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INTRODUCTION 

Relevance of the topic. The Jahn–Teller effect (JTE) [1] plays an important 

role in shaping the structure of molecules and crystals and influencing their 

physical properties. It is discussed in the study of magnetic materials [2-6],  

perovskites [7-11],  multiferroics [12-15], graphenes [16], fullerenes [17], and laser 

crystals [18-21]. In crystals, the JTE exists in two variants: as a cooperative effect, 

where Jahn -Teller (JT) centers are implemented in the crystal lattice, or as a 

phenomenon in a system of non-interacting complexes initiated by vacancies or 

impurities, often represented by 3d ions as cationic substitution. Such crystals and 

especially fluorites, those gave the name to the phenomenon known as 

fluorescence [22], attract outstanding interest and are used in optical devices [23-

25] . Transition metal ions with an orbital degenerate state manifest the JTE and, 

therefore, have a much more complicated electronic structure [26]. Quantitative 

information about the electron-lattice interaction and the electronic structure [27] is 

mandatory for the use of these crystals in electronic and optical devices. Thus, the 

study of adiabatic potential energy surface (APES) of the JT complexes is an 

urgent task, both in terms of fundamental research and with respect to practical 

applications. 

The degree of development of the research topic. Traditional methods for 

investigation of the JTE in the impurity crystals are the study of optical emission 

and absorption spectra, electron spin resonance (ESR) and spin echo methods [28-

31]. Physical acoustics experiments, commonly used in physics of solid state (see, 

e.g., [32]), cannot be considered as traditional methods of JTE research, albeit the 

first publications in this field date back to the 1960s (see review by Sturge [33], 

paragraph 9). At first, the experiments were performed using a resonance method: 

mechanical resonance of a specimen of Al2O3 doped with Ni3+ ions at about 2 MHz 

[34]. More accurate attenuation measurements were performed at a higher 

frequency using the echo pulse method [35]. Nevertheless, in an ultrasonic 

experiment, the excitation frequency is still too low to arrange the resonant 

transitions between the energy levels of the JTT complex. Consequently, the 
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ultrasonic energy dissipation and dispersion conditioned by the JTE are of a 

relaxation nature and relate only to the lowest energy (ground) state. 

Relaxation emerges as a result of the non-equilibrium distribution initiated by 

an ultrasonic wave in the system of the JT complexes which represent a 

thermodynamic ensemble. Within the framework of the phenomenological 

approach, the process of relaxation is characterized by the relaxation time. It can be 

obtained in an ultrasound experiment if an external parameter (temperature, 

magnetic field, etc.) significantly changes its value. The relaxation time 

temperature dependence gives information about the relaxation mechanisms 

conditioned by the properties of JT complexes. This dependence was a valuable 

achievement of the JTE study by the primary ultrasound experiments. It cannot be 

obtained by ESR and optical methods: in ESR, the spin-spin and spin-lattice 

relaxation are studied, while in optical spectra, transitions between the ground and 

excited states are investigated. 

 Recent ultrasound studies of the impurity compounds have shown new 

advantages for providing quantitative data on the parameters of the JT complexes 

(see [36, 37] and references therein). If the symmetry of the deformations created 

by the wave corresponds to the symmetry of the local vibrational mode, a new 

channel of energy dissipation arises. The study conducted with waves of various 

polarizations gives an exceptional opportunity to reveal the active local modes and, 

consequently, the symmetry properties of global minima of the lowest sheet of the 

APES.  

Purpose and objectives of the work. The purpose of the thesis is a 

comprehensive study of the symmetry properties of the global minima and saddle 

points of the JT complexes in crystals with a fluorite structure doped with 3d ions; 

basing on experimental data, to calculate the JT stabilization energies and the 

coordinates of the APES extrema defined in a 5-dimensional coordinate system 

corresponding to the symmetrized (trigonal and tetragonal) deformations of the 

cubic JT complex. 

To achieve the goal of the work, the following tasks were solved: 
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1. Calculation of the linear and quadratic constants of the vibronic coupling, 

the stabilization energies and the coordinates of the APES extrema of the JT 

complex in the SrF2:Cr2+ crystal. 

2. Analysis of the results of studies of the temperature dependences of 

attenuation of normal modes in the CaF2:Cr2+ crystal. Determination of the 

symmetry properties of the APES global minima and saddle points. Calculation of 

the vibronic coupling constants, the JT stabilization energies and coordinates of the 

APES extrema. 

3. Analysis of the results of studies of the temperature dependences of 

attenuation of normal modes in the CaF2:Ni2+ crystal. Determination of the 

symmetry properties of the APES global minima and saddle points. Calculation of 

the vibronic coupling constants, the JT stabilization energies and coordinates of the 

APES extrema. 

4. Analysis of the results of studies of the temperature dependences of 

attenuation of normal modes in the CaF2:Cu2+ crystal. Determination of the 

symmetry properties of the APES global minima and saddle points. Calculation of 

the vibronic coupling constants, the JT stabilization energies and coordinates of the 

APES extrema. 

5. Revealing common properties and differences of the JT complexes in the 

studied compounds. 

Scientific novelty:  

1. It was found that the APES of the JT complexes of all crystals studied by 

us which possess a fluorite structure with isovalent substitution of a cation by a 

transition metal ion, namely, SrF2:Cr2+, CaF2:Cr2 [free ion configuration d4, orbital 

term of the JT ion ( )5 2 2

2 2g g gT e t ], CaF2:Cu2+ [ d9, ( )2 4 5

2 2g g gT e t ] and CaF2:Ni2+ [d8,

( )3 4 4

1 2g g gT e t  ] is described by the quadratic 2( )T e t  JTE problem, i.e., has the 

APES global minima of orthorhombic symmetry. The smallest potential barriers 

are formed by the trigonal saddle points, and the largest are formed by the 

tetragonal ones. 
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2. Quantitative data on the linear and quadratic vibronic coupling constants, 

JT stabilization energies, coordinates of the APES extrema in a 5-dimensional 

system of symmetrized displacements were obtained. 

