ТГФ (LED 310 nm); ^d Абсолютные квантовые выходы получены с помощью интегрирующей сферы Horiba-Fluoromax-4 при комнатной температуре в ТГФ

Дополнительно для флуорофоров **7а-б** были зарегистрированы спектры времяразрешенной флуоресценции, результаты измерении представлены ниже (Таблица 7, Рисунок 10).

Таблица 7. Время жизни флуоресценции **7а-б** (2×10⁻⁶ M) в ТГФ при комнатной температуре

	Продукт	τ_1 , ns ^a	a1 ^b	τ_2 , ns ^a	\boldsymbol{a}_{2}^{b}	τ_{av} , ns ^a	χ^{2d}
1	7a	0.94	0.84	1.80	0.16	3.4	1.11
2	76	0.69	0.28	1.52	0.72	2.6	1.10

^аВремя затухания, ^b Вклад компонента, ^c Усредненное время затухания $\tau_{av} = \Sigma (\tau_i \times \alpha_i), ^d$ Отклонение от теоретической модели.

Рисунок 10. Спектры времяразрешенной флуоресценции для соединения 7а

Согласно полученным данным, все затухания флуоресценции с временным разрешением могут быть аппроксимированы используя биэкспоненциальную модель, амплитуды которых α_1 , а постоянные времени τ_i (Таблица 7). Можно предположить, что для соединений **7а-б** быстрая составляющая (быстрый компонент) может быть следствием процессов быстрого тушения флуоресценции, не достигающих стабилизированной геометрии с локальным возбуждением (LE).

2.4.2. Исследование фотофизических свойств соединений 7а-б в присутствии нитросоединений

На следующем этапе было проведено исследование флуоресцентного отклика соединений **7а,б**, в растворах ТГФ в концентрациях 10⁻⁶-10⁻⁷ М (с целью избежать самотушения), на присутствие нитро-ароматических (ДНТ и ТНТ), а также алифатических нитросоединений (ТЭН). Эффективность тушения флуоресценции **7а,б** были описаны с использованием математической модели Штерна-Фольмера.

Согласно полученным экспериментальным данным (Рисунок. 11-16) соединения **7а,б** демонстрируют тушение флуоресценции в присутствии как нитроароматических (ТНТ, ДНТ), так и нитроалифатических (ТЭН)

соединений. При этом порядок констант тушения (K_{sv}) для соединений **7а,6** в составили для нитроароматических соединений порядка ~ 1.0×10^{-4} M⁻¹, и для ТЭН - порядка 0.5×10^{-4} M⁻¹ (Таблица 8). Минимальный предел обнаружения (LOD) был вычислен на основании данных флуориметрического титрования **7а,6** по 3 σ методу и достигал значений 4×10⁻⁷ M (~132 ppb) для хемосенсора **7а** и 3×10⁻⁷ M (~95 ppb) в случае хемосенсора **76**. Таким образом хемосенсор **76** является наиболее перспективным для применения для обнаружения нитросоединений.

Согласно полученным данным, результаты тушения хорошо укладываются в обычное линейное уравнение Штерна – Фольмера с высоким коэффициентом корреляции (R²) до 0.965.

Таблица 8. Значения констант Штерна-Фольмера сенсоров **7а,6** и пределов обнаружения нитросодержащих ВВ

	Аналит	K_{SV}, M^{-1}	\mathbf{R}^2	LOD×10 ⁻⁷ , M
7a	ДНТ	0.597×10 ⁴	0.956	13.37
	THT	0.712×10 ⁴	0.980	10.46
	ТЭН	0.418×10 ⁴	0.945	4.16
76	ДНТ	0.772×10 ⁴	0.966	15.46
	THT	0.767×10 ⁴	0.982	10.97
	ТЭН	0.468×10 ⁴	0.980	3.04

Рисунок 11. (**A**) Тушение флуоресценции **7а**, (**Б**) График предела обнаружения (LOD), (**B**) График Штерна-Фольмера в присутствии ДНТ.

Рисунок 12. (**A**) Тушение флуоресценции **7а**, (**Б**) График предела обнаружения (LOD), (**B**) График Штерна-Фольмера в присутствии ТНТ.

Рисунок 13. (**A**) Тушение флуоресценции **7а**, (**Б**) График предела обнаружения (LOD), (**B**) График Штерна-Фольмера в присутствии ТЭН.

Рисунок 14. (**A**) Тушение флуоресценции **76**, (**Б**) График предела обнаружения (LOD), (**B**) График Штерна-Фольмера в присутствии ДНТ.

Рисунок 15. (**A**) Тушение флуоресценции **76**, (**Б**) График предела обнаружения (LOD), (**B**) График Штерна-Фольмера в присутствии ТНТ.

Рисунок 16. (**A**) Тушение флуоресценции **76**, (**Б**) График предела обнаружения (LOD), (**B**) График Штерна-Фольмера в присутствии ТЭН.

Для установления возможного механизма тушения, a именно динамического (выражается в уменьшении времени жизни флуоресценции хемосенсора при росте концентрации тушителя) или статического (за счет образования молекулярного комплекса в основном состоянии), для наиболее перспективного хемосенсора на начальном этапе 76 было исследовано изменение времени жизни флуоресценции в зависимости от концентрации тушителя (в качестве такового был использован ТНТ). В результате была продемонстрировано отсутствие завиимости времени жизни флуоресценции 76 от концентрации ТНТ (Рисунок 17). Полученные данные свидетельствуют об отсутствии динамического тушения флуоресценции хемосенсора 76 в присутствии нитроаналитов.

Рисунок 17. Зависимость времени жизни флуоресценции хемосенсора **76** от концентрации ТНТ

Для подтверждения статического тушения было осуществлено УФтитрование хемосенсора **76** (10⁻⁶M) раствором ТНТ. На Рисунке 18 представлены УФ-спектры хемосенсора **76** в присутствии ТНТ. Очевидно, что с ростом концентрации ТНТ не наблюдается образования молекулярного комплекса в основном состоянии, что выражается в отсутствии пика поглощения комплекса «**76***THT».

Рисунок 18. УФ-титрование хемосенсора **76** (10⁻⁶M) в присутствии ТНТ.

Следовательно, наиболее вероятным механизмом тушения является так называемое псевдо-статическое тушение (англ. false static quenching), когда тушитель находится на периферии хемосенсора, но молекулярного комплекса не образует.

2.4.3. Исследование фотофизических свойств соединений 7а,б в присутствии катионов металлов

В литературе описаны хемосенсоры/лиганды для катионов металлов на основе 1,2,3-триазолов, а также других азолов, которые демонстрируют изменение интенсивности флуоресценции в присутствии различных катионов металлов[142-146].

Исходя из того, что соединения **7а,6** содержат азольные фрагменты, которые могут выступать в качестве лигандов катионов металлов, в рамках работы был исследован флуоресцентный отклик данных бис-азолов на катионы металлов.

Так, были отобраны катионы металлов, наиболее часто исследуемые в качестве объектов для получения комплексов с органическими лигандами, а именно Ni²⁺, Co²⁺, Cu²⁺, Cd²⁺, Zn²⁺, Na, Sn²⁺, Hg²⁺ и Mg²⁺. В результате первичных экспериментов растворах ацетонитрил: вода [90:10 (об. %)] (Рисунок 19) было показано, что присутствие катионов Hg²⁺ (ацетат ртути (II)) вызывает заметное тушение флуоресценции **7а,6** (до 73%) тогда как присутствие других катионов существенных изменений последней не вызывает.

Рисунок 19. Тушение флуоресценции соединений **7а-б** в растворе ацетонитрил: вода [90:10 (об. %)] в присутствии катионов Hg²⁺ по сравнению с катионами других металлов (BL – без добавки аналита).

Далее было проведено флуоресцентное титрование растворов **7а,б** (10⁻ ⁴M) растворами ацетата ртути (II). Результаты титрования представлены ниже (Таблица 9, Рисунок. 20-21)

Таблица 9. Значения констант Штерна-Фольмера сенсоров **7а-б** и пределы обнаружения катиона Hg²⁺.

сенсор	Ksv, M ⁻¹	\mathbb{R}^2	LOD, M
7a	0.771×10^{4}	0.966	2.59×10 ⁻⁶
76	0.155×10^4	0.991	1.86×10 ⁻⁴

Рисунок 20. (А) Флуоресцентное титрование хемосенсора 7а (10⁻⁶М) действием ацетата ртути (II), (Б) График Штерна-Фольмера для хемосенсора 7а в присутствии Hg^{2+.}

Рисунок 21. (А) Флуоресцентное титрование хемосенсора 76 (10⁻⁶М) действием ацетата ртути (II), (Б) График Штерна-Фольмера для хемосенсора 76 в присутствии Hg²⁺.

Очевидно, что оба соединения демонстрируют приемлемые значения констант ассоциации, сопоставимые с описанными в литературе хемосенсорами для распознавания Hg²⁺ [147].

На последнем этапе, для понимания природы механизма тушения было проведено определение времени жизни флуоресценции соединения **7a** в присутствии различных концентраций Hg^{2+} . В результате было установлено, среднее время жизни **7a** остается практически постоянным и не зависит от концентрации Hg^{2+} , что позволило сделать вывод о об отсутствии динамического тушения и, возможно, статической природе тушения (Рисунок 22).

Рисунок 22. Зависимость времени жизни флуоресценции 7а от концентрации Нg²⁺

Для подтверждения статического механизма тушения было проведено УФ-титрование хемосенсора **7a** растворами ацетата ртути (II). В результате, также не фиксировалось образование молекулярного комплекса «**7a***Hg²⁺», что выражалось в отсутствии максимума поглощения такого комплекса в УФспектре (Рисунок 23).

Рисунок 23. УФ-титрование хемосенсора **7**а (10⁻⁶М) в раствором ацетата ртути (II).

Следовательно, соединения **7а,б** выступают как высокочувствительные флуоресцентные «*turn-off*» хемосенсоры для Hg²⁺, а тушение флуоресценции протекает по псевдо-статическому механизму. Наиболее вероятно, это обусловлено особенностями структурной орг анизации хемосенсоров **7а,6**, в растворе.

Таким образом, в рамках данного раздела были исследованы фотофизические свойства соединений **7а,б,** и была продемонстрирован их применимость для "*turn-off*" – обнаружения нитросоединений, включая трудно-обнаруживаемый ТЭН, и катионов Hg²⁺.

2.5. Исследование фотофизических свойств соединений 10а-в

2.5.1. Исследование фотофизических свойств соединений 10а-в в отсутствие аналитов

Подобно вышеописанным хемосенсорам **7а,6** соединения **10а-в** представляют пример бола архитектур, которые отличаются расположением фрагмента флуорофорных фрагментов (фрагментов ПАУ) в 1,2,3-

триазольном цикле. В рамках работы были подробно исследованы фотофизические свойства соединений **10а-в**.

Для регистрации спектров поглощения, испускания и возбуждения были приготовлены растворы хемосенсоров **10а-в** с концентрацией 1.0×10⁻⁵ М чистом ацетонитриле В системах ацетонитрил:вода различным И С соотношением растворителей. Система растворителей была выбрана, исходя строения соединений, содержащих липофильные и гидрофильные ИЗ фрагменты. Концентрация была выбрана, чтобы избежать возможного самотушения соединений из-за формирования межмолекулярных эксимеров [148]. Спектры поглощения и испускания 10а-в представлены на рисунке 24. Фотофизические данные хемосенсоров 10а-в приведены в таблице 10.

Так, на спектрах поглощения соединений **10а-в** зарегистрированных в чистом ацетонитриле (Рисунок 24), наблюдается более размытая вибронная структура пиков (особенно перехода $S_0 \rightarrow S_2$, у которого структурированность вообще отсутствует, т.к. переходы $S_0 \rightarrow S_3$ и $S_0 \rightarrow S_4$ еще сохраняют следы классической вибронной структуры) и их уширение по сравнению с классическим спектром незамещенного пирена [149]. Здесь следует отметить, что спектры поглощения других пиренсодержащих соединений, зарегистрированные в ацетонитриле и описанные в литературе, имеют схожую струцктуру [150-151], поэтому данное явление можно связать исключительно с влиянием полярного растворителя, а не с влиянием структуры соединений.

Рисунок 24. Спектры поглощения (А–В) и испускания (Г–Е) соединений 10а (А,Г), 10б (Б,Д) и 10в (В,Е) зарегистрированные в системах ацетонитрил:вода с различным содержанием компонентов.

Таблица 10. Обобщенные данные фотофизических свойств соединений 10а-в

	Система растворителей (ацетонитрил:вода (об. %))										
продукт	100:0	90:10	80:20	70:30	60:40	50:50	40:60	30:70	20:80	10:90	1:99
	λ _{Abs} , HM										
10a	270,	270,	270,	270,	270,	270,	270,	270,	201	286, 353	275,
	280,	280,	280,	280,	280,	280,	280,	280,	350 ²⁰¹		286,
	348	348	348	348	348	348	345	343			352
		$\lambda_{\rm Em},{ m HM}$									
	385,	387,	386,	386,	385,	384,	384,	384,	385,	384,	384,
	494	492	494	495	495	494	497	496	497	493	487
						λabs, HM	1				
	270	270	270	269	269	270	270	270	285, 354	276, 286, 350	276,
	270,	270,	270,	20), 279	20), 279	270, 280	270,	270,			286,
	349	200, 349	349	350	350	200, 349	349	348			355,
106	515	515	515	550	550	515	515	510		550	371
		λem, HM									
	386,	385,	385,	385,	386,	386,	385,	385,	384,	385	382
	404,	404,	404,	404,	404,	404,	404,	404,	404,	488	489
	493	494	494	494	494	497	498	499	500	100	107
	λabs, HM										
								237,	237,	247.	249.
10в	270,	269,	269,	269,	269,	269,	269,	244,	244,	275.	275.
	279,	279,	279,	279,	279,	279,	279,	269,	270,	286.	286.
	349	349	349	349	348	349	348	279,	280,	351	350
								347	352	001	
	λ _{Em} , ΗΜ										
	386,	386,	386,	385,	385,	385,	385,	386,	386,	384,	384,
	405,	405,	405,	405,	405,	405,	405,	403,	403,	403,	402,
	492	494	494	494	495	496	496	497	497	490	488

Следует отметить, что ранее нашей группой для бис(ПАУ) пентанов [97-98] было показано влияние растворителя на структуру спектров, когда для
системы ацетонитрил:вода [50:50 (об. %)] у описанных выше систем появлялись изменения в структуре спектров поглощения в виде еще большего уширения и размытия пиков, батохромного сдвига, а также уменьшением соотношения пик-основание ("peak-to-valley ratio"), вызванные агрегацией [152-155]. Однако, для соединений **10а-в** лишь в системе ацетонитрил:вода [20:80 (об. %)] возникали все вышеперечисленные признаки агрегации (Рисунок 24А-В). Также происходит размытие вибронной структуры и переходов $S_0 \rightarrow S_3$ и $S_0 \rightarrow S_4$. Примечательно, что в системах с содержанием ацетонитрила менее 30% поглощение наблюдается и при длинах волн от 390 нм и больше, где сам пирен не поглощает – это свидетельствует о формировании димеров пирена [156]. Это особенно хорошо заметно на совмещенных нормализованных спектрах поглощения и испускания пиренсодержащего соединения **106** в области электронного перехода $S_0 \rightarrow S_1 (\lambda_{Abs} \sim$ 380-390 нм), который у пирена запрещен, поэтому имеет низкую интенсивность [149]. В чистом ацетонитриле площадь перекрывания спектров поглощения и испускания соединения 106 практически равна нулю, как на рисунке 25А (область перекрывания выделена голубой показано окружностью), в то время как в системе ацетонитрил:вода [90:10 (об. %)] наблюдается перекрывание соответствующих значительное спектров (Рисунок 25Б, перекрывание отмечено голубой окружностью).

Рисунок 25. Нормализованные спектры поглощения и испускания сенсора **106** (10⁻⁵М) в чистом ацетонитриле (**A**) и в системе ацетонитрил: вода [90:10 (об. %)] (**Б**).

2.5.2. Исследование фотофизических свойств соединений 10а-в в присутствии нитросоединений

В ранних работах нашего коллектива была показана перспективность применения ПАУ-замещенных молекул типа бола, в том числе пиренсодержащих, соединенных фрагментами алканов и ПЭГ, в качестве хемосенсоров для обнаружения нитроаналитов. Обнаружение нитросоединений происходило посредством и тушения эксимерной эмиссии.

В связи с тем, что соединения **10а-в** обладают подобной структурой, т.е. содержат фрагменты пирена, соединенные линкерами на основе ПЭГ в рамках работы были исследованы их фотофизические свойства в присутствии нитроаналитов.

Для этого было осуществлено флуориметрическое титрование растворов **10а-в** в системе ацетонитрил:вода [90:10 (об. %)] (1×10⁻⁶ M) растворами нитросодержащих аналитов (нитроароматическими – ДНТ, ТНТ – и нитроалифатическими – ТЭН – взрывчатыми веществами, а также для маркирующей добавки для взрывчатых смесей, производимых в США, 2,3диметил-2,3-динитробутана (ДМДНБ)). Система ацетонитрил:вода [90:10 (об. %)] была выбрана, исходя из того, что в данном растворителе наблюдалось наиболее эффективное формирование агрегатов димеров пирена, проявляющих эксимерную эмиссию (Рисунок 24, Рисунок 26).

Рисунок 26. Образование аггрегатов типа бола с эксимерной эмиссией и тушение эксимерной/мономерной эмиссии в присутствии аналитовтушителей

В результате было обнаружено, что в спектрах флуоресценции **10а-в** в отсутствие нитроаналитов наблюдалась эксимерная эмиссия в виде типичных широких полос без вибронной структуры в зеленой области спектра (Рисунок 24). Исходя из ранее полученных ранее литературных данных и полученных экспериментальных данных, было предположено образование димеров структуры, показанной на рисунке 26. Причем ранее было показано, что тушение флуоресценции таких агрегатов в присутствии нитроаналитов пропекает более эффективно, чем в случае мономеров пирена.

По результатам проведенного флуориметрического титрования соединений **10а-в** растворами вышеупомянутых нитроаналитов были построены графики тушения флуоресценции и определены константы Штерна-Фольмера (Рисунок 27).

Рисунок 27. Графики тушения флуоресценции соединений **10a** (**A**) (10⁻⁶ M), **106** (**Б**) (10⁻⁶M), **10в** (**B**) (10⁻⁶M) при добавлении ТНТ; вставки – графики тушения флуоресцении Штерна-Фольмера соответствующих соединенийхемосенсоров при добавлении ТНТ.

Согласно полученным данным, графики Штерна-Фольмера имеют высокую линейность (R²>0.99), что говорит о хорошем соответствии статическому уравнению Штерна-Фольмера (1). полученных данных Рассчитанные значения констант тушения флуоресценции Штерна-Фольмера достигали 2.56-13.45×10⁶ М⁻¹, а максимальное значения наблюдалось для соединения **106** в условиях титровании ТНТ и составило 1.34×10^7 M⁻¹, а предел обнаружения составил 1.72 частиц на миллиард (Таблица 11), что значительно превосходит литературные данные. Следует также отметить чрезвычайно высокие константы тушения для трудно-обнаруживаемого ТЭН (2.42-5.31×10⁶ М⁻¹), а также, что наиболее важно, для ДМДНБ (3.03-12.46×10⁶ M⁻¹). Несмотря на высокую линейность графиков Штерна-Фольмера и, соответственно, хорошее соответствие статическому уравнению (1), из предыдущих исследований соединений с аналогичной структурой известно, что механизм может быть не истинно статическим, т.е. сопровождающимся изменениями в спектрах поглощения, выражающимся в появлении полос поглощения, принадлежащим формирующимся в основном состоянии неэмиссионным комплексам «тушитель:хемосенсор», а псевдостатическим,

при котором образования подобных комплексов не происходит, а также механизм тушения может быть смешанным, при котором дополнительно с (псевдо)статическим тушением происходит и динамическое, выражающееся в уменьшении времени жизни флуоресценции в присутствии тушителя [157]. Поэтому, для более подробного исследования механизма тушения для соединения **106** были дополнительно проведены титрования с временным разрешением, и были дополнительно зарегистрированы спектры поглощения и спектры испускания в присутствии разных концентраций ТНТ (Рисунок 28).

Вклад динамического тушения оценивался посредством соответствующего уравнения Штерна-Фольмера (2):

$$\frac{I_0}{I} = 1 + k_q \tau_0 \times [Q] \tag{2}$$

где I₀ и I - интенсивности флуоресценции «статических» эксимеров в отсутствии и в присутствии тушителя соответственно; k_q - константа скорости тушения; τ_0 - время затухания флуоресценции в отсутствие тушителя; [Q] - концентрация тушителя.

Очевидно, что при увеличении концентрации ТНТ имеет место уменьшение времени жизни флуоресценции **106**, тогда как в УФ-спектре не наблюдается образования полос поглощения комплекса «ТНТ***106**». При этом график динамического тушения Штерна-Фольмера подобно аналогичному графику статического тушения отличается высокой линейностью (\mathbb{R}^2 >0.98). Рассчитанное значение динамической константы тушения Штерна-Фольмера составило 5.09×10¹⁴ M⁻¹×c⁻¹ (Таблица 11).

Рисунок 28. Наложенные спектры поглощения хемосенсора **106** (10⁻⁵М) в присутствии разных концентраций ТНТ (**A**); спектр тушения флуоресценции соединения **106** с временным разрешением в присутствии ТНТ (**Б**); график Штерна-Вольмера динамического тушения флуоресценции хемосенсора **106** в присутствии ТНТ (**B**).

Из вышеизложенного можно предположить, что механизм тушения хемосенсоров **10а-в** носит смешанный (статический и динамический) характер, что согласуется с уже упомянутыми ранее аналогичными исследованиями нашей научной группы хемсенсоров подобной структуры, а также литературными данными [158-161].

Таблица 11. Сводные данные по результатам тушения флуоресценции хемосенсоров **10а-в** в присутствии нитроаналитов

Сенсор	ДНТ	ТНТ	ТЭН	ДМДНБ	
10a	K _{SV} ^{ДHT} , M ⁻¹	K _{SV} ^{THT} , M ⁻¹	K _{SV} ^{TЭH} , M ⁻¹	К _{SV} ^{ДМДНБ} , М ⁻¹	
	Статическое тушение ×106, М-1				
	11.58	11.56	5.61	12.46	
	Предел обнаружения, частей на миллиард 1				
	1.00	1.64	0.88	0.65	
	Эффективность тушения, %				
	28.49	26.26	8.32	28.71	
105	K _{SV} ^{ДHT} , M ⁻¹	K _{SV} ^{THT} , M ⁻¹	K _{SV} ^{TЭH} , M ⁻¹	К _{SV} ^{ДМДНБ} , М ⁻¹	
	Статическое тушение ×10 ⁶ , М ⁻¹				
	5.55	13.45	5.31	5.22	
	Динамическое тушение, М ⁻¹ ×с ⁻¹				
	_	5.09×10 ¹⁴	_	_	
	Предел обнаружения, частей на миллиард ⁻¹				
	0.76	1.72	0.52	0.70	
	Эффективность тушения, %				
	16.23	38.24	14.91	15.55	
10в	K _{SV} ^{ДHT} , M ⁻¹	K _{SV} ^{THT} , M ⁻¹	K _{SV} ^{TЭH} , M ⁻¹	K _{sv} ^{дмднБ} , М ⁻¹	
	Статическое тушение ×106, М-1				

2.56	4.84	2.42	3.03	
Предел обнаружения, частей на миллиард ⁻¹				
0.64	1.23	1.21	0.43	
Эффективность тушения, %				
7.92	12.95	7.81	6.52	

2.5.3. Исследование фотофизических свойств соединений 10а-в в присутствии катионов металлов

Как и в случае 7а-б для соединений 10а-в был исследован сенсорный отклик на катионы металлов. Исходя из высокой эффективности тушения эксимерной эмиссии 10а-в в системе ацетонитрил:вода [90:10 (об. %)] в присутствии нитросоединений, аналогичная система была использована для среды для обнаружения катионов металлов [162], Однако в первичных экспериментах с катионами металлов соединения 10а-в не показали сенсорного отклика. При изменении системы растворителей на ацетонитрил:вода [90:10 (об. %)] было зафиксировано тушение эксимерной эмиссии в присутствии Hg^{2+} . На рисунке 30 представлен сенсорный отклик **106** на катионы металлов.

Для количественной оценки отклика соединений **10а-в** на Hg²⁺ было проведено флуориметрическое титрование аналогичным упоминаемому выше способом – к водным растворам хемосенсоров с концентрацией (10⁻⁶ M) в системе ацетонитрил:вода [90:10 (об. %)] добавляли 15 аликовот объемом 10 мкл водного раствора ацетата ртути (II) с концентрацией (2×10⁻⁴ M) – с последующим расчетом констант тушения флуоресценции Штерна-Фольмера согласно уравнению (1) (Рисунок 31).

Рисунок 29. (**A**) Фотография растворов сенсора **106** (10⁻⁶ M) в системе ацетонитрил:вода [90:10 (об. %)] без добавления катионов (blank) и в присутствии различных катионов; (**Б**) слева концентрированный раствор ацетата ртути (II) в воде, справа – раствор сенсора **106** в системе ацетонитрил:вода [90:10 (об. %)] после добавления катионов ртути Hg²⁺.

Рисунок 30. Фотография эмиссии растворов сенсора 106 (10^{-6} М) при облучении под УФ-лампой (λ Ex = 365 нм) в присутствии различных катионов металлов в системе ацетонитрил:вода [90:10 (об. %)].

Рисунок 31. Графики тушения испускания соединений 10а (А), 106 (Б), 10в (В) при добавлении ацетата ртути (II); вставки – графики тушения флуоресцении Штерна-Фольмера соответствующих соединенийхемосенсоров.

Согласно экспериментальным данным, **10а-в** проявили сенсорный отклик на присутствие Hg^{2+} посредством тушения флуоресценции. Однако, наибольший отклик демонстрировало соединение **106** со значением константы тушения Штерна-Фольмера Ksv = 2.34×10^5 M⁻¹ (Таблица 12). При этом минимальное значение предела обнаружения 0.73 (частиц на миллион) демонстрировало соединение **10а** (Таблица 12).

Таблица 12. Сводные данные по результатам тушения флуоресценции хемосенсоров **10а-в** в присутствии Hg²⁺

Продукт	Ksv ^{Hg2+} ×10 ⁵ , M ⁻¹	Предел обнаружения, миллион ⁻¹	Эффективность тушения, %
10a	0.73	0.73	29.57
105	2.34	0.89	56.89
10в	0.23	0.94	13.15

Таким образом, в рамках данного раздела были исследованы фотофизические свойства соединений **10а-в**, и была продемонстрирована их применимость для "*turn-off*"- обнаружения нитросоединений, включая трудно-обнаруживаемый ТЭН, маркирующую добавку ДМДНБ, а также катионов Hg²⁺.

3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Mexанохимические реакции проводили в шаровой мельнице Retsch РМ100 с использованием сосуда из нержавеющей стали объемом 25 мл с 4 мелющими шарами из нержавеющей стали диаметром 10 мм при 500 об/мин. Контроль за ходом реакций и чистотой продуктов осуществлялся методом TCX на пластинах MACHEREY-NAGEL DC-Fertigfolien Alugram ALOX N/UV254 (Германия). Продукты очищались флеш-хроматографией на окиси алюминия Acros Organics, Aluminium oxide, for chromatography, neutral, Brockmann I, 50-200 µm, 60А (Бельгия). Спектры ¹Н ЯМР были записаны на спектрометре Bruker AVANCE II (400.13 МГц) (США) с внутренним стандартом ТМС. Масс-спектры записаны на спектрометре серии Shimadzu GCMS-QP2010 Ultra (Япония), способ ионизации – электронный удар. УФ/вид. спектры поглощения были зарегистрированы на спектрофотометрах Perkin-Elmer Lambda 45 (США) и Shimadzu UV-1800 (Япония). Спектры испускания и возбуждения были зарегистрированы на спектрофлуориметре Horiba-FluoroMax-4 (США). Графическая обработка спектров поглощения, испускания и возбуждения производилась с помощью программного обеспечения OriginPro 2015 (64-bit) b9.2.196 (OriginLab, США); нормирование всех спектров проводилось в режиме Overlay автоматически посредством опции "Normalize columns" с помощью того же программного обеспечения. Абсолютные флуорофоров были рассчитаны квантовые выходы С использованием интегрирующей сферы Quanta- φ прибора Horiba-Fluoromax-4 (США). Измерение времени жизни флуоресценции сенсоров было выполнено на приборе Horiba FluoroMax-4 (США) с использованием метода TCSPC. Эксперименты по флуоресцентному титрованию проводили с использованием спектрофлуориметра Horiba-Fluoromax-4 (США) методом Single Point. фотометрическому Эксперименты по титрованию проводили С использованием спектрофотометра Shimadzu UV-1800 (Япония).