3. On the basis of ultrasound data, the APES parameters were calculated and 

ones independent of the concentration of JT ions are found: the activation energy 

0V  and the ratio of the linear vibronic coupling constants /T EF F  by which the 

studied crystals were compared. 

Theoretical and practical significance of the work: 

1. The method used for determination of the symmetry properties of the 

APES has shown its efficiency and unambiguity of the results. It can be 

recommended for usage in further investigation of the APES in doped crystals by 

means of ultrasonic experiment. 

2. The obtained results expand the fundamental understanding of the 

mechanism of the APES construction in the case of triply degenerate orbital states: 

four nearest neighbors lead to tetragonal APES global minima, eight lead to 

orthorhombic ones. 

3. The ratio of the linear vibronic coupling constants /T EF F  is close to unit 

and the assumption of 
T EF F  can be appropriately used in model calculation of 

the APES in the case when only one vibronic coupling constant is defined in an 

experiment. 

Methodology and research methods. The methodology of the APES 

parameters evaluation in a cubic crystal is based on the physical acoustics research 

method. It implies the use of the data on temperature dependences of attenuation 

and phase velocity of the normal modes: the two transverse waves (or one 

transverse and one longitudinal modes) propagating along the [110] 

crystallographic axes. Anomalies in all the studied modes indicate the 

orthorhombic symmetry of the APES global minima, ones in tetragonal reveals the 

tetragonal symmetry of the APES global minima, while the anomalies in trigonal 

mode justify the trigonal symmetry of the APES global minima. 
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After extraction of the JT contribution to ultrasonic attenuation, the 

temperature dependence of relaxation time is constructed and the linear vibronic 

coupling constants are evaluated. Simulation of the temperature dependence of the 

relaxation time with three mechanisms (thermal activation, tunneling through the 

potential energy barrier, and two-phonon mechanisms [33]) reveals the magnitude 

of the activation energy which makes it possible to calculate the value of the 

potential energy barrier which is the lowest saddle point. The evaluated 

magnitudes of the linear vibronic coupling constants allows to calculate the 

magnitudes of the corresponding JT stabilization energies. The coordinates of the 

APES global minima are calculated with the use of expressions given in section 

3.3 in [38] or in the case of the orthorhombic global minima the expressions 

published in [39]. 

Thesis to defend: 

1. The APES of the JT complexes in crystals with a fluorite structure with 

isovalent substitution of a cation by a transition metal ion, CaF2:Cr2+, CaF2:Cu2+, 

and CaF2:Ni2+ is described by the quadratic JTE problem, i.e., it has the 

orthorhombic global minima, the smallest potential barriers are formed by the 

trigonal saddle points, and the largest ones have the tetragonal symmetry. 

2. The parameters of the APES calculated on the basis of ultrasonic data and 

independent of the concentration of the JT ions are the activation energy and the 

ratio of linear constants of vibronic coupling. In most compounds, the activation 

energy varies in the range of 90 – 400 cm-1. 

3. The isothermal JT contribution to all the elastic moduli in a cubic crystal 

depends on both tetragonal and trigonal linear vibronic coupling constants if the 

complex undergoes static deformation along at least one of the cubic axes. 

The degree of reliability of the work results is determined by the use of the 

data obtained on the certified experimental setups and certified computer 

programs. The results obtained during the work which can be compared with the 

optical experiments or ESR are in good agreement with the published literature 

data. 
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CHAPTER 1. LITERATURE REVIEW 

1.1. Historical overview 

Currently, the term JTE is used for a whole range of phenomena, one way or 

another, related to the theorem formulated by Hermann Arthur Jahn and Edward 

Teller  in 1937 [1]. In literature (see, for example, [38]), the case is mentioned of 

Teller discussion of the results of the experiment done by his graduate student 

Rudolf Renner [40] with Lev Landau in 1934. Renner's research served as an 

impetus for considering molecules with degenerate orbital states. A qualitative 

picture of the phenomenon was constructed, for the mathematical description of 

which Teller turned to Jahn, which eventually led to the aforementioned theorem, 

which is called the Jahn-Teller theorem. 

The theorem states that the highly symmetric state of a molecule with the 

orbital degeneracy is unstable, and a stable state is achieved due to deformations 

that lower the symmetry of the molecule. Subsequently, it became clear that this 

theorem also applies to crystals in which the JT centers are contained in an 

elementary cell, as well as to crystals doped with the JT ions. For a long time, the 

JTE was the subject of theoretical research [41 – 43], and it was even believed that 

it was not experimentally observable [44]. However, in the 1950s, experimental 

works appeared on the study of ESR spectra [45- 47] and optical absorption spectra 

[48], in which the interpretation of the results was impossible without involving 

ideas about JTE (see reviews [33], [49] and bibliographic review [50]).  

1.2. Basics of the JTE theory 

The theoretical description of the JTE is based on the solution of the Schrodinger 

equation with the Hamiltonian 

( ),r QH H H V r Q= + +  ,                                           (1.1) 

where rH  represents the kinetic energy of electrons and the inter-electronic 

interaction, 
QH  is the kinetic energy of nuclei, r  and Q  are the sets of electronic 

and nuclear coordinates, respectively. The operator of the interaction of electrons 

https://en.wikipedia.org/wiki/Hermann_Arthur_Jahn
https://en.wikipedia.org/wiki/Edward_Teller
https://en.wikipedia.org/wiki/Edward_Teller
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and nuclei ( ),V r Q  is written as power series over displacements of the nuclei 

relative to the initial configuration with 0 0Q Q = = . The total wave function 

( ),r Q  is written as series over electronic wave functions ( )k r : 

( ) ( ) ( ), k k

k

r Q Q r  =   ,                                                   (1.2) 

A system of coupled equations with coefficients ( )k Q  

( ) ( ) ( )( )Q k k km m

m k

H E Q E Q W Q Q 


 − − +   ,                          (1.3) 

is a solution of the Schrodinger equation in which the vibronic coupling operator 

  ( ) ( ) ( )
2

,0 0

1
, ,0 ...

2

V V
W Q V r Q V r Q Q Q

Q Q Q
  

    

   
= − = + +         

   .                 (1.4) 

The matrix elements of the operator W  are entering the expression for the adiabatic 

potential (the potential energy of the nuclei of the JT complex in the averaged field 

of electrons in the state described by ( )k r ) 

( ) ( ) ( )k k kkE Q E Q W Q= + ,                                                (1.5) 

where ( )kE Q  is the energy of elastic deformations of the complex without taking 

into account the vibronic coupling.  

In the case of a two-fold orbital degeneracy, the APES is given in the system 

of tetragonal symmetrized coordinates Q  and Q  in the Ham notation [51] and its 

minima (stabilization energy) 

   
2

2

JT E
E

E

F
E

K
= .                                                                 (1.6) 

They are determined by the tetragonal linear constant of the vibronic coupling EF  

and the primary tetragonal force constant EK , which characterizes the elastic 

energy of the JT complex without taking into account the vibronic interaction. 

  
E

V
F

Q

 
 

=  
 

 .                                                         (1.7) 
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In the case of three-fold orbital degeneracy, in the general case, the APES is given 

in a 5-dimensional system of symmetrized coordinates, tetragonal (mentioned 

above) and trigonal Q
 ,Q

 and Q
 in Ham's notation [51]. The minima of 

trigonal symmetry (if any) are given by the trigonal linear constant of the vibronic 

coupling TF  and the primary trigonal force constant TK : 

   
22

3

JT T
T

T

F
E

K
=  ,                                                          (1.8) 

   T

V
F

Q

 
 

=    
.                                                   (1.9) 

The description of the JTE in doped crystals is based on a molecular model in 

which the JT complex containing the JT ion and the immediate environment is 

considered. At the same time, the concentration of JT ions should be small so that 

the complexes forming the thermodynamic ensemble (the JT subsystem of the 

crystal) can be considered as non-interacting with each other and described within 

the framework of the approach given above in this paragraph. 

Within the framework of the phenomenological approach, the state of a 

subsystem can be described with the help of some thermodynamic potential. 

Bearing in mind that we will need to consider mechanical properties (absorption 

and dispersion of normal elastic modes, elastic modulus), it makes sense to use 

Helmholtz free energy A U TS= − , or rather, its density (see, for example, [52]). 

Further, by volume-dependent parameters, for example, internal energy U , entropy 

S , we will consider as the values of a unit volume, i.e., the density: 

ij ij i i i idA d E dD H dB SdT = + + − ,                           (1.10) 

where 
ij  are the components of the elastic stress tensor, 

ij are the components of 

the relative strain tensor, iE  are the electric field strength components, iH  are the 

magnetic field strength components, iD are the electric induction components, iB  

are the magnetic induction components and T  is the temperature. It is obvious that 

the manifestation of JTE in the acoustic/ultrasonic experiment is described by the 
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first term in the right hand part [33], by the second in the optical studies [53], in the 

magnetic – by the third (magnetostatics [54], ESR [45], [47], [51]; [55]), and by 

the fourth in the thermal physics [54]. 

1.3.  Physical acoustics method of investigation 

In our work, we will limit ourselves to considering the first term in equation 

(1.10). However, equation (1.10) should be supplemented with material equations, 

which at zero electric and magnetic fields and at constant temperature are reduced 

to the following [56]: 

     T

ij ijkl klc = ,                                                           (1.11) 

where  

1

2

ji
ij

j i

uu

x x


 
= +    

,                                               (1.12) 

iu  are the components of the displacement vector of the volume element, 
jx  are the 

components of the radius vector in the Cartesian coordinate system, and the 

components of the isothermal elastic moduli tensor are  

2

0

T

ijkl

ij kl

A
c


 

→

 
=  

   

.                                            (1.13) 

The free energy density A  is expressed using the partition function Z [57]: 

lnBA nk T Z= − ,                                                (1.14) 

k

B

E

k T

k

Z e


−

=  ,                                                  (1.15) 

where kE  are variation of energy levels as a result of external effect of 

deformations, fields, temperature variations, Bk  is the Boltzmann constant, n  is 

concentration of structural elements. 
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Since the free energy of a crystal is an additive function, it also includes 

contribution of the JT subsystem. It is determined by equations (1.13) - (1.15) with 

parameters n , kE . As far as we know, Sturge and co-authors [35] were the first 

who, analyzing the results of ultrasound experiments on JTE, came to the 

conclusion about the relaxation nature of ultrasound attenuation due to the 

influence of the JT subsystem. Basing on the Zener equation [58] (see also [59]) 

they obtained an expression for the attenuation coefficient, which is given in the 

Sturge’s review as follows (see page137 in [33]): 

( ) ( )
( )

0 2

0

1

2 1

S T
JT JTc c

k
c






−
=

+
 ,                                  (1.16) 

where 0k  and 0c  are some fixed values of the wave number and the corresponding 

dynamic modulus of elasticity (of the whole crystal), the superscripts S and T

denote the adiabatic and isothermal contributions of the JT subsystem to the elastic 

modulus,   is the cyclic frequency of the ultrasonic wave and    is the relaxation 

time. This relaxation time characterizes the process of establishing the equilibrium 

state in a thermodynamic ensemble which is formed by the JT complexes (JT 

subsystem of a crystal). The state of the subsystem is described by the distribution 

function which takes into account different types of deformations of the JT 

complexes. So, relaxation means tendency to the equilibrium population of the 

states, corresponding to the distorted complexes. According to Sturge ([33], p.136), 

( )
S

JTc  is zero, while ( )
T

JTc  is determined using the general expressions (1.13)-(1.15). 