Для приготовления растворов флуорофоров для регистрации спектров поглощения, испускания и возбуждения и флуориметрического титрования, а

также для приготовления растворов нитроаналитов использовались ацетонитрил, тетрагидрофуран, дихлорметан, метанол, циклогексан и ДМСО степени чистоты «для УФ, ГПХ, ВЭЖХ».

Синтез 2-(4-азидофенил)-5-фенил-1,3,4-оксадиазолов (2а,б).

²а, б

Общая процедура. Соответствующий 4-(5арил-1,3,4-оксадиазол-2-ил)анилин (1 экв.) и *пара*-толуолсульфокислоту (1,05 экв.) растворяли в уксусной кислоте при комнатной

температуре, после чего по каплям добавляли изопропилнитрит (1,50 экв.) одной порцией. После перемешивания в течение 30 мин при комнатной температуре к реакционной массе по каплям добавляли водный раствор азида натрия (1,50 экв.), регулируя скорость приливания интенсивностью газовыделения. После прекращения газовыделения (диазониевая проба отрицательна) полученную суспензию отфильтровывали и осадок промывали водой, после чего полученный продукт сушили на воздухе в течение 24 часов.

2а Выход 240 мг, 92%. ¹Н ЯМР (400 мГц, ДМСО-d₆, δ, м.д.): 7.37 (м, 2Н, аром.); 7.65 (м, 3H, Ph), 8.15 (м, 4H, аром.). ¹³С ЯМР (100 мГц, ДМСО-d₆, δ, м.д.): 119.7, 120, 123.1, 126.4, 128.2, 129.1, 132, 143, 163.3, 164. EI-MS, m/z (I, %): 263 (11). Для С₁₄Н₉N₅O расч. С 63.87%, Н 4.82%, N 18.61%; найдено С 63.76%, Н 3.91%, N 18.54%.

26 Выход 563 мг, 100%. ¹Н ЯМР (400 мГц, ДМСО-d₆, δ, м.д.): 3.87 (3H, с, С<u>Н</u>₃O-C₆H₄), 7.17 (м, 2H, CH₃O- C₆<u>H</u>₄), 7.36 (м, 2H, CH₃O- C₆H₄), 8.07 (м, 2H, C₆H₄), 8.13 (м, 2H, C₆H₄). ¹³С ЯМР (100 мГц, ДМСО-d₆, δ, м.д.): 115, 116, 116.3, 121, 121.2, 129, 129.2, 143.4, 163, 164, 164.4. EI-MS, m/z (I, %): 293 (6). Для C₁₅H₁₁N₅O расч. С 61.43%, H 3.78%, N 23.88%; найдено С 61.34%, H 3.88%, N 23.80%.

Синтез замещенных 1,2,3-триазолов 3-14

Процедура А. В колбе на 50 мл последовательно растворяли в воде (3 мл) гидроксид натрия (0.40 экв), аскорбиновую кислоту (0.50 экв) и пентагидрат сульфата меди (II) (0.20 экв). К полученной суспензии молочного цвета добавляют раствор соответствующего этинильного производного (1 экв.) и азидопроизводного (1,05 экв.) в ТГФ (6 мл). Колбу продували аргоном и перемешивали в атмосфере аргона при 70 °C в течение 16 часов. Реакционную массу разбавляют 10% водным раствором NH₄OH (10 мл), выпавший осадок фильтровали. Полученный продукт сушили на воздухе в течение 12 часов.

Процедура Б. В колбу на 50 мл последовательно добавляли соответствующий 2-(4-азидофенил)-5-арил-1,3,4-оксадиазол (1 экв.), бромид меди (I) (0.20 экв.) в присутствии триэтиламина (2 экв.), 1-этинилпирена (1,05 экв.) добавляли к 5 мл ДМФ. нагревали в течение 10 часов при 100 °C в атмосфере аргона. После завершения реакции (контроль TCX) реакционную массу разбавляли 10% водным раствором NH4OH (10 мл). Полученную суспензию фильтровали. Полученный продукт сушили на воздухе в течение 12 часов.

Процедура В. В колбе Шленка на 25 мл в 5 мл раствора ТГФ:H₂O (4:1) растворяли 2-(4-азидофенил)-5-арил-1,3,4-оксадиазол (2,20 экв.), йодид меди(I) (0,20 экв.), компонент этинилового соединения (1 экв.) растворяли. Полученную смесь нагревали в течение 10 часов при 65 °C в атмосфере аргона. После завершения реакции (контроль TCX) реакционную смесь разбавляли 10% водным раствором NH₄OH (10 мл) и полученную суспензию фильтровали. Полученный продукт сушили на воздухе в течение 12 часов.

Процедура Г. Реакцию проводили аналогично процедуре **А** в присутствии двойной загрузки медного катализатора (0,40 экв) в растворе ДМФА в атмосфере аргона при 55 °C в течение 16 часов.

Процедура Д. 1-Этинилпирен (2.0 экв) и соответствующее азидопроизводное (1.05 экв), 10 мг абразива (Силикагель Kiselgel 60 0.04-0.063 мм Macherey-Nagel) перемешивали в стальном стакане с пятью медными шарами при в шаровой мельнице при 500 об/мин в течение 4 часов. Контроль протекания

реакции проводили по TCX. По завершении реакции продукт реакции экстрагировали CH₂Cl₂ (3×25 мл), упарили в вакууме. Остаток хроматографировали (силикагель, примеси смывали толуолом, продукт – этилацетатом). Фракцию, содержащую продукт упаривали в вакууме.

2-Фенил-5-(4-(4-фенил-1Н-1,2,3-триазол-1-ил)фенил)-1,3,4-оксадиазол (За) Процедура А. Выход 96%. ¹Н ЯМР (400 мГц, ДМСО-d₆, δ, м.д.): 7.39 (м, 1Н, Рh),

7.50 (м, 2H, Ph), 7.65 (м, 3H, Ph), 7.97 (м, 2H, Ph), 8.17 (м, 2H, Ph), 8.25 (д, 2H, $J^3 = 8.53$ Hz, Ph), 8.38 (д, 2H, $J^3 = 8.53$ Hz, Ph). ¹³C ЯМР (100 мГц, ДМСО-d₆, δ , м.д.): 30.3 , 119.3 , 120.3 , 123.0 , 125.2 , 126.5 , 128.1 , 128.2 , 129 , 129.1 , 130 , 132 , 139 , 147.4 , 163.1 , 164.1 . EI-MS, m/z (I, %): 365 (1). Для C₂₂H₁₅N₅O расч. C 72.32%, H 4.14%, N 19.17%; найдено C 72.21%, H 4.24%, N 19.09%.

2-(4-(4-(Нафталин-1-ил)-1Н-1,2,3-триазол-1-ил)фенил)-5-фенил-1,3,4-оксадиазол (3б) Процедура А. Выход 200 мг, 73%. ¹Н ЯМР (400 мГц, ДМСО-d₆, δ, м.д.): 7.58- 7.72 (м, 5Н, C₆H₅), 7.58- 7.72 (м, 1Н, C₁₀H₇), 7.91 (м, 1Н,

С₁₀H₇), 8.05 (м, 2H, C₁₀H₇), 8.19 (м, 2H, C₁₀H₇), 8.30- 8.51 (м, 4H, C₆H₄), 8.58 (м, 1H, C₁₀H₇), 9.45 (с, 1H, C₂N₃H). ¹³С ЯМР (100 мГц, ДМСО-d₆, δ , м.д.): 60.1 , 120.5 , 122.1 , 123.1 , 125.2 , 125.3 , 126.1 , 126.6 , 126.6 , 127.1 , 128.2 , 128.3 , 128.8 , 129.2 , 128.8 , 131.9 , 133.3 , 138.0 , 138.1 , 146.7 , 163.1 , 164.1 . EI-MS, m/z (I, %): 415 (1). Для C₂₆H₁₇N₅O расч. С 75.17%, H 4.12%, N 16.86%; найдено С 75.08%, H 4.21%, N 16.79%.

2-Фенил-5-(4-(4-(пирен-1-ил)-1H-1,2,3триазол-1-ил)фенил)-1,3,4-оксадиазол (3в) Процедура Б. Выход 158 мг, 85%. ¹Н ЯМР (400 мГц, ДМСО-d₆, δ, м.д.): 7.65(м, 3H, Ph), 8.06- 8.50 (м, 14H, Ph + Pyr + C₂N₃H₄), 8.96 (д, 1H, Pyr), 9.58 (с, 1H, C₂N₃H). ¹³С ЯМР

(100 мГц, ДМСО-d₆, δ , м.д.): 121.2 , 122.9 , 123.4 , 123.5 , 124.0 , 124.4 , 124.7 , 125.0 ,125.3 , 125.5 , 125.8 , 126.7 , 126.8 , 127.0 , 127.4 , 127.5 , 127.9 , 128.1 ,128.4 , 128.6 , 129.6 , 130.5 , 131.1 , 132.3 , 139.0 , 147.6 , 163.5 , 164.4 . EI-MS, m/z (I, %): 489 (3). Для $C_{32}H_{19}N_5O$ расч. С 78.51%, Н 3.91%, N 14.31%; найдено С 78.40%, Н 3.100%, N 14.23%.

2-Фенил-5-(4-(4-(трифенилен-2-ил)-1*H***-1,2,3-триазол-1-ил)фенил)-1,3,4оксадиазол (3г)** Процедура **Б**. Выход 138 мг, 70%. ¹Н ЯМР (400 мГц, ДМСО-d₆, δ, м.д.), м.д.: 7.57- 7.87 (м, 7H, Ph+ C₁₈H₁₁), 8.10 - 8.46 (м, 7H, Ph+

С₆H₄),8.88 (м, 5H, С₁₈H₁₁), 9.31 (д, 1H, C₂N₃H), 9.72 (д, 1H, C₂N₃H). ¹³С ЯМР (100 мГц, ДМСО-d₆, δ, м.д.): 120.1 , 120.2 , 120.5 , 123.3 , 123.5 , 124 , 124.5 , 125 , 126.6 , 128 , 128.1 , 128.4 , 129 , 129.1 , 129.2 , 129.3 , 129.5 , 130 , 130.2 , 131.1 , 132.1 , 139 , 148 , 163.3 , 164.3 . EI-MS, m/z (I, %): 515 (1). Для С₃₄H₂₁N₅O расч. С 79.21%, H 4.11%, N 13.58%; найдено С 79.10%, H 4.20%, N 13.51%.

2-(4-Метоксифенил)-5-(4-(4-фенил-1*H*-1,2,3-триазол-1-ил)фенил)-1,3,4-

оксадиазол (3д) Процедура Б. Выход 133 мг, 99%. ¹Н ЯМР (400 мГц, ДМСО-d₆, δ,

м.д.): 3.91 (с, 3H, CH₃O- C₆H₄), 7.13 (м, 2H, CH₃O- C₆H₄), 7.60 (м, 3H, C₁₀H₇), 7.88 (м, 1H, C₁₀H₇), 7.98 (м, 2H, C₁₀H₇), 8.09 (м, 2H, CH₃O- C₆H₄), 8.35 (м, 4H,

С₆H₄), 8.59 (м, 1H, C₁₀H₇), 9.36 (с, 1H, C₂N₃H). ¹³С ЯМР (100 мГц, ДМСО-d₆, δ, м.д.): 55.3 ,115 , 115.35 ,120.5 ,122.0 , 123.1 , 125.2 , 125.3 ,126.0 , 127 , 127.0 , 128.0 , 128.2 , 128.4 , 129 , 130.0 , 134 , 138.4 , 147 , 162.0 , 163 , 164.0 . EI-MS, m/z (I, %): 395 (1). Для C₂₃H₁₇N₅O расч. С 69.86%, H 4.33%, N 17.71%; найдено С 69.86%, H 4.33%, N 17.71%.

2-(4-Метоксифенил)-5-(4-(4-(нафталин-1-ил)-1*H*-1,2,3-триазол-1-ил)фенил)1,3,4-оксадиазол (3е), Процедура Б. Выход 122 мг, 80%. ¹Н ЯМР (400 мГц, ДМСО-d₆, δ, м.д.): 3.91 (с, 3H, CH₃O-C₆H₄),

(7.13 м, 2H, CH₃O-C₆<u>H</u>₄), 7.60 (м, 3H, C₁₀H₇), 7.88 (м, 1H, C₁₀H₇), 7.98 (м, 2H, C₁₀H₇), 8.09 (м, 2H, CH₃O- C₆H₄), 8.35 (м, 4H, C₆H₄), 8.59 (м, 1H, C₁₀H₇), 9.36 (с, 1H, C₂N₃H). ¹³C ЯМР (100 мГц, ДМСО-d₆, δ, м.д.): 55.3 ,115 , 115.35 ,120.5 ,122.0 , 123.1 , 125.2 , 125.3 ,126.0 , 127 , 127.0 , 128.0 , 128.2 , 128.4 , 129 , 130.0 , 134 , 138.4 , 147 , 162.0 , 163 , 164.0 . EI-MS, m/z (I, %): [M-N₂]⁺ =417 (18). Для C₂₇H₁₉N₅O расч. С 72.79%, H 4.3%, N 15.72%; найдено С 72.80%, H 4.39%, N 15.66%.

2-(4-Метоксифенил)-5-(4-(4-(пирен-1-ил)-1*H***-1,2,3-триазол-1-ил)фенил)-1,3,4оксадиазол (3ж) Процедура Б. Выход 143 мг, 50%. ¹Н ЯМР (400 мГц, ДМСО-d₆, δ, м.д.): 3.91 (с, 3Н, С<u>Н</u>₃О-С₆Н₄), 7.14 (м, 2H, CH₃O- C₆H₄), 8.07-8.14 (м, 3H, Ph +**

Руг + C₂N₃H₄), 8.16-8.32 (м, 5H, Ph+ Pyr + C₂N₃H₄), 8.34-8.46 (м, 4H, C₆H₄), 8.34-8.46 (м, 2H, CH₃O-C₆<u>H</u>₄),8.96 (д, 1H, Pyr), 9.55 (с, 1H, C₂N₃H). ¹³C ЯМР (100 мГц, ДМСО-d₆, δ , м.д.): 55.5 , 95.3 , 115 , 115.3 , 115.5 , 121 , 123 , 123.4 ,124 , 124.2 , 124.5 , 125 , 125.1 , 125.3 , 126 , 126.5 , 127.3 , 128 , 128.3 , 129 , 130.3 , 131 ,138 ,139 ,147.4 , 162.2 , 163 , 164.2. EI-MS, m/z (I, %): [M-N₂]⁺ =491 (12). Для С₃₃H₂₁N₅O₂ расч. С 76.29%, Н 4.07%, N 13.48%; найдено С 76.20%, Н 4.16%, N 13.41%.