In equation (1.16), the indices indicating the type of normal mode and the 

component of the tensor of elastic modules are omitted, which should correspond 

to the following definitions: 

k
v


= ,                                                                         (1.17) 

2c v= ,                                                                       (1.18) 
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where v  is the phase velocity of the normal mode,   is the density of the crystal. 

Further description should be carried out by introducing a complex wave vector k

and a tensor of complex dynamic moduli c , whose changes caused by external 

parameters are determined as follows 

0 0

1

2

k c

k c

  
= − ,                                                             (1.19) 

where the subscript   at k  indicates the type of normal mode, and at c  indicates 

the effective elastic modulus with which this mode is associated by the expression 

(1.18). The subscript 0, as before, denotes a fixed value of a physical quantity (for 

example, determined at the temperature  0T T=  ) and refers to the same mode or 

modulus  :  
0k k k  = − , 

0c c c  = − . If the variables vary with time and 

coordinates, as ( )exp i t −   k r , the complex wave vector is defined as 

i
v




 
= − 

 
kk e ,                                                        (1.20) 

where ke  is the unit vector of k  direction. Specifying the type of normal mode   

will require specifying an subscript corresponding to this mode, for k , v , and  . 

A more complete description of the manifestation of JTE in an ultrasound 

experiment (compared to equation (1.16)), including not only dissipation, but also 

dispersion, was given on page 748 in [60]: 

( )
( )

2

0 0 0 0 0

1 1 1

2 2 1

T
JTJT JT JT JT ck v c i

i
k v k c c

    



  −
= − − = − = −   + 

.                    (1.21) 

It follows from the above that the attenuation and phase velocity of normal elastic 

waves or the real and imaginary components of the tensor of dynamic elastic 

moduli associated with them are investigated by means of physical acoustics. 

Acoustic methods and schemes of experimental installations used for the study of 

solids are described in detail by McSkimin in [61]. From the variety given in this 
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chapter, we used a pulse method for measuring the phase velocity and attenuation 

of normal modes after passing through the investigated sample to study the JTE.  

In installations operating on the principle of a frequency-variable bridge (see 

paragraph 3.1.2 in [62]), the change in phase velocity 0v v v = −  and the attenuation 

0   = − coefficient are determined by the change in frequency 0   = −  

necessary to maintain the balance of the bridge in phase and the change in the 

length of the sample caused by  the external parameter 0 = −  and the voltage 

ratio at the receiver input 0/U U  

0 0 0 0

Re
v k

v k





   
= − = + ,                                                  (1.22) 

0

1
ln

U

U
 = − .                                                     (1.23) 

In practice, the relative changes in the length of the sample from the external 

parameter are significantly less than the changes in other values, therefore, the last 

term in the right hand part in equation (1.22) is neglected, and the value 0  is used 

instead of  in equation (1.23). 

1.4. The degree of development of the research topic 

As already noted in Introduction, the first experimental work on the study of JTE 

by ultrasonic technique dates back to the 60s of the 20th century and is associated 

with the name of Sturge (Michael Dudley Sturge 1931-2003) [53], [35]. Using an 

Al2O3: Ni3+ crystal as an example, he and his colleagues found that anomalies in 

the temperature dependences of attenuation have a relaxation nature, an expression 

for attenuation was obtained, from which it follows that there is a possibility to 

determine the temperature dependence of the relaxation time of the JT subsystem 

and calculating the values of the linear constants of the vibronic coupling. In 

addition, estimates were made of some values that determine the attenuation of 
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ultrasound due to the JT subsystem. That is, in principle, the direction of the JTE 

research has been set for a very distant future. 

What was not done or not done accurately enough? In the expression for the 

relaxation time ( )T , the temperature 1T  corresponding to the condition 1 =  was 

determined by the position mT  of the peak of relaxation attenuation. Since 

isothermal moduli are inversely proportional to temperature, it is an approximate 

value (valid at high temperatures). Besides, an expression for calculating the linear 

constant of the vibronic coupling was not obtained.  

A direct continuation of the works by the Sturge group should be considered 

the studies of JTE by ultrasonic methods in compounds AIIBVI:3d2+ with a crystal 

structure of sphalerite: ZnSe:Ni2+ [63], ZnSe: Cr2+ [64,65], ZnSe:V2+ [66] , 

ZnTe:Ni2+ [67] ,  and ZnSe:Fe2+ [68]. As the results of these investigations, a more 

correct expression for relaxation time calculation was introduced which contained 

1T  instead of mT  and the procedure of 1T  determining was introduced. Besides, the 

method of construction of temperature dependences of the relaxed (isothermal) and 

unrelaxed (adiabatic) moduli was developed.  

The AIIBVI:3d2+ compounds contain the JT ion in tetrahedral coordination  

(see Figure 1.1).  Investigation of the crystals with other JT complexes could be a 

natural extension of the JTE investigation in doped crystals by means of ultrasonic 

technique. The present dissertation is focused on the fluoride crystals with the JT 

center in 8-ions coordination. Attention was paid to the triply degenerate 3d 

dopants since in this case we can meet with a variety of the ground state symmetry 

properties. In advance, it is impossible to predict whether the global minima will 

be tetragonal (like in studied sphalerite crystals), trigonal or orthorhombic ones. 
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Figure 1.1 ‒ A-substituted ZnSe:Cr  with  sphalerite (zinc-blend) crystal structure. 

Figure is reproduced from [69]. 
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CHAPTER 2. THE CRYSRALS STUDIED AND EXPERIMENTAL 

THECHNIQUE  

2.1. The crystals studied  

The structure of fluorite type crystal 53 ( ) hFm m O  is shown in Figure 2.1. Calcium 

ions occupy the positions with coordinates (0, 0, 0), (1/2, 1/2, 0), (1/2, 0, 1/2), and 

(0, 1/2, 1/2) while fluorine ions occupy the positions (3/4, 1/4, 1/4), (1/4, 3/4, 1/4), 

(1/4, 1/4, 3/4), (3/4, 3/4, 3/4), (1/4, 1/4, 1/4), (3/4, 3/4, 1/4), (1/4, 3/4, 3/4), and 

(3/4, 1/4, 3/4). 

 

Figure 2.1 ‒ A-substituted CaF2:3d with fluorite crystal structure red are calcium 

ions, green are fluorine ions, blue is 3d substitution ion. The 3dF8 complex is 

outlined by pink 

The single crystal of CaF2 doped with Cr2+ was produced at the E.K. 

Zavoisky Physical-Technical Institute, Kazan Scientific Center of the RAS by the 

Czochralski method. The chromium ions were added to a melt in a form of 

carefully dehydrated chromium fluoride powders. To prepare the helium–fluorine 

atmosphere the fluorine gas was done by thermal decomposition of Teflon. This 

encouraged an increase of chromium concentration dissolved in the melt. It proved 

to be a necessary condition for incorporating chromium into the lattice of the 
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growing crystal [70]. Concentration of the dopant in this case and in all other 

studied crystals was measured at the Institute of Solid State Chemistry, Ural 

Branch of the RAS using ELAN 9000 ICP-MS quadruple-based instrument 

(Perkin-Elmer SCIEX).   

In CaF2 doped with Cr, concentration of the chromium ions proved to be 

19 34.74 0.03 10 m) c(n . It significantly surpassed the concentration of other 3d 

metals. Since the mean distance between the Cr impurities is large, the JT centers 

can be treated as non-interacting ones. The nominally pure CaF2 sample was 

crystallized by the Bridgman–Stockbarger method at the A.P. Vinogradov Institute 

of Geochemistry, Siberian Branch of the RAS. Concentration of 3d impurities in it 

was less than 17 39 10 cm . The result of XRD analysis of our CaF2:Cr crystal done 

in Bregg–Brentano geometry with the step of 0.04 deg is presented in Figure 2.3. It 

shows that due to small concentration of the dopant the diffractogram of this 

crystal is almost identic to one of pure CaF2. Chromium ion substitutes Ca2+ with 

eight fluorine ions as the nearest neighbors in the corners of the cube. In cubic 

coordination, Cr2+ ion has ground orbital triplet ( )5 2 2

2 2g g gT e t  (see Table 1 in [33]). 

However, an aliovalent substitution is also possible. Some papers report properties 

of Cr3+ ions in the fluorite-type matrix [71–73]. 
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Figure 2.3 ‒ X-ray diffractogram of the studied crystal CaF2:Cr (dash curve) and 

theoretical one for CaF2 (using the database http://crystallography.net) with 

account of background signal. 

The single crystal of SrF2:Cr2+ was grown at the E.K. Zavoisky Physical-

Technical Institute, Kazan Scientific Center of the RAS by Czochralski technique 

in a helium atmosphere. Concentration of chromium ion 19 31.60 0.03 10 m) c(n . 

The crystal of CaF2 doped with Ni2+ ions was grown from the melt by the 

Bridgman-Stockbarger method in a helium atmosphere at the A.P. Vinogradov 

Institute of Geochemistry, Siberian Branch of the RAS. Before loading the mixture 

into the crucible, the salt of transition metal NiF2 was dried in vacuum oven for 

several days. In the growth of alkaline earth fluorite single crystals, a small amount 

of CdF2 is generally used as a scavenger in order to remove oxides and oxyfluorites 

contained in the raw materials by the reaction 2 2CdF CaO CdO+CaF . CdO and 

CdF2 excess evaporate completely from the melt before crystallization begins. The 

Ni2+ ion in cubic coordination has ground orbital triplet ( )3 4 4

1 2g g gT e t  (see Table 1 in 

[33]).  

The CaF2:Cu2+ crystal was produced at the E.K. Zavoisky Physical–

Technical Institute, Kazan Scientific Center of the RAS by the Czochralski 

technique which details are given in [74]. The copper ions concentration was 
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19 37.12 0.03 10 m) c(n . In case of isovalent copper substitution of Ca2+, a cubic JT 

complexes is formed leading to the orbital triply degenerate JT centers with the 

term ( )2 4 5

2 2g g gT e t  (see, e.g., Table 1 in [33]). Based on ESR data, it was established 

that at a concentration of copper ions no more than 0.5 at. % (the crystal under 

study falls into this category) mostly orthorhombic centers are formed [74], 

although it is well known that Cu2+ ions in crystals with the fluorite structure can 

arrange off-centers as well [75, 76]. 

In general case, the JT complex composed by JT center with the orbital triply 

degenerate ground state possesses the APES defined in 5 symmetrized coordinates 

( ), , , ,Q Q Q Q Q      [38]. All the investigated JT complexes belong to this category. 