1,12-Бис(1-(4-(5-фенил-1,3,4-оксадиазол-2ил)фенил)-1*H*-1,2,3-триазол-

4-ил)-2,5, 8,11-тетраоксадодекан (7а) Процедура В. Выход 103 мг, 30%. ¹Н ЯМР (400 мГц, CDCl₃, δ, м.д.): 3.71 (с, 4H, 2×CH₂O), 3.73- 3.76 (м, 4H, 2×CH₂O), 3.77- 3.81 (м, 4H, 2×CH₂O), 4.82 (с, 4H, 2×CH₂), 7.54-7.59 (м, 6H, C₆H₅), 7.96 (м, 4H, C₆H₄), 8.15 (м, 4H, C₆H₅), 8.21 (с, 2H, C₂N₃H), 8.28 (м, 4H, C₆H₄). ¹³C ЯМР (100 мГц, ДМСО-d₆, δ, м.д.): 63.2 , 69.0 , 69.6 , 70 , 120.3 , 122 , 123 , 123.1 , 126.6 , 128.1 , 129.2 , 132 , 138.5 , 145.4 , 163 , 164 . EI-MS, m/z (I, %): 753 (1). Найдено, %: C 63.73, H 4.95, N 18.54; вычислено. Для C₄₀H₃₆N₁₀O₆, %: C 63.82, H 4.82, N, 18.61. Для C₄₀H₃₆N₁₀O₆ расч. C 63.82%, H 4.82%, N 18.61%; найдено C 63.73%, H 4.95%, N 18.54%.

1,15-Бис(1-(4-(5-фенил-

1,3,4-оксадиазол-2-

ил)фенил)-1Н-1,2,3-триазол-

4-ил)-2,5, 8,11,14-пентаоксапентадекан (76) Процедура В. Выход 311 мг, 75%. ¹Н ЯМР (400 мГц, CDCl₃, δ, м.д.): 3.69 (с, 8H, 4×CH₂O), 3.70- 3.73 (м, 4H, 2×CH₂O), 3.75- 3.79 (м, 4H, 2×CH₂O), 4.80 (с, 4H, 2×CH₂), 7.54-7.59 (м, 6H, C₆H₅), 7.97 (м, 4H, C₆H₄), 8.13- 8.18 (м, 4H, C₆H₅), 8.23 (с, 2H, C₂N₃H), 8.29 (м, 4H, C₆H₄). ¹³C ЯМР (100 мГц, ДМСО-d₆, δ, м.д.): 64 , 70 , 70.2 , 70.3 , 121 , 122.6 , 123.6 , 124 , 127.2 , 129 , 130 , 132.5 , 139.3 , 146 , 164 , 165 . EI-MS, m/z (I, %): [M - C₁₇H₁₂N₅O₂]⁺ = 318 (6). Найдено, %: C 63.24, H 5.10, N 17.69; вычислено для C₄₂H₄₀N₁₀O₇, %: C 63.31, H 5.06, N 17.58. Для C₄₂H₄₀N₁₀O₇ расч. C 63.31%, H 5.06%, N 17.58%; найдено C 63.24%, H 5.10%, N 17.69%.

1,2-Бис(2-(4-(пирен-1ил)1H1,2,3триазол-1ил)этокси)этан (10а)

Процедура: Г. Выход 131 мг, 40%; Д. Выход (55 мг, 59% при использовании порошка силикагель с медными шарами), (85 мг, 91% при использовании порошка бронзы с медными шарами), (78 мг, 84% при использовании порошка бронзы с стальными шарами). ¹Н ЯМР (400 мГц, ДМСО-d₆, δ, м.д.): 3.67(с, 4H, 2×CH₂O), 3.98 (т, 4H, 2×CH₂O), 4.67(с, 4H, 2×CH₂O), 8.03-8.33 (м, 16H, Руг), 8.66 (м, 2H, Руг), 8.81 (с, 2H, С₂N₃H). ¹³С ЯМР (100 мГц, ДМСО-d₆, δ , м.д.): 50.2, 60.4, 69.3, 70.3, 124.5, 124.6, 124.9, 125, 125.3, 126, 127, 127.2, 127.7, 128, 128.3, 130.7, 131.1, 131.2. EI-MS, m/z (I, %): 653 (1). Для C₄₂H₃₂N₆O₅ расч. С 77.28%, Н 4.94%, N 12.87%; найдено С 77.17%, Н 4.104%, N 12.80%.

4-(Пирен-1-ил)-1-(3-(2-(2-(2-(4-(пирен-1-ил)-1Н-1,2,3-триазол-1-ил)этокси))этокси)этокси) пропил)-1*H*-1,2,3-триазол(10б)

70%, Д. Выход (78 мг, 78% при использовании порошка силикагель с медными шарами), (65 мг, 65% при использовании порошка бронзы с медными шарами), (90 мг, 90% при использовании порошка бронзы с стальными шарами). ¹Н ЯМР (400 мГц, ДМСО-d₆, δ, м.д.): 3.48 (м, 4H, 2×CH₂O), 3.56(м, 4H, 2×CH₂O), 3.70 (т, 4H, 2×CH₂O), 4.46(т, 4H, 2×CH₂O), 7.95-8.09 (м, 10H, Руг), 8.12-8.22 (м, 8H, руг), 8.65 (с, 2H,C₂N₃H). ¹³С ЯМР (100 мГц, ДМСО-d₆, δ, м.д.): 124.1, 124.7, 125, 125.1, 125.2, 125.3, 125.4, 126.0, 127.1, 127.3, 128, 128.1, 128.2, 128.4, 129, 131, 131.1, 131.4, 147.1. EI-MS, m/z (I, %): [M- Pyr-H2]⁺ =507, (0,6). Для C₄₅H₃₈N₆O₃ расч. С 76.04%, Н 5.39%, N 11.82%; найдено С 75.92%, Н 5.48%, N 11.75%.

Процедура Г. Выход 108 мг, 70%, **Процедура** Д. Выход (68 мг, 68% при использовании порошка силикагель с медными шарами), (75 мг, 75% при использовании порошка бронзы с медными шарами), (87 мг, 87% при использовании порошка бронзы со стальными шарами). ¹Н ЯМР (400 мГц, ДМСО-d₆, δ, м.д.): 3.32-344 (м, 12H, 2×CH₂O), 3.78(м, 4H, 2×CH₂O), 4.57 (т, 4H, 2×CH₂O), 8.01 (м, 2H, Pyr), 8.04-8.11 (м, 8H, pyr), 8.14-8.20 (м, 6H, pyr), 8.23 (м, 2H, pyr), 8.70 (с,2H, C₂N₃H). ¹³C ЯМР (100 мГц, ДМСО-d₆, δ, м.д.): 69(С), 69.1, 69.2,123.1, 123.5, 123.7, 124, 124.1, 124.2, 124.4, 125, 126, 126.2, 126.6, 127, 127.3, 130, 130.1, 130.2, 146. EI-MS, m/z (I, %): 740 (1). Для C₄₆H₄₀N₆O₄ расч. С 74.58%, H 5.44%, N 11.34%; найдено С 74.58%, H 5.44%, N 11.34%.

1,2-Бис(2-(4-(трифенилен-2-ил)-1*H*-

1,2,3-триазол-1-ил)этокси)этан (13а) Процедура: **Г.** Выход 48 мг, 50%.

¹Н ЯМР (400 мГц, ДМСО-d₆, δ, м.д.): 3.61(с, 4H, 2×CH₂O), 3.92 (т, 4H, 2×CH₂O), 4.61(с, 4H, 2×CH₂O), 7.69 (м, 8H, C₁₈H₁₁), 8.16(с, 2H, C₂N₃H), 8.84 (м, 12H, C₁₈H₁₁), 9.19(с, 2H, C₂N₃H). ¹³С ЯМР (100 мГц, ДМСО-d₆, δ, м.д.): 50, 68.6, 69.5, 119.5, 122.4, 123.5, 124.3, 124.4, 127.5, 128, 128.5, 129, 129.1, 129ю3, 129.5, 130, 146. EI-MS, m/z (I, %): 704 (1). Для C₄₆H₃₆N₆O₂ расч. С 78.39%, H 5.15%, N 11.92%; найдено С 78.30%, H 5.25%, N 11.84%.

1,1'-(((Оксибис(этан-

2,1диил))*бис*(окси))*бис*(этан-2,1диил))*бис*(4-(трифенилен-2-ил)-1H-1 ,2,3-триазол) (13б) **Процедура Г.** Выход 88 мг, 96%. ¹Н ЯМР (400 мГц, ДМСО-d₆, δ, м.д.): 3.52(д, 8H, 2×CH₂O), 3.87 (т, 4H, 2×CH₂O), 4.61(с, 4H, 2×CH₂O), 7.71 (м, 8H, C₁₈H₁₁), 8.16(с, 2H, C₂N₃H), 8.84 (м, 12H, C₁₈H₁₁), 9.18(с, 2H, C₂N₃H). ¹³C ЯМР (100 мГц, ДМСО-d₆, δ, м.д.): 50, 68.6, 69.5, 119.5, 122.4, 123.5, 124.3, 124.4, 124.6, 127.5, 128, 128.5, 129, 129.1, 129.3, 129.5, 130, 146(C). EI-MS, m/z (I, %): 748 (1). Для C₄₈H₄₀N₆O₃ расч. С 76.98%, H 5.38%, N 11.22%; найдено С 76.88%, H 5.29%, N 11.20%.

1,2-*Бис*(2-(4-(перилен-3-ил)-1*H*-1,2,3триазол-1-ил)этокси)этан (14а)

Процедура Г. Выход 20 мг, 12%. ¹Н ЯМР (400 мГц, ДМСО-d₆, δ, м.д.): 4.09(c, 4H, 2×CH₂O), 4.45 (т, 4H,

2×CH2O), 4.54(c, 4H, 2×CH₂O), 7.93(м, 6H, Pyr), 8.24(м, 6H, Pyr + C₂N₃H), 8.95 (м, 10H, Pyr), 9.34(c, 2H, C₂N₃H). ¹³С ЯМР (100 мГц, ДМСО-d₆, δ, м.д.): 45, 47, 50, 56, 58, 61.2, 69.2, 70.3, 121.3, 127.3, 129, 130.1, 131, 132, 143.5, 153, 163, 167.5, 175, 176.6. EI-MS, m/z (I, %): 752 (1). Для C₅₀H₃₆N₆O₂ расч. С 79.77%, H 4.82%, N 11.16%; найдено С 79.67%, H 4.91%, N 11.08%.

1,1'-(((Оксибис(этан-2,1-

диил))*бис*(окси))*бис*(этан-2,1-

диил))*бис*(4-(перилен-3-ил)-1*H*-1 ,2,3триазол) (14б)

Процедура Г. Выход 45 мг, 56%.

¹Н ЯМР (400 мГц, ДМСО-d₆, δ, м.д.): 3.52(д, 8H, 2×CH₂O), 3.88 (с, 4H, 2×CH₂O), 4.61(с, 4H, 2×CH₂O), 7.63(м, 4H, Pyr), 7.51(м, 6H, Pyr), 7.73(м, 6H, Pyr + C₂N₃H), 8.35 (м, 10H, Pyr), 9.34(с, 2H, C₂N₃H). ¹³С ЯМР (100 мГц, ДМСО-d₆, δ, м.д.): 68.5, 125.4, 127, 127.1, 127.3, 127.5, 128, 132, 128.1, 128.2, 128.3, 131.1, 131.4, 131, 131.5, 134.1, 145.3. EI-MS, m/z (I, %): 813 (1). Для C₅₃H₄₄N₆O₃ расч. С 78.30%, H 5.46%, N 10.34%; найдено С 78.20%, H 5.56%, N 10.36%.

Заключение

1. С использованием «клик»-реакций разработаны эффективные методы синтеза новых флуоресцентных 1,2,3-триазолов, содержащих в своем составе фрагменты аннелированных и сопряженных поли(аза)циклов, в том числе бис-1,2,3-триазолов соединенных линкерами на основе ПЭГ – молекул типа бола:

1.1 Продемонстрировано преимущество «клик»-реакций в условиях механосинтеза в шаровой мельнице в отсутствие растворителя и превнесенного катализатора для синтеза ПЭГ-связанных бис-1,2,3-триазолов

1.2. Синтезированы новые азааналоги красителя РОРОР

2. Показана эффективность некоторых полученных соединений бис-1,2,3триазолов типа бола для селективного *«turn-off»* обнаружения катионов металлов и нитросоединений в растворах:

2.1 Продемонстрирована высокая эффективность пирен-замещенных бис-1,2,3-триазолов типа бола для *«turn-off»* обнаружения нитроароматических соединений в растворах с константами тушения порядка 10⁶⁻10⁷ М⁻¹

2.2 Продемонстрирована чрезвычайно высокая эффективность пирензамещенных бис-1,2,3-триазолов типа бола для «turn-off» обнаружения соединенийЮ нитроалифатических таких как труднодетектируемого тетранитропентаэритрита (ТЭН) с константами тушения до 10⁶ М⁻¹, а также 2,3-диметил-2,3маркирующей добавки взрывчатых смесей ДЛЯ динитробутана (ДМДНБ) с константами тушения порядка 10⁶-10⁷ М⁻¹

2.3 Для некоторых из пирен-замещенных бис-1,2,3-триазолов типа бола показана способность к селективному флуоресцентному "*turn-off*" обнаружению катиона Hg^{2+} с константами тушения до $10^5 M^{-1}$.

Перспективы дальнейшей разработки темы. Перспективным направлением является создание новых ПЭГ-связанных бис-1,2,3-триазолов для детектирования других катионов металлов в водной среде. Например,

перспективным является распознавание катионов щелочных металлов с использованием фрагмента ПЭГ, и одновременное распознавание катионов переходных металлов с участием азольного фрагмента. Также, перспективным является исследование возможности вытеснения катиона Hg²⁺ из комплексов описанных выше соединений действием других аналитов, что приведет к разгоранию флуоресценции и позволит создать т.н. "*turn-on*" хемосенсоры.