2.2. The experimental technique 

 The experiments were carried out at the Ural Federal University using the 

setup which Block diagram is given in Figure 2.4. It operated as a frequency 

variable bridge [62]. It is based on a radio-pulse-echo method and square-wave 

frequency modulation for control of the signal phase. High frequency vibrations of 

the piezoelectric transducer 1 are excited by an electric signal which possesses the 

form of a radio pulse of about 1 μs. After passage through the specimen, the 

mechanical vibrations are transformed into an electric oscillations by the receiving 

piezoelectric transducer 2 placed on the opposite edge of the specimen. The 

received signal is amplified and mixed with the reference one of the same 

frequency. After integrating the resulting signals with gated box-car averager, the 

output direct current signal, is used for the frequency adjustment, keeping the 

phase constant 0kl = =  and for measuring the amplitude of the received radio 

pulses. Typical instrumental accuracy of the measurements of real and imaginary  

components of 0/k k  is about 10-6. It is provided by the accuracy of 10 Hz for 

measuring the frequency of about 30 MHz and 1 mV for measuring the voltage of 

about 1 V. 
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Figure 2.4 ‒ Block diagram of the installation with frequency modulation of the 

signal 

The measured values of 0/f f  and 0/U U  were converted to 0Re /k k  and  

with the use of equations (1.22) and (1.23). 
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CHAPTER 3. ADIABATIC POTENTIAL ENERGY SURFACE OF THE 

JAHN-TELLER COMPLEXES IN SrF2:Cr2+ CRYSRAL  

3.1. Isothermal moduli of the subsystem formed by cubic JT complexes in a 

fluorite-type crystal  

In Ref. [37], the results of ultrasonic investigations of the SrF2:Cr2+ crystal were 

published. First of all, the expressions for the contribution of the subsystem 

arranged by the cubic JT complexes to the isothermal moduli of a cubic crystal 

were introduced. It was shown that the expression of this contribution for a certain 

modulus depends upon the symmetry properties of the APES global minima. By 

means of measuring the temperature dependences of 44c  and 
11 12( ) / 2Ec c c  , one 

can solve this problem. We will reproduce here these expressions since it is 

important for our further consideration. 

Table 3.1 ‒ Isothermal contribution of the cubic JT complexes to the elastic 

moduli of a fluorite-type crystal. 0a  is the distance between the JT ion and the 

nearest neighbor (fluorine ion). After [37]. 

Symmetry 

properties of 

the APES 

minima 

11

JTc  

 

12

JTc  
JT

Ec  
44

JTc  

 

E 

2 2

08

27

E

B

na F

k T
−

 
 

2 2

04

27

E

B

na F

k T
 

2 2

02

9

E

B

na F

k T
−

 
0  

 

T 
0  

 

0  
0  

2 2

016

27

T

B

na F

k T
−

 

 

OR 

2 2

01

54

E

B

na F

k T
−  

2 2

01

108

E

B

na F

k T
−  

2 2

01

72

E

B

na F

k T
−  

2 2

04

9

T

B

na F

k T
−  

 

Dispersion and dissipation of the ultrasonic modes depend on the isothermal 

modulus with defines the order of the magnitude (see equation (1.21). Analyzing 

the Table 3.1, one can notice: the anomalies in real and imaginary parts of 
44( )c T  
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and the absence of them in ( )Ec T  indicate the trigonal symmetry of the global 

minima, the opposite case reveals tetragonal symmetry, and the presence of the 

anomalies in both the moduli justifies orthorhombic global minima. According to 

this approach, the APES global minima of the introduced Cr2+F8 complexes in SrF2 

crystal are orthorhombic ones. Here we will modify these expressions meaning that 

we have three JT subsystems: one has the JT complexes additionally (with respect 

to JTE) distorted along the x  axis of the cube, the second one has the complexes 

additionally distorted along the y  axis, and the complexes of the third subsystem 

are additionally distorted along the z  axis. This modification will help us to 

interpret the results of the experiments discussed in chapter 5. Static additional 

deformation will be denoted with the superscript “0”. The expressions for kE  

entering equation (1.15) have the following form for deformation 0

1  along the x  

axis: 

( ) ( ) ( )1 0 0

1 1 1 1 1 2 3 6

1

4
E TE F a aF       = − + + + + + + ,                          (3.1) 

( ) ( ) ( )1 0 0

2 1 1 1 1 2 3 6

1

4
E TE F a aF       = − + + + + + − ,                          (3.2) 

( ) ( )1 0

3 2 1 1 2 3 5

1

4
E TE F a aF      = − + + + + + ,                                     (3.3) 

( ) ( )1 0

4 2 1 1 2 3 5

1

4
E TE F a aF      = − + + + + − ,                                     (3.4) 

( ) ( )1 0

5 3 1 1 2 3 4

1

4
E TE F a aF      = − + + + + + ,                                     (3.5) 

( ) ( )1 0

6 3 1 1 2 3 4

1

4
E TE F a aF      = − + + + + − ,                                     (3.6) 

for deformation 0

2  along the y  axis: 

( ) ( )2 0

1 1 1 2 2 3 6

1

4
E TE F a aF      = − + + + + + ,                                       (3.7) 

( ) ( )2 0

2 1 1 2 2 3 6

1

4
E TE F a aF      = − + + + + − ,                                       (3.8) 

( ) ( ) ( )2 0 0

3 2 2 1 2 2 3 5

1

4
E TE F a aF       = − + + + + + + ,                             (3.9) 
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( ) ( ) ( )2 0 0

4 2 2 1 2 2 3 5

1

4
E TE F a aF       = − + + + + + − ,                           (3.10) 

( ) ( )2 0

5 3 1 2 2 3 4

1

4
E TE F a aF      = − + + + + + ,                                     (3.11) 

( ) ( )2 0

6 3 1 2 2 3 4

1

4
E TE F a aF      = − + + + + − ,                                     (3.12) 

and for deformation 0

3  along the z  axis: 

( ) ( )3 0

1 1 1 2 3 3 6

1

4
E TE F a aF      = − + + + + + ,                                    (3.13) 

( ) ( )3 0

2 1 1 2 3 3 6

1

4
E TE F a aF      = − + + + + − ,                                    (3.14) 

( ) ( )3 0

3 2 1 2 3 3 5

1

4
E TE F a aF      = − + + + + + ,                                    (3.15) 

( ) ( )3 0

4 2 1 2 3 3 5

1

4
E TE F a aF      = − + + + + − ,                                    (3.16) 

( ) ( ) ( )3 0 0

5 3 3 1 2 3 3 4

1

4
E TE F a aF       = − + + + + + + ,                          (3.17) 

( ) ( ) ( )3 0 0

6 3 3 1 2 3 3 4

1

4
E TE F a aF       = − + + + + + − .                          (3.18) 

Here a  is the edge of the cubic complex Cr3+F8
-.   

Introducing / 4E BC F a k T= −  and /T BD F a k T= − , we have obtained the following 

expressions for the isothermal contributions of the JT subsystems to the total 

moduli of the crystal according to equations. (1.13)- (1.15): 

( )
( ) ( )

0 0 0
0 0 01 1 1
1 1 1

0 0 0
0 0 0 1 1 1
1 1 1

2
2 2

1

11 2

2 2

22

C D D
C D D

B D C D
D C D

C D e De C D e D e
c nk T

e ee e

     

    

− +
− +

− +
− +

  − + + − + +  = − − + 
+  +

  

,            (3.19)

( )
( ) ( )

0 0 00 0 0
2 2 22 2 2

0 0 0
0 0 0 2 2 2
2 2 2

2
2 2 2

2

11 2

2

22

D C DD C D

B D C D
D C D

C D D e D eC D e De
c nk T

e ee e

    

    

− +− +

− +
− +

    − + + +− + +    = − − + 
+  +

  

,   

(3.20) 

 

( )
( ) ( )

0 0 0 0 0 0
3 3 3 3 3 3

0 0 0
0 0 0 3 3 3
3 3 3

2
2 2 2

3

11 2

2

22

D C D D C D

B D C D
D C D

C D e De C D D e D e
c nk T

e ee e

     

    

− + − +

− +
− +

    − + + − + + +    = − − + 
+  +

  

,   

(3.21) 
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( )

( ) ( )

( ) ( )

0 0 0 0 0 0
1 1 1 1 1 1

0 0 0
1 1 1

0 0 0
1 1 1

0 0 0
1 1 1

2

1

12

2 2

2

2
        

2

C D D C D D

D C D

B

C D D

D C D

De C D e C D e De

e e
c nk T

C D De C D De

e e

     

  

  

  

− + − +

− +

− +

− +

    + − +  − + +
    −

   +
= −   

 
− + + − + +

 + 

,               (3.22) 

( )

( ) ( )

( ) ( )

0 0 0 0 0 0
2 2 2 2 2 2

0 0 0
2 2 2

0 0 0
2 2 2

0 0 0
2 2 2

2

2

12

2 2

2

2
                 

2

D C D D C D

D C D

B

D C D

D C D

De C D e C D e De

e e
c nk T

C D De C D De

e e

     

  

  

  

− + − +

− +

− +

− +

    + − +  − + +
    −

   +
= −   

 
− + + − + +

 + 

,               (3.23) 

( )
( ) ( )

0 0 0
0 0 03 3 3
3 3 3

0 0 0
0 0 0 3 3 3
3 3 3

2

2

3

12 2

2 2

22

D C D
D C D

B D C D
D C D

C D e De C D De D e
c nk T

e ee e

     

    

− +
− +

− +
− +

  − + + − + +  = − − + 
+  +

  

,         (3.24) 

( )

0
1

0 0 0
1 1 1

2
1

44
2

D

B D C D

D e
c nk T

e e



  − +
= −

+
,                                                       (3.25) 

( )

0
2

0 0 0
2 2 2

2
2

44
2

D

B D C D

D e
c nk T

e e



  − +
= −

+
,                                                     (3.26) 

( )

0 0
3 3

0 0 0
3 3 3

2
3

44
2

C D

B D C D

D e
c nk T

e e

 

  

− +

− +
= −

+
.                                                     (3.27) 

In equations (3.1) – (3.27), the superscripts 1,  2,  3i =  indicate the axes ,  ,  x y z

, respectively, along which the static deformations 0

i  take place. As a result, we 

can conclude the isothermal JT contribution to all the elastic moduli in a cubic 

crystal depends on both tetragonal and trigonal linear vibronic coupling constants 

if the complex undergoes additional static deformation along at least one of the 

cubic axes. In other word, the additional deformations substantially level the 

manifestation of the JTE in different normal modes. In the case of SrF2:Cr2+, 

anomalies in 
44( )c T  were significantly larger ones in ( )Ec T . According to the Table 

3.1, it justifies the orthorhombic APES global minima.  