Список использованных сокращений

- TsCl 4-толуолсульфонилхлорид
- ДИПЭА N, N-диизопропилэтиламин
- ДЦК N, N-дициклогексилкарбодиимида
- ТМЭДА тетраметилэтилендиамин
- ДМАД диметилацетилендикарбоксилат
- ТВТА трис(бензилтриазолилметил)амин
- РМDТА 1,1,4,7,7-пентаметилдиэтилентриамин
- ПАУ полициклические ароматические углеводороды
- ACQ агрегационное тушение («aggregation-caused quenching»)
- KSV константа тушения флуоресценции Штерна-Фольмера
- LOD предел обнаружения («Limit of detection»)
- ррb миллиард-1
- м.д. миллион-1

TD-DFT расчеты – квантовомеханические расчеты методами нестационарной теории функционала плотности

- ВВ взрывчатое вещество
- ГХ-МС газовая хроматография/масс-спектрометрия
- ДМСО диметилсульфоксид
- ДМФА N,N-диметилформамид
- ДНТ 2,4-динитротолуол
- нитро-ВВ нитросодержащие взрывчатые вещества
- НСМО низшая свободная молекулярная орбиталь

- ПЭГ полиэтиленгликоль
- ТГФ тетрагидрофуран
- ТНТ 2,4,6-тринитротолуол
- ТСХ тонкослойная хроматография
- ТЭН тетранитропентаэритрит
- УФ ультрафиолетовый
- ЯМР ядерный магнитный резонанс

СПИСОК ЛИТЕРАТУРЫ

 Kolb H. C. Click Chemistry: Diverse Chemical Function from a Few Good Reactions / H. C. Kolb, M. G. Finn, K. B. Sharpless // Angew. Chemie. Int. Ed – 2004. – Vol. 40, Iss. 11– Pp. 2004–2021.

2 . Tale R. H. Click' ligand for 'click' chemistry: (1-(4-methoxybenzyl)-1-H-1,2,3triazol-4-yl)methanol (MBHTM) accelerated copper-catalyzed [3+2] azide-alkyne cycloaddition (CuAAC) at low catalyst loading / R. H. Tale, V. B. Gopula, G. K. Toradmal // Tetrahedron Lett – 2015 . – Vol. 56, Iss. 43 – Pp. 5864–5869.

3 . Herndon W. C. The theory of cycloaddition reactions / W. C. Herndon //Chem. Rev – 1972 . – Vol. 72, Iss. 2 – Pp. 157–179.

4. Bock V. D. Cu I -Catalyzed Alkyne – Azide 'Click 'Cycloadditions from a Mechanistic and Synthetic Perspective 1 . Introduction to the Cu I -Catalyzed Alkyne / V. D. Bock, H. Hiemstra, J. H. Van Maarseveen // Eur. J. Org. Chem – 2006 . – Vol. 2006, Iss.1 – Pp. 51–68.

5 . Tornøe C. W. Peptidotriazoles on Solid Phase : [1, 2, 3] -Triazoles by Regiospecific Copper (I) -Catalyzed 1, 3-Dipolar Cycloadditions of Terminal Alkynes to Azides / C. W. Tornøe, C. Christensen, M. Meldal // J. Org. Chem – 2002. – Vol. 67, Iss. 1– Pp. 3057–3064.

6 . Kolb H. C. The growing impact of click chemistry on drug discovery / H. C. Kolb, K. B. Sharpless // DDT- 2003 . –Vol. 8, Iss. 24 – Pp. 1128–1137.

7 . Lee H. Copper(I)-Catalyzed Synthesis of 1,4-Disubstituted 1,2,3-Triazoles from Azidoformates and Aryl Terminal Alkynes / H. Lee, J Lee, K. Min, J. S., H. Seo,
Y. Lee, H. Rhee // J. Org. Chem – 2008. – Vol. 83, Iss. 8 – Pp. 4805–4811.

8. Tornøe C. W. Peptidotriazoles: Copper(I)-Catalyzed 1,3-Dipolar
Cycloadditions on Solid-Phase / C. W. Tornøe, M. Meldal // Pept. Wave Futur –
2001. – Iss. I- Pp. 263–264.

9. Li L. Development and Applications of the Copper-Catalyzed Azide-Alkyne

Cycloaddition (CuAAC) as a Bioorthogonal Reaction / L. Li, Z. Zhang // Molecules – 2016. – Vol. 21, Iss. 1– Pp. 1–22.

10. Breugst M. The Huisgen Reaction: Milestones of the 1,3-Dipolar
Cycloaddition / M. Breugst, H. U. Reissig Angew // Chemie – Int. Ed – 2020. –
Vol. 59, Iss. 30 – Pp. 12293–12307.

11. Santos C. S. 1, 2, 3- Triazoles : general and key synthetic strategies / C. S.
Santos, J. De Oliveira, N. D. Oliveira // Arkivoc. Organic Chemistry – 2020. –
Vol. I – Pp. 219-271.

12. Tsai C. H. Click Chemistry and Multicomponent Reaction for Linker
Diversification of Zinc Dipicolylamine-Based Drug Conjugates / C. H. Tsai, T. Y.
Chiu, C. T. Chen, C. Y. Hsu, Y. R. Tsai, T. K. Yeh, K. H. Huang, L. K. Tsou //
Front. Chem – 2022. – Vol. 9 – 2021 – Pp. 1–9.

13. Rostovtsev V. V. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective 'Ligation' of Azides and Terminal Alkynes / V. V
Rostovtsev, L. G. Green, V. V Fokin, K. B. Sharpless // Angew. Chemie – 2002.
– Vol. 114, Iss. 14 – Pp. 2708–2711.

14 . Thorwirth R. Fast, ligand- and solvent-free copper-catalyzed click reactions in a ball mill / R. Thorwirth, A. Stolle, B. Ondruschka, U. S. Schubert // Chemical Communications – 2011 . – Vol. 47, Iss. 15 – Pp. 4370-4372.

15 . Rinaldi L. Solvent-Free Copper-Catalyzed Azide-Alkyne Cycloaddition under Mechanochemical Activation / L. Rinaldi, K. Martina, F. Baricco, L. Rotolo, G. Cravotto // Molecules – 2015 . – Vol. 20, Iss. 2 – Pp. 2837-2849.

16. Bhattacherjee D. Mechanochemical Approach towards Multi-Functionalized
1,2,3-Triazoles and Anti-Seizure Drug Rufinamide Analogs Using Copper Beads /
D. Bhattacherjee, I. S. Kovalev, D. S. Kopchuk, M. Rahman, S. Santra, G. V.
Zyryanov, P. Das, R. Purohit, V. L Rusinov., O. N. Chupakhin // Molecules – 2022
. – Vol. 22, Iss. 22 – Pp. 7784.

17. Jeong J. Biocompatible photoinduced CuAAC using sodium pyruvate / J.
Jeong, G. Szczepaniak, S. S. Yerneni, F. Lorandi, H. Jafari, S. Lathwal, S. R. Das,
K. Matyjaszewski // Chemical Communications – 2021. – Vol. 57, Iss. 95 – Pp.
12844-12847.

18 . Maetz E. Combination of photoinduced copper(i) catalyzed click chemistry and photosol–gel reaction for the synthesis of hybrid materials / E. Maetz, B. C. Croutxé, C. Delaitea, X. Allonas // Polymer Chemistry – 2016 . – Vol. 7, Iss. 47 – Pp. 7383-7390.

19. Ma J. Transition Metal-Catalyzed Cycloaddition of Azides with Internal Alkynes / J. Ma, S. Ding // Asian J. Org. Chem – 2020. – Vol. 9, Iss. 12 – Pp. 1872-1888.

20 . Zhao Y. Overview of 1,5-Selective Click Reaction of Azides with Alkynes or Their Synthetic Equivalents / Y. Zhao, Z. Chai, Q. Zeng, W. Zhang // Molecules – 2023. – Vol. 28, Iss. 3 – Pp. 1400.

21. Dai J. Synthesis methods of 1,2,3-/1,2,4-triazoles: A review / J. Dai, S. Tian,
X. Yang, Z. Liu // Front. Chem – 2022. – Vol. 10 – Pp. 1–24.

22. Ghosh D. 1,2,3-Triazoles: Controlled Switches in Logic Gate Applications /
D. Ghosh, A. Atkinson, J. Gibson, H. Subbaiahgari, W. Ming, Cl. Padgett, K. S.
Aiken, S. M. Landge // Molecules – 2023. – Vol. 23, Iss. 15 – Pp. 7000.

23. De Boer G. M. Regioselectivity Associated with the 1,3-Dipolar Cycloaddition of Nitrones with Electron-Deficient Dipolarophiles / G. M. De Boer, T. W.
Stevens, A. Padwa, L. Fisera, K. F. Koehler, G. S. K. Wong // J. Org. Chem – 1984. – Vol. 49, Iss. 2 – Pp. 276–281.

24 . Padwa A. 1, 3-Dipolar Cycloadditions of Nitrones Derived from the Reaction of Acetylenes with Hydroxylamines / A. Padwa, G. S. K. Wong // J. Org. Chem – 1986 . – Vol. 51, Iss. 16 – Pp. 3125–3133.

25 . Ahmed F. Recent developments in 1,2,3-triazole-based chemosensors / F.

Ahmed, H. Xiong // Dye. Pigment – 2021 . – Vol. 185 – Pp. 1–39.

26. Patel K. D. Review of synthesis of 1,3,4-oxadiazole derivatives / K. D. Patel,
S. M. Prajapati, S. N. Panchal, H. D. Patel // Synth. Commun – 2014. – Vol. 44,
Iss. 13 – Pp. 1859–1875.

27 . Sharma S. A Review : Oxadiazole Their Chemistry and Pharmacological
Potentials / S. Sharma, P. K. Sharma, N Kumar, R. Dudhe // Der Pharma Chemica
2010. – Vol. 2, Iss. 4 – Pp. 253–263.

28 . Khalilullah H. Synthesis, characterization and antimicrobial activity of benzodioxane ring containing 1,3,4-oxadiazole derivatives / H. Khalilullah, S. Khan, M. S. Nomani, B. Ahmed // Arab. J. Chem – 2016 . –Vol. 9 – Pp. S1029– S1035.

29 . Chandrakantha B. Synthesis, characterization and biological activity of some new 1,3,4-oxadiazole bearing 2-flouro-4-methoxy phenyl moiety / B. Chandrakantha, P. Shetty, V. Nambiyar, N. Isloor, A. M. Isloor // Eur. J. Med. Chem – 2010 . – Vol. 45, Iss. 3 – Pp. 1206–1210.

30 . Desai N. C. Synthesis, antimicrobial and cytotoxic activities of some novel thiazole clubbed 1,3,4-oxadiazoles / N. C. Desai, N. Bhatt, H. Somani, A. Trivedi // Eur. J. Med. Chem – 2013 . – Vol. 67 – Pp. 54–59.

31. Pal D. Synthesis, characterization, antimicrobial, and pharmacological evaluation of some 2, 5-disubstituted sulfonyl amino 1,3,4-oxadiazole and 2-amino-disubstituted 1,3,4-thiadiazole derivatives / D. Pal, R. Tripathi, D. Pandey, P. Mishra // J. Adv. Pharm. Technol. Res – 2014. – Vol. 5, Iss. 4 – Pp. 196–201.

32 . Shahzad S. A. Synthesis and biological evaluation of novel oxadiazole derivatives: A new class of thymidine phosphorylase inhibitors as potential antitumor agents / S. A Shahzad, M. Yar, M. Bajda, B. Jadoon, Z. A Khan, S. A. R. Naqvi, A. J Shaikh, K. Hayat, A. Mahmmod, N. Mahmood, S. Filipek // Bioorganic Med. Chem– 2013 . – Vol. 22, Iss. 3 – Pp. 1008–1015. 33. Banerjee A. G. Synthesis, characterization, evaluation and molecular dynamics studies of 5, 6-diphenyl-1,2,4-triazin-3(2 H)-one derivatives bearing 5-substituted 1,3,4-oxadiazole as potential anti-inflammatory and analgesic agents / A. G. Banerjee, N. Das, S. A. Shengule, R. S. Srivastava, S. K. Shrivastava // Eur. J. Med. Chem – 2015. – Vol. 101 – Pp. 81–95.

34 . Bansal S. Design and synthesis of novel 2-phenyl-5- (1, 3-diphenyl-1 H - pyrazol- 4-yl) -1, 3, 4-oxadiazoles as selective COX-2 inhibitors with potent antiin fl ammatory activity / S. Bansal, M. Bala, S. K Suthar, S. Choudhary, S Bhattacharya, V. Bhardwaj, S. Singla, A. Joseph // Eur. J. Med. Chem – 2014. – Vol. 80 – Pp. 167–174.

35. 1 Kerimov. Design and One-Pot and Microwave-Assisted Synthesis of Moiety as Antioxidants / 1. Kerimov, G. Ayhan-Kılcıgil, E. D. Ozdamar, B. Can-Eke, C. S Ozbey Tulay, C Kazak. // Arch. Pharm. Chem. Life Sci – 2012. – Vol. 345, Iss. 7 – Pp. 549–556.

36. Kotaiah Y. Synthesis and antioxidant activity of 1,3,4-oxadiazole tagged thieno[2,3-d]pyrimidine derivatives / Y. Kotaiah, N. Harikrishna, K. Nagaraju, C. V. Rao. // Eur. J. Med. Chem – 2012. – Vol. 58 – Pp. 340–345, 2012.

37. Younus M. Imidazole clubbed 1, 3, 4-oxadiazole derivatives as potential antifungal agents / M. Younus, A. Ahmad, R. Ahmad, K. J. Al-ghamdi, A. J. F. N. Sobral // Bioorg. Med. Chem – 2015. – Vol. 23, Iss. 15 – Pp. 4172–4180.

38 . Kumar D. Synthesis and anticancer activity of 5- (3-indolyl) -1, 3, 4thiadiazoles / D. Kumar, N. M. Kumar, K. Chang, K. Shah // Eur. J. Med. Chem – 2010. – Vol. 45, Iss. 10 – Pp. 4664–4668.

39 . De Oliveira C. S. Activity of 1,3,4-Oxadiazoles: A Review of the Literature from 2000–2012 / C. S. De Oliveira, B. F. Lira, J. M. Barbosa-filho, J. Gonçalo, F. Lorenzo, F. P. F. De Athayde // Molecules – 2012 . – Vol. 17, Iss. 9 – Pp. 10192-10231.

40 . Khalil N. A. Design , Synthesis , and Antitumor Activity of Novel 5-Pyridyl-1 , 3 , 4- oxadiazole Derivatives against the Breast Cancer Cell Line MCF-7 / N. A. Khalil, A. M. Kamal, S. H. Emam // J-STAGE. Biological and Pharmaceutical – 2015 . – Vol. 38, Iss. 5 – Pp. 763–773.

41. El-din M. M. G. Synthesis and in vitro antiproliferative activity of new 1, 3,
4-oxadiazole derivatives possessing sulfonamide moiety / M. M. G. El-din, M. I.
El-gamal, M. S. Abdel-maksoud, K. Ho, C. Oh // Eur. J. Med. Chem – 2015. –
Vol. 90 – Pp. 45–52.

42. Gudipati R. Synthesis, characterization and anticancer activity of certain 3-{4-(5-mercapto-1,3,4-oxadiazole-2-yl)phenylimino}indolin-2-one derivatives / R.
Gudipati, R. Narsimha, R. Anreddy, S. Manda // J. Saudi Pharm – 2011. – Vol. 19, Iss. 3 – Pp. 153–158.

43 . Patel N. B. New 2-benzylsulfanyl-nicotinic acid based 1,3,4-oxadiazoles:
Their synthesis and biological evaluation/ N. B. Patel, A. C. Purohit, D. P. Rajani,
R. Moo-puc, G. Rivera // Eur. J. Med. Chem – 2013 . – Vol. 46 – Pp. 677–687.

44 . Rapolu S. Synthesis and biological screening of 5-(alkyl(1H-indol-3-yl))-2- (substituted)-1,3,4-oxadiazoles as antiproliferative and anti-inflammatory agents / S. Rapolu, M. Alla, V. R. Bommena, R. Murthy, N. Jain, V. R. Bommareddy, M. R. Bommineni // Eur. J. Med. Chem – 2013. – Vol. 66 – Pp. 91–100.

45. Rajak H. A Novel Series of 2,5-Disubstituted 1,3,4-oxadiazoles: Synthesis and SAR Study for their Anticonvulsant Activity/ H. Rajak, P. Singour, M. D. Kharya, P. Mishra // Chem. Biol. Drug Des – 2011. – Vol. 77, Iss. 2 – Pp. 152–158.

46 . Yang Q. Synthesis, photophysics, and electroluminescence of mesogenjacketed 2D conjugated copolymers based on fluorene thiophene oxadiazole derivative / Q. Yang, H. Jin, Y. Xu, P. Wang, X. Liang, Z. Shen, X. Chen, D. Zou, X. Fan, Q. Zhou // Macromolecules – 2009 . – Vol. 42, Isss. 4 – Pp. 1037–1046.

47 . Fang Y. New Donor-Acceptor Random Copolymers with Pendent

Triphenylamine and 1,3,4-Oxadiazole for High-Performance Memory Device Applications / Y. Fang, C. Liu, G. Yang, P. Chen, W. Chen // Macromolecules – 2011. – Vol. 44, Iss. 8 – Pp. 2604–2612.

48 . Schab B. E. Characterization, liquid crystalline behavior, optical and electrochemical study of new aliphatic-aromatic polyimide with naphthalene and perylene subunits / B. E. Schab, A. Iwan, M. Grucela-Zajac, M. Krompiec, M. Podgorna, M. Domanski, M. Siwy, H. Janeczek // Synth. Met– 2011 .- vol. 161, Iss. 15–16- Pp. 1660–1670.

49. Schab B. E. New naphthalene diimide-based compounds containing triarylamine units and imine linkages: Thermal, optical and electrochemical properties / B. E. Schab, Z. M. Grucela, M. Krompiec, H. Janeczek, M. Siwy, D. Sek // Synth. Met – 2011. – Vol. 161, Iss. 21–22 – Pp. 2268–2279.

50. Kulkarni A. P. Electron transport materials for organic light-emitting diodes /
A. P. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe // Chem. Mater – 2004. –
Vol. 16, Iss. 23 – Pp. 4556–4573.

51. Priyanka B. Toward Designing Efficient Multifunctional Bipolar Molecules:
DFT Study of Hole and Electron Mobilities of 1,3,4-Oxadiazole Derivatives / B.
Priyanka, V. Anusha, K. Bhanuprakash // J. Phys. Chem – 2015. – Vol. 119, Iss.
22 – Pp. 12251–12261.

52. Paquin F. Multi-phase semicrystalline microstructures drive exciton
dissociation in neat plastic semiconductors / F. Paquin, J. Rivnay, A. Salleo, N.
Stingelin, C. Silva // J. Mater. Chem – 2015. – Vol. 3 – Pp. 10715–10722.

53. Zhu D. Aromatic Heterocycle 1,3,4-Oxadiazole-Substituted Thieno[3,4-b]thiophene to Build Low-Bandgap Polymer for Photovoltaic Application / D.
Zhu, L. Sun, Q. Liu, S. Wen, L. Han, X. Bao, R. Yang // Macromol. Rapid
Commun – 2015. – Vol. 36, Iss. 23 – Pp. 2065–2069.

54 . Pu Y. R. Solution-processable bipolar hosts based on triphenylamine and

oxadiazole derivatives: Synthesis and application in phosphorescent light-emitting diodes / Y. R. Pu, Y. Chen // J. Lumin – 2016. – Vol. 170, Iss. 1 – Pp. 127–135.

55. Kostyuchenko A. S. Effect of the electron-accepting centre and solubilising substituents on the redox, spectroscopic and electroluminescent properties of four oxadiazoles and a triazole disubstituted with bithiophene / A. S. Kostyuchenko, S. G. Wiosna, A. Kurowska, M. Zagorska, B. Luszczynska, R. Grykien, I. Glowacki, A. S. Fisyuk, W. Domagala, A. Pron // J. Mater. Sci – 2016. – Vol. 51, Iss. 5 – Pp. 2274–2282.

56 . Zhu L. Study on a highly selective fluorescent chemosensor for Cu2+ and its direct sensing for proton based on 1,3,4-oxadiazole / L. Zhu, C. Gu, Y. He, G. Wang // J. Lumin – 2014 . – Vol. 153 – Pp. 439–445.

57. Han J. Calix[4]arene-based 1,3,4-oxadiazoles: Novel fluorescent chemosensors for specific recognition of Cu²⁺ / J. Han, F. L. Wang, Y. X. Liu, F. Y. Zhang, J. Ben Meng, Z. J. He // Chempluschem – 2012. – Vol. 77, Iss. 3 – Pp. 196–200.

58 . Yu C. Y. Alternating copolymers containing fluorene and oxadiazole derivatives for fluorescent chemosensors / C. Y. Yu, T. Y. Shih // Synth. Met – 2014 . – Vol. 191 – Pp. 12–18.

59. Vasil'ev N. V. Intramolecular cycloaddition of fluorinated 1,3,4-oxadiazoles
to dienes / N. V. Vasil'ev, D. V. Romanov, A. A. Bazhenov, K. A. Lyssenko, G.
V. Zatonsky // J. Fluor. Chem – 2007. – Vol. 128, Iss. 7 – Pp. 740–747.

60 . Pokhodylo N. T. One-potCuAAC synthesis of (1H-1,2,3-triazol-1-yl)methyl-1,3,4/1,2,4-oxadiazoles starting from available chloromethyl-1,3,4/1,2,4oxadiazoles / N. T. Pokhodylo, R. D. Savka, O. Y. Shyyka, M. D. Obushak // J. Heterocycl. Chem – 2020 . – Vol. 57, Iss. 7 – Pp. 2969–2976

61 . Obushak N. D. Synthesis of 1,2,4- and 1,3,4-oxadiazoles from 1-aryl-5methyl-1H-1,2,3- triazole-4-carbonyl chlorides / N. D. Obushak, N. T. Pokhodylo, N. I. Pidlypnyi, V. S. Matiichuk // Russ. J. Org. Chem – 2008 . – Vol. 44, Iss. 10 – Pp. 1522–1527.

62 . Dong Z. 2-(1,2,4-Triazole-5-Yl)-1,3,4-Oxadiazole As a Novel Building Block for Energetic Materials / Z. Dong, Z. Wu, Q. Zhang, Y. Xu, G. P. Lu // Front. Chem – 2022 . – Vol. 10 – Pp. 1–11.

63. Voronin A. A. 4 H-[1,2,3]Triazolo[4,5- c][1,2,5]oxadiazole 5-oxide and Its
Salts: Promising Multipurpose Energetic Materials / A. A. Voronin, I. V.
Fedyanin, A. M. Churakov, A. N. Pivkina, N. V. Muravyev, Y. A. Strelenko, M. S.
Klenov, D. B. Lempert, V. A. Tartakovsky // ACS Appl. Energy Mater – 2020. –
Vol. 3, Iss. 9 – Pp. 9401–9407.

64. Kushwaha D. Click Inspired Synthesis of 1,2,3-Triazole-linked 1,3,4Oxadiazole Glycoconjugates / D. Kushwaha, V. K. Tiwari // J. Heterocycl. Chem –
2017. – Vol. 54, Iss. 4 – Pp. 2454–2462.

65. Mohan G. Synthesis and biological evaluation of 1, 2, 4-oxadiazole
incorporated 1, 2, 3-triazole-pyrazole derivatives as anticancer agents / G. Mohan,
G. Sridhar, E. Laxminarayana, M. T. Chary // Chem. Data Collect – 2021. – Vol –
Pp. 1-8.

66 . Turukarabettu V. Cu (I) Catalyzed 1, 3-Dipolar Click Synthesis of S-Heterocyclic 1, 2, 3-Triazole Derivatives, Their Antibacterial Activity / V. Turukarabettu, B. Kalluraya, K. Hemanth, B. C. Revanasiddappa // Russian Journal of General Chemistry – 2020. – Vol. 90, Iss. 1– Pp. 142–147.

67 . Alkhaldi A. A. M. Synthesis , antimicrobial activities and GAPDH docking of novel 1 , 2 , 3-triazole derivatives / A. A. M. Alkhaldi, M. A. Abdelgawad, B. G. M. Youssif, A. O. El-gendy, H. P. De Koning // Tropical Journal of Pharmaceutical Research – 2019 . – Vol. 18, Iss. 5 – Pp. 1101–1108.

68 . Kaushik R. Design and Synthesis of 2, 5-Disubstituted-1, 3, 4-Oxadiazole Hybrids Bearing Pyridine and 1, 2, 3-Triazole Pharmacophores / R. Kaushik, K. Kushwaha, M. Chand, M. Vashist, S. C. Jain // Journal of Heterocyclic Chemistry – 2016. – Vol. 10 – Pp. 4–9.

69. Cao S. Polytriazole bridged with 2,5-diphenyl-1,3,4-oxadiazole moieties: a highly sensitive and selective fluorescence chemosensor for Ag⁺ / S. Cao, Z. Pei, Y. Xu, R. Zhanga, Y. Pei // RSC Advances – 2015. – Vol. 5, Iss. 57 – Pp. 45888-45896.

70. Bakbak S. 1,3-Dipolar Cycloaddition for the Generation of Nanostructured
Semiconductors By Heated Probe Tips / S. Bakbak, P. J. Leech, B. E. Carson, S.
Saxena, W. P. King, U. H. F. Bunz // Macromolecules – 2006. – Vol. 39, Iss. 20
– Pp. 6793–6795.

71. Yuan W. Z. High Solid-State Efficiency Fluorescent Main Chain Liquid
Crystalline Polytriazoles with Aggregation-Induced Emission Characteristics / W.
Z. Yuan, Z. Q. Yu, Y. Tang, J. W. Y., Lam N. Xie, P. Lu, E. Q. Chen, B. Z. Tang
// Macromolecules – 2011. – Vol. 44, Iss. 24 – Pp. 9618–9628.

72. Plietzsch O. Click chemistry produces hyper-cross-linked polymers with tetrahedral cores / O. Plietzsch, C. I. Schilling, T. Grab, S. L. Grage, A. S. Ulrich, A. Comotti, P. Sozzani, T. Muller, S. Bräse // New Journal of Chemistry – 2011.
Vol. 35, Iss. 8 – Pp. 1577-1581.

73. Qin A. Polytriazoles with Aggregation-Induced Emission Characteristics:
Synthesis by Click Polymerization and Application as Explosive Chemosensors /
A. Qin, J.W. Y. Lam, L. Tang, C. K. W. Jim, H., Sun J. Zhao, B. Z. Tang //
Macromolecules – 2009. – Vol. 42, Iss. 5 – Pp. 1421–1424.

74. Nagarjuna G. Enhancing sensing of nitroaromatic vapours by thiophene-based polymer films / G. Nagarjuna, A. Kumar, A. Kokil, K. G. Jadhav, S. Yurt, J. Kumar, D. Venkataraman // Journal of Materials Chemistry – 2011. – Vol. 21, Iss. 41 – Pp. 16597-16602.

75 . Cao S. Polytriazole bridged with 2,5-diphenyl-1,3,4-oxadiazole moieties: A

highly sensitive and selective fluorescence chemosensor for Ag⁺ / S. Cao, Z. Pei, Y. Xu, R. Zhang, Y. Pei // RSC Adv – 2015 . – Vol. 5, Iss. 57 – Pp.45888 –45896.

76. Bumagin N. A. Substituted 1-(isoxazol-3-yl)methyl-1H-1,2,3-triazoles:
Synthesis, palladium(II) complexes, and high-turnover catalysis in aqueous media / N. A. Bumagin, A. V. Kletskov, S. K. Petkevich, I. A. Kolesnik, A. S. Lyakhov, L. S. Ivashkevich, A. V. Baranovsky, P. V. Kurman, V. I. Potkin // Tetrahedron – 2018. – Vol. 74, Iss. 27 – Pp. 3578 –3588.

77. Zhou J. Synthesis and Characterization of New Electroluminescent Materials of 1,3,4-Oxadiazole–1,2,3-Triazole Hybrids and 1,3,4-Oxadiazole–1,2,3-Triazole–
Pyridine Derivatives / J. Zhou, F. F. Wong, C. Chen, M. Yeh // Heteroatom Chemistry – 2006. – Vol. 17, Iss. 4 – Pp. 322–328.

78 . Fang-ming L. Synthesis of heterocyclic compounds from 2-phenyl- 1 2 3triazole-4-formylhydrazin / L. Fang-ming, Y. Jian-Xin, L. Wen-Jie, L. Gang, L.
Yu-Ting, C. Yao-zu // Chinese journal of chemistry – 1999 . – Vol. 17, Iss. 1 – Pp. 3–9.

79. Rozhkov V. Y. 1, 2, 3-triazole-substituted (1, 2, 3-triazol-1-yl) furazans /
V. Y. Rozhkov, L. V. Batog, M. I. Struchkova // Mendeleev Communications –
2008. – Vol. 18, Iss 3 – Pp. 161–163.

80. Kun S. Synthesis of variously coupled conjugates of D -glucose, 1, 3, 4-oxadiazole, and 1, 2, 3-triazole for inhibition of glycogen phosphorylase / S. Kun, G. Z. Nagy, M. Tóth, L. Czecze, A. N. V. Nhien, D. Tibor, P. Gergely, M. D. Charavgi, P. V. Skourti, E. D. Chrysina, T. Patonay, L. Somsák // Carbohydrate Research – 2011. – Vol. 346, Iss. 12 – Pp. 1427–1438.

81. Venkatagiri N. Synthesis, Characterization, and Antimicrobial Activity of a Series of 2-(5-Phenyl-1,3,4-oxadiazol-2-yl)-N-[(1-aryl-1H1,2,3-triazol-4 yl)methyl]anilines Using Click Chemistry / N. Venkatagiri, T. Krishna, Thirupathi P., K. Bhavani, C. K. Reddy // Russian Journal of General Chemistry – 2018. – Vol. 88, Iss. 7 – Pp. 1488–1494. 82. Komaraiah A. Bisheterocycles: Synthesis of some novel 1,2,3-triazolyl oxadiazole and 4(3H)-quinazolinones via azide cycloaddition reaction / A.
Komaraiah, K. Ramakrishna, B. Sailu, P. S. N. Reddy // Arkivoc – 2007. – Vol. 2007, Iss. 14 – Pp. 110–116.

83. Dürüst Y. Microwave-assisted synthesis and crystal structure of some novel
1,2,4-oxadiazol-5-ylmethyl-1,2,3-triazoles / Y. Dürüst, H. Karakuş // Synth.
Commun – 2017. – Vol. 47, Iss. 9 – Pp. 907–912.

84. Fershtat L. L. New Method for the Synthesis and Reactivity of (5-R-1,3,4-Oxadiazol-2-yl)furoxans / L. L. Fershtat, A. S. Kulikov, I. V Ananyev, M. I.
Struchkova, N. N. Makhova // J. Heterocyclic Chem – 2016. – Vol. 53, Iss. 1 – Pp. 102–108.

85. Dürüst Y. Novel sydnone derivatives carrying dipolar cycloadditions / Y.
Dürüst, E. Yıldız, H. Karakuş, B. M. Kariuki // Synth. Commun – 2017. – Vol. 47,
Iss. 7 – Pp. 660–670.

86. Soni J. Polyethylene glycol: A promising approach for sustainable organic synthesis / J. Soni, N. Sahiba, A. Sethiya, S. Agarwal // J. Mol. Liq – 2020. – Vol. 315 – Pp. 1-31.

87. Kim H. J. Highly Selective Fluorescent Signaling for Al3 + in Bispyrenyl
Polyether / H. J. Kim, S. H. Kim, D. T. Quang, J. H. Kim, I. Suh, J. S. Kim // Bull.
Korean Chem. Soc – 2007. – Vol. 28, Iss. 5 – Pp. 811–815.

88 . Ding L. Bispyrene/surfactant assemblies as fluorescent sensor platform:
Detection and identification of Cu2+ and Co2+ in aqueous solution / L. Ding, S.
Wang, Y. Liu, J. Cao, Y. Fang // J. Mater. Chem – 2013. – Vol. 1, Iss. 31 – Pp.
8866–8875.

89. Figueira D. T. M. Pyrene-Based Materials for Organic Electronics / D. T. M.
Figueira, M. Klaus // Chem. Rev – 2011. – Vol. 111, Iss. 11 – Pp. 7260–7314.

90 . Cao Q. A new pyrenyl-appended triazole for fluorescent recognition of Hg 2 b
ion in aqueous solution / Q. Cao, Y. Han, H. Wang, Y. Xie // Dye. Pigment – 2013 . – Vol. 99, Iss. 3 – Pp. 798–802.

91. Tümay S. O. Development of dipodal fluorescence sensor of iron for real samples based on pyrene modified anthracene / S. O. Tümay, M. H. Irani-nezhad,
A. Khataee // Molecular and Biomolecular Spectroscopy – 2021. – Vol. 261, Iss.
15 – Pp. 1–13.

92. Ingale S. A. A Ratiometric Fluorescent On – Off Zn²⁺ Chemosensor Based on a Tripropargylamine Pyrene Azide Click Adduct / S. A. Ingale, F. Seela // J. Org.
Chem – 2012. – Vol. 77, Iss. 20 – Pp. 9352–9356.

93 . Manandhar E. Detection of Zn (II) ions by fluorescent pyrene-derived molecular probes / E. Manandhar, P. J. Cragg, K. J. Wallace // Supramolecular Chemistry – 2014 . – Vol. 26, Iss. 3 – 4 – Pp. 3 – 4 – 3–4.

94. Hung H. Dual-mode recognition of transition metal ions by bis-triazoles
chained pyrenes / H. Hung, C. Cheng, I. Ho, W. Chung // Tetrahedron Lett – 2009
. – Vol. 50, Iss. 3 – Pp. 302–305.

95 . Hung H. Highly Selective Fluorescent Sensors for Hg²⁺ and Ag⁺ Based on Bistriazole-Coupled Polyoxyethylenes in MeOH Solution / H. Hung, C. Cheng, Y. Wang, Y. Chen // European Journal of Organic Chemistry – 2009 . – Vol. 2009, Iss. 36 – P. 6360–6366. Pp. 6360–6366.

96 . Singla P. off state-on state conversion of a dipyrene derivative : Application to soft material / P. Singla, P. Kaur, K. Singh // Sensors Actuators B. Chem – 2017
. – Vol. 244 – Pp. 299–306.

97. Kovalev I. S. Computer vision vs. spectrofluorometer-assisted detection of common nitro-explosive components with bola-type PAH-based chemosensors RSC Advances / I. S. Kovalev, L. K. Sadieva, O. S. Taniya, V. M. Yurk, A. S. Minin, S. Santra, G. V. Zyryanov, V. N. Charushin, O. N. Chupakhin, M. V. Tsurkan // RSC Advances – 2009. – Vol. 11, Iss. 8 – Pp. 25850–25857.

98. Kovalev I. S. Bola-type PAH-based fluorophores / chemosensors : Synthesis via an unusual clemmensen reduction and photophysical studies / I. S. Kovalev, O. S. Taniya, L. K. Sadieva, N. N. Volkova, A. S. Minin, K. V. Grzhegorzhevskii, E. B. Gorbunov, G. V. Zyryanov, O. N. Chupakhin, V. N. Charushin, M. V. Tsurkan // J. Photochem. Photobiol. A Chem – 2021. – Vol. 420 – Pp. 113466.

99. Sadieva L. K. Bola-type PEG-linked polyaromatic hydrocarbon-based chemosensors for the 'turn-off' excimer fluorescence detection of nitro-analytes/explosives in aqueous solutions / L. K. Sadieva, I. S. Kovalev, O. S. Taniya, V. A. Platonov, A. S. Novikov, V S. Berseneva, S. Santra, G. V. Zyryanov, B. C. Ranu, V. N. Charushin // Dye. Pigment – 2023. – Vol. 210 – Pp. 11101.

100 . Wang H. F. Highly selective fluorescent sensors for mercury(II) ions and their applications in living cell imaging / H. F. Wang, S. P. Wu // Tetrahedron – 2013 . – Vol. 69, Iss. 8 – Pp. 1965–1969.

101 . Liu X. Novel fluorescent sensor for Ag^+ and Hg^{2+} based on the BINOLpyrene derivative via click reaction / X. Liu, X. Yang, Y. Fu, C. Zhu, Y. Cheng // Tetrahedron – 2011 . – Vol. 67, Iss. 18 – Pp. 3181–3186.

102. Kumar R. Pyrene appended bis-triazolylated 1,4-dihydropyridine as a selective fluorogenic sensor for Cu²⁺ / R. Kumar, R. Bawa, P. Gahlyan, M. Dalela, K. Jindal, P. K. Jha, M. Tomar, V. Gupta // Dye. Pigment – 2018. – Vol. 161 – Pp. 162–171.

103 . Kutonova K. V. A simple and effective synthesis of aryl azides via arenediazonium tosylates / K. V. Kutonova, M. E. Trusova, P. Postnikov, V. D.
Filimonov, J. Parello // Synth – 2013 . – Vol. 45, Iss. 19 – Pp. 2706–2710.

104 . Escamilla G. H. Bolaamphiphiles: Golf balls to fibers / G. H. Escamilla, G.
R. Newkome // Org. Synth. Highlights III – 2008 . – Pp. 382–390.

105 . Van Bogaert I. N. A. Synthesis of bolaform biosurfactants by an engineered

Starmerella bombicola yeast / I. N. A. Van Bogaert, D. Buyst, J. C. Martins, S. L.
K. W. Roelants, W. K. Soetaert // Biotechnol. Bioeng – 2016. – Vol. 113, Iss. 12
– Pp. 2644–2651.

106 . Kang Y. An Amylase-Responsive Bolaform Supra-Amphiphile / Y. Kang, Z.
Cai, X. Tang, K. Liu, G. Wang, X. Zhang // ACS Appl. Mater. Interfaces – 2016 .
– Vol. 8, Iss. 7 – Pp. 4927–4933.

107 . Cuvier A. S. PH-triggered formation of nanoribbons from yeast-derived glycolipid biosurfactants / A. S. Cuvier, J. Berton, C. V. Stevens, G. C. Fadda, F. Babonneau, I. N. A. Van Bogaert, W. Soetaert, G. Pehau-Arnaudetg, N. Baccile // Soft Matter – 2014 . – Vol. 10, Iss. 22 – Pp. 3950–3959.

108 . Matsui H. Fabrication of nanocrystal tube using peptide tubule as template and its application as signal-enhancing cuvette H. / Matsui, S. Pan, G. E. Douberly // J. Phys. Chem – 2001 . – Vol. 105, Iss. 9 – Pp. 1683–1686.

109. Iii S. W. T. Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers / S. W. T. Iii, G. D. Joly, T. M. Swager // Chem. Rev – 2007. – Vol.
107, Iss. 4 – Pp. 1339–1386.

110. Shaw P. E. Real-time fluorescence quenching-based detection of nitrocontaining explosive vapours: what are the key processes / P. E. Shaw, P. L. Burn
// Phys. Chem. Chem. Phys – 2007. – Vol. 19, Iss. 44 – Pp. 29714-29730.

111 . Cumming C. Amplifying fluorescent polymer arrays for chemical detection of explosives / C. Cumming, M. Fisher, J. Sikes // Electronic Noses & Sensors for the Detection of Explosives – 2004 . – Vol. 159 – Pp. 53–69.

112. Salinas Y. Fluorogenic detection of Tetryl and TNT explosives using nanoscopic-capped mesoporous hybrid materials / Y. Salinas, A. Agostini, É.
Pérez-Esteve, R. Martínez-Máñez, F. Sancenón, M. D. Marco, J. Soto, A. M.
Costero, S. Gil, M. Parraae, P. Amorósf // Journal of Materials Chemistry A – 2013. – Vol. 1, Iss. 11 – Pp. 3561–3564. 113 . Turhan H. Highly fluorescent sensing of nitroaromatic explosives in aqueous media using pyrene-linked PBEMA microspheres / H. Turhan, E. Tukenmez, B. Z. Karago, N. Bicak // Talanta – 2018 . – Vol. 179 – Pp. 107–114.

114. Bal M. Pyrene, Anthracene, and Naphthalene - Based Azomethines for Fluorimetric Sensing of Nitroaromatic Compounds / M. Bal, A. Köse, Ö. Özpaça, M. Köse // J. Fluoresc – 2023. – Vol. 33, Iss. 4 – Pp. 1443–1455.

115. Zyryanov G. V. Chemosensors for detection of nitroaromatic compounds (
explosives) / G. V. Zyryanov, D. S. Kopchuk, I. S. Kovalev, E. V. Nosova, V. L.
Rusinov, O. N. Chupakhin // Russian Chemical Reviews – 2014. – Vol. 83, Iss. 9
– Pp. 783–819.

116 . Verbitskiy E. V. Detection of nitroaromatic explosives by new $D - \pi - A$ sensing fluorophores on the basis of the pyrimidine scaffold / E. V. Verbitskiy, A. A. Baranova, K. I. Lugovik, M. Z. Shafikov, K. O. Khokhlov, E. M. Cheprakova, G. L. Rusinov, O. N. Chupakhin, V. N. Charushin // Anal. Bioanal. Chem – 2016 . – Vol. 408, Iss. 28 – Pp. 4093–4101.

117 . Khasanov A. F. Extended cavity pyrene-based iptycenes for the turn-off fluorescence detection of RDX and common nitroaromatic explosives / A. F.
Khasanov, D. S. Kopchuk, I. S. Kovalev, O. S. Taniya, K. Giri, P. A. Slepukhin, S. Santra, M. Rahman, A. Majee, V. N Charushinab, O. N. Chupakhinab // New Journal of Chemistry – 2017 . – Vol. 41, Iss. 6 – Pp. 2309-2320.

118. Sun H. Tuning Photophysical Properties via Positional Isomerization of the Pyridine Ring in Donor–Acceptor-Structured Aggregation-Induced Emission Luminogens Based on Phenylmethylene Pyridineacetonitrile Derivatives / H Sun., S. Chen, A. Zhong, R. Sun, J. Jin, J. Yang, D. Liu, J. Niu, S. Lu // Molecules – 2023. – Vol. 28, Iss. 7 – Pp. 3282.

119 . Fu Y. Small-molecule fluorescent probes and their design / Y. Fu, N. S. Finney // RSC Adv – 2018 . – Vol. 8 – Pp. 29051–29061.

120. Proteins F. Use of Fluorescent Probes : Their Effect on Cell Biology and Limitations / F. Proteins // The Anatomical Record – 2012. – Vol. 295, Iss. 12 – Pp. 2031–2036.

121 . Georgiev N. I. Fluorescent Probes as a Tool in Diagnostic and Drug Delivery Systems / N. I. Georgiev, V. V Bakov, K. K. Anichina, V. B. Bojinov // Pharmaceuticals – 2023. – Vol. 16, Iss. 3 – Pp. 381.

122. Ma H. Aggregation-induced emission (AIE)-active fluorescent probes with multiple binding sites toward ATP sensing and live cell imaging / H. Ma, M. Yang, C. Zhang, Y. Ma, Y. Qin, Z. Lei, L. Chang, L. Lei, T. Wanga, Y. Yanga // Journal of Materials Chemistry – 2017. – Vol. 5, Iss. 43 – Pp. 8525-8531.

123 . Yang Q. An HBT-based fluorescent probe for nitroreductase determination and its application in Escherichia coli cell imaging / Q. Yang., Y. Wen, A. Zhong, J. Xua, S. Shao // New Journal of Chemistry – 2020. – Vol. 44, Iss. 38 – Pp. 16265-16268.

124 . Samanta S. An aggregation-induced emission (AIE) active probe for multiple targets: a fluorescent sensor for Zn^{2+} and Al^{3+} & a colorimetric sensor for Cu^{2+} and F^-/S . Samanta, U. Manna, T. Raya, G. Das // Dalton Transactions – 2015 . – Vol. 44, Iss. 43 – Pp. 18902-18910.

125 . Ma J. Insights into AIE materials : A focus on biomedical applications of fl uorescence / J. Ma, Y. Gu, D. Ma, W. Lu, J. Qiu // Frontiers in Chemistry – 2022 .
– Vol. 22 – Pp. 1–25.

126 . Terai T. Fluorescent probes for bioimaging applications / T. Terai, T. Nagano // Current Opinion in Chemical Biology – 2008 . – Vol. 12, Iss. 5 – Pp. 515–521.

127 . Li Y. Development and Challenge of Fluorescent Probes for Bioimaging
Applications : From Visualization to Diagnosis / Y. Li, Q. Chen, X. Pan, W. Lu, J.
Zhang // Springer – 2022. – Vol. 380, Iss. 4 – Pp. 1–42.

128 . Gao L. Fluorescent probes for bioimaging of potential biomarkers in

Parkinson's disease/ L. Gao, W. Wang, X. Wang, F. Yang, L. Xie, J. Shen, M. A. Brimble, Q. Xiao, S. Q. Yao // Chemical Society Reviews – 2021. – Vol. 50, Iss. 2 – Pp. 1219-1250.

129 . Liu A. Direct and ultrasensitive fluorescence detection of PETN vapor based on a fuorene-dimer probe: Via a synergic backbone and side-chain tuning / A. Liu, H. Liu, X. Peng, J. Jia, Y. Fu, Q. He, H. Caoa, J. Cheng // Anal. Methods – 2018 . – Vol. 10, Iss. 22 – Pp. 2567–2574.

130 . Ganiga M. Detection of PETN and RDX using a FRET-based fluorescence sensor system / M. Ganiga, J. Cyriac // Anal. Methods – 2015 . – Vol. 7, Iss. 13 – Pp. 5412–5418.

131 . Wang C. Trace detection of RDX, HMX and PETN explosives using a fluorescence spot sensor / C. Wang, H. Huang, B. R. Bunes, N. Wu, M. Xu, X. Yang, L. Yu, L. Zang // Sci. Rep – 2016 . – Vol. 6 – Pp. 1–9.

132 . Andrew T. L. A fluorescence turn-on mechanism to detect high explosives
RDX and PETN / T. L. Andrew, T. M. Swager // J. Am. Chem. Soc – 2007 . – Vol.
129, Iss. 23 – Pp. 7254–7255.

133 . Vovusha H. DFT and TD-DFT studies on the electronic and optical properties of explosive molecules adsorbed on boron nitride and graphene nano flakes / H. Vovusha, B. Sanyal // RSC Adv – 2015 . – Vol. 5, Iss. 6 – Pp. 4599– 4608.

134 . Cawkwell M. J. Dependence of the Elastic Stiffness Tensors of PETN, α -RDX, γ -RDX, ϵ -RDX, ϵ -CL-20, DAAF, FOX-7, and β -HMX on Hydrostatic Compression / M. J. Cawkwell, M. Zecevic, D. J. Luscher, K. J. Ramos // Propellants, Explos. Pyrotech – 2022. – Vol. 47, Iss. 4 – Pp. 1–22.

135 . Gruzdkov Y. A. Experimental and theoretical study of pentaerythritol tetranitrate conformers / Y. A. Gruzdkov, Z. A. Dreger, Y. M. Gupta // J. Phys. Chem – 2004 . – Vol. 108, Iss. 29 – Pp. 6216–6221. 136 . Liu S. Density functional reactivity theory characterizes charge separation propensity in proton-coupled electron transfer reactions / S. Liu, D. H. Ess, C. K. Schauer // J. Phys. Chem – 2011 . – Vol. 115, Iss. 18 – Pp. 4738–4742.

137 . hao D. Toward Understanding the Isomeric Stability of Fullerenes with Density Functional Theory and the Information-Theoretic Approach / D. Zhao, S. Liu, C. Rong, A. Zhong, S. Liu // ACS Omega – 2018 . – Vol. 3, Iss. 12– Pp. 17986–17990.

138 . Petrone A. On the Driving Force of the Excited-State Proton Shuttle in the Green Fluorescent Protein: A Time-Dependent Density Functional Theory (TD-DFT) Study of the Intrinsic Reaction Path / A. Petrone, P. Cimino, G. Donati, H. P. Hratchian, M. J. Frisch, N. Rega // J. Chem. Theory Comput – 2016 . – Vol. 12, Iss. 10 – Pp. 4925–4933.

139. Doose S. Fluorescence Quenching by Photoinduced Electron Transfer : A Reporter for Conformational Dynamics of Macromolecules / S. Doose, H.
Neuweiler, M. Sauer // Chem Phys Chem – 2009. – Vol. 10, Iss. 9-10 – Pp. 1389-1398.

140. Akbar R. Photoluminescence and Coordination Behaviour of Lanthanide
Complexes of Tris (Aminomethyl) Ethane-5-Oxine in Aqueous Solution / R.
Akbar, M. Baral, B. K. Kanungo // J. Fluoresc – 2017. – Vol. 27 – Pp. 89–103.

141 . Thongyod W. Fluorescence quenching by photoinduced electron transfer between 7-methoxycoumarin and guanine base facilitated by hydrogen bonds: an in silico study/ W. Thongyod, C. Buranachai, T. Pengpan, C. Punwong // Physical Chemistry Chemical Physics – 2019 . – Vol. 21, Iss. 29 – Pp. 16258-16269.

142. Argent S. P. Complexes of Ag (I), Hg (I) and Hg (II) with multidentate pyrazolyl-pyridine ligands : from mononuclear complexes to coordination polymers via helicates , a mesocate , a cage and a catenate / S. P. Argent, H. Adams, J. T. Riis, J. C. Jeffery, L. P. Harding, W. Clegg, R. W. Harringtond, M. D. Ward // Dalton Transactions – 2006. – Vol. 2006, Iss. – Pp. 4996–5013.

143. Zapata F. A Selective Redox and Chromogenic Probe for Hg (II) in
Aqueous Environment Based on a Ferrocene - Azaquinoxaline Dyad / F. Zapata,
A. Caballero, A. Espinosa, T. Alberto // Inorg. Chem – 2009. – Vol. 48, Iss. 24 –
Pp. 11566–11575.

144. Costero A. M. Bis-cyclic Crown Ether Derived from Biphenyl. Bis-cyclic
Crown Ether Derived from Biphenyl. Different Behaviour in Complexing Hg (
SCN) 2 and Hg (CN) 2 / A. M. Costero, C. Andreu, E. Monrabal, A. Tortajada,
L. E. Ochando, J. M. Amigó // Supramolecular Chemistry – 1998. v Vol. 9, Iss. 3 –
Pp. 37–41.

145 . Williams N. Complexation of Mercury (I) and Mercury (II) by 18-Crown6 : Hydrothermal Synthesis of the Mercuric Nitrite Complex / N. J. Williams, R. D.
Hancock, J. H. Riebenspies, M. Fernandes, A. S. De Sousa // Inorg. Chem – 2009
. – Vol. 48, Iss. 24 – Pp. 11724–11733.

146 . Mostafa M. M. Complexes of Some Crown Ethers with Hg (II) Chloride ,
Bromide , Iodide and Cyanide / M. M. Mostafa, E. A. H. Gomaa, M. A. Mostafa //
Synth. React. Inorg. Met.-Org. Chem – 2000 . – Vol. 30, Iss. 1 – Pp. 157–174.

147. Zapata F. A Selective Redox and Chromogenic Probe for Hg(II) in Aqueous Environment Based on a Ferrocene–Azaquinoxaline Dyad / F. Zapata, A.
Caballero, A. Espinosa, A. Tárraga, P. Molina // Inorg. Chem – 2009. – Vol. 48, Iss. 24 – Pp. 11566–11575.

148 . De Schryver F. C. Intramolecular excimer formation in bichromophoric molecules linked by a short flexible chain / F. C. De Schryver, P. Collart, J. Vandendriessche, R. Goedeweeck, A. M. Swinnen, M. V. d. Auweraer // Acc. Chem. Res – 1987 . – Vol. 20, Iss. 5 – Pp. 159–166.

149. Del Valle J. C. Kasha's rule: A reappraisal / J. C. Del Valle, J. Catalán //
Phys. Chem. Chem. Phys – 2019. – Vol. 21, Iss. 19 – Pp. 10061–1006.

150. Kawamura S. I. Foldamer for novel peptide derivatives with pyrene units

incorporated into the main chain // S. I. Kawamura, T. Morita, S. Kimura // Sci. Technol. Adv. Mater – 2006. – Vol. 7, Iss. 6 – Pp. 544–551.

151. D'Abramo M. Theoretical modeling of UV-Vis absorption and emission spectra in liquid state systems including vibrational and conformational effects:
Explicit treatment of the vibronic transitions / M. D'Abramo, M. Aschi, A.
Amadei // J. Chem. Phys – 2014. – Vol. 140, Iss. 16 – Pp.164104

152 . Siu H. Molar absorption coefficient of pyrene aggregates in water / H. Siu, J. Duhamel // J. Phys. Chem – 2008 .- –Vol. 112, Iss. 48 – Pp. 15301–15312.

153. Costa T. Fluorescence behavior of a pyrene-end-capped poly(ethylene oxide) in organic solvents and in dioxane-water mixtures / T. Costa, J. S. De Melo, H. D. Burrows // J. Phys. Chem – 2009. – Vol. 113, Iss. 3 – Pp. 618–626.

154. Shi S. The Effect of Solution Conditions on the Driving Forces for Self-Assembly of a Pyrene Molecule / S. Shi, D. Liu, X. Wang // Eur. J.Chem – 2017.
– Vol. 23, Iss. 41 – Pp. 9736–9740.

155 . Pramanik P. FRET-Selective and Ion-Exchange Responsive Smart Nano-GUMBOS from Functionalized Pyrene: First Observation of Excited State
Aggregation (Exciaggremer) Inside Crystalline Nanoball / Pp. Pramanik, S. K.
Das, M. Halder // J. Phys. Chem – 2020. – Vol. 124, Iss. 8 – Pp. 4791–4801.

156 . Ilharco L. M. Intramolecular Pyrene Excimer in Probing the Sol-Gel Process
/ L. M. Ilharco, A. M. Santos, M. J. Silva, J. M. G. Martinho // Langmuir – 1995 .
– Vol. 11, Iss. 7 – Pp. 2419–2422.

157. Sadieva L. K. Bola-type PEG-linked polyaromatic hydrocarbon-based chemosensors for the 'turn-off' excimer fluorescence detection of nitro-analytes/explosives in aqueous solutions / L. K. Sadieva, I. S. Kovalev, O. S. Taniya, V. A. Platonov, A. S. Novikov, V. S. Berseneva, S. Santra, G. V. Zyryanov, B. C. Ranu, V. N. Charushin // Dye. Pigment – 2023. – Vol. 210 – Pp. 111014.

158 . Ponnu A. A fluorescence-based cyclodextrin sensor to detect nitroaromatic explosives / A. Ponnu, E. V. Anslyn // Supramol. Chem – 2010 . – Vol. 22, Iss. 1 – Pp. 65–71.

159 . Faheem M. Dual luminescent covalent organic frameworks for nitroexplosive detection / M. Faheem, S. Aziz, X. Jing, T. Ma, J. Du, F. Sun, Y. Tian,
G. Zhu // J. Mater. Chem – 2019 . – Vol. 7, Iss. 47 – Pp. 27148–27155.

160. Sharma A. Mechanistic insight into the sensing of nitroaromatic compounds by metal-organic frameworks / A. Sharma, D. Kim, J. H. Park, S. Rakshit, J. Seong, G. H. Jeong, O. H. Kwon, Lah M. Soo // Commun. Chem – 2019. – Vol. 2, Is. 1 – Pp. 1–8.

161 . Singh R. Highly selective fluorescence 'turn off' sensing of picric acid and efficient cell labelling by water-soluble luminescent anthracene-bridged poly(: N vinyl pyrrolidone) / R. Singh, K. Mitra, S. Singh, S. Senapati, V. K. Patel, S. Vishwakarma, A. Kumari, J. Singh, S. K. Sen Gupta, N. Misra, P. Maiti, B. Ray // Analyst – 2019 . – Vol. 144, Iss. 11 – Pp. 3620–3634.

162 . Manandhar E. Host-guest chemistry of pyrene-based molecular receptors / E.
Manandhar, K. J. Wallace // Inorganica Chim. Acta – 2012 . – Vol. 381, Iss. 1 –
Pp. 15–43.

Приложение 1. ¹Н ЯМР спектры соединений **3,7,10,13,14**

Рисунок 32. ¹Н ЯМР-спектр соединения Зв

Рисунок 33. ¹Н ЯМР-спектр соединения 3г

Рисунок 34. ¹Н ЯМР-спектр соединения 3ж

Рисунок 35. ¹Н ЯМР-спектр соединения 7а

Рисунок 36. ¹Н ЯМР-спектр соединения 76

Рисунок 37. ¹Н ЯМР-спектр соединения 10а

Рисунок 38. 1Н ЯМР-спектр соединения 106

Рисунок 39. ¹Н ЯМР-спектр соединения 10в

Рисунок 40. ¹Н ЯМР-спектр соединения 13а

Рисунок 41. ¹Н ЯМР-спектр соединения 146