3.2. Temperature dependence of relaxation time 

Temperature dependence of relaxation time of the JT subsystem can be 

constructed with the use of temperature dependence of ultrasonic attenuation 

( )T  and extraction of background attenuation ( )b T . Sturge [33]  discussed 
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three mechanisms of relaxation while interpreting the experimental data: thermal 

activation ( a ), tunneling ( t ), and two-phonon ( R ) ones:                   

  0 0exp( / )a V T = ,                                                       (3.28) 

( )
1

t BT
−

= ,                                                                (3.29) 

( )
1

2 3/R B T
−

 = 
 

,                                                    (3.30) 

where 0V  is activation energy, 1

0  is frequency of attempts, B  and  are 

constants of  s-1K -1 and  K  dimensions, respectively. Equation (1.21) written for 

attenuation in high-frequency limit 1 which means low temperature limit 

as well, has the form of 

( ) 1

0 0

1

2

T
JTJT c

k c





 



−

→

 
=  

 
.                                           (3.31) 

 Since 1( )JT Tc T  (see Table 3.1.) and 1

t T  (equation (3.29), the right hand 

part of equation (3.31) is a non-vanishing constant value. In general case, this 

value is important when one constructs the temperature dependence of the 

background attenuation ( )b T . However, the peak of relaxation attenuation located 

at considerably high temperature ( 40 KT )  justifies large relaxation time and 

small value of relaxation rate at low temperatures. This is the case observed in the 

SrF2:Cr2+ crystal (see Figures. 3.1 and 3.2).  
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Figure 3.1 ‒ Temperature dependence of ultrasonic attenuation in the SrF2:Cr2+ 

crystal. The 44c  mode at 105 MHz  (curve 1) ( ) ( )44 0 44 44 0/ 0 /k T T k   = − →  
, the 

background attenuation ( ) 8 2

44 2.07 10b T T − −=   (2), and contribution of the JT 

subsystem ( ) ( )44 0 44 44 0/ /JT JT bk T T k   =  −   ( 3). After [37]. 
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Figure 3.2 ‒ Temperature dependence of ultrasonic attenuation in the SrF2:Cr2+ 

crystal. The 
Ec  mode at 56 MHz. 

Therefore, we can formulate the requirement for ( )b T  construction: it should 

coincide with the measured dependence ( )a T  at low ( 1T T ) and high ( 1T T ) 

temperatures. Here the temperature 1T  is introduced which corresponds to the 
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condition 1( ) 1T . In Figure 3.1 the dependence of ( ) 8 2

44 2.07 10b T T − −=   matches 

the mentioned requirements. So, the JT contribution to ultrasonic attenuation 

obtained in an experiment can be introduced as  

( ) ( )JT bT T .                                            (3.32) 

The precise magnitude of 1T  can be determined with the use of the temperature 

dependence of the product ( )JT T T . Multiplying ( )JT T  by T eliminates the 

inverse temperature dependence of attenuation (initiated by the isothermal 

modulus) and the product is proportional to 2/ 1 ( ) . Maximum of ( )JT T T  

occurs at 1T T . Such procedure is shown in Figure 3.3. In the narrow temperature 

interval, the peak can be simulated with a parabola 
2

1( )f a b T T .  
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Figure 3.3 ‒ Temperature dependence of 
44 ( )JT T T  at 105 MHz (symbols) and 

model curve 
2179.7 2.5 8 43( . )4Tf . 

 

In our case, 179.7 (Np/cm) Ka , 1 48.43 KT . The value of 1

1( )JTa T T  is 

also will be used below for evaluation of relaxation time temperature dependence. 
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Figure 3.4 ‒Temperature dependence of relaxation time in SrF2:Cr2+ crystal 

determined with the use of the data given in Figure 3.1. Dark solid line is 

experimental data, curve 1 is activation relaxation time ( )137 10 exp 380 /a T −=  , 

curve 2 is tunneling relaxation time 5 12.8 10t T − −=  , curve 3 is relaxation time due 

to  two-phonon mechanism 3 33.5 10R T − −=  , curve 4 is total relaxation time 

( )
1

1 1 1

a t R   
−

− − −= + + . The square symbol corresponds to ( ) 1T = . 

For calculation of the temperature dependence of relaxation time we can use 

the expression (see , e.g., [60]) 

 ( )
( )

( )

( )

( )

2

1 1 1 11
1

JT JT

JT JT

T T T T
T

T T T T

 

 

 


  

 
   

=  −  
    

 

 .                      (3.33) 

In [37] the dependence (1/ )T  was interpreted as one revealing two activation 

mechanisms: (1) 115 10 exp(390 / )T  (high temperature range) and (1) 95 10 exp(65 / )T  

(low temperatures). Such approach contains an ambiguity in choice of 0V , the 

parameter determining the magnitude of the potential energy barrier and the JT 

stabilization energy. Meaning high importance of this parameter, we applied the 

approach used by Sturge [33] and completed the fitting of the experimental curve 
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(1/ )T  with the help of the mechanisms given by equations (3.28)-(3.30). The 

result of such fitting is shown in Figure 3.4. It proved to be that 0 380 KV  

simulates well the experimental curve and we will use this magnitude in our further 

calculation of the APES parameters. 

3.3. Parameters of the adiabatic potential energy surface 

   The orthorhombic APES global minima in the SrF2:Cr2+ crystal, justified in 

paragraph 3.1, indicate the quadratic 2( )T e t  JTE problem (see, e.g., [38]. In 

this case, the depth of the saddle points is determined from the value of tetragonal   

(
EE ) and trigonal (

TE ) JT stabilization energies as follows [38]: 

21

2

E E

E

F
E

K
= ,                                                          (3.34) 

                                
22

   
3

T T

T

F
E

K
= ,                                                        (3.35) 

 

where, KE and KT are tetragonal and trigonal primary force constants. The 

expressions for calculation the linear vibronic coupling constants are obtained with 

the use of equation (1.21), written for 1T T  and accounting ( )JT Tc  given in Table 

3.1. 

2 0 1 1

2

0 0

( )
288

JT

B E
E

c k T T
F

na k
 ,                                       (3.36) 

 2 0 1 1

2

0 0

( )
9

JT

B T
T

c k T T
F

na k
 ,                                           (3.37) 

In 2

EF and 2

TF calculations, the magnitude of 0 2.54a  Å was used. The JT 

stabilization energy for orthorhombic minima (i.e., the depth of the global minima 

of the APES) is determined by 

0

1

2

OR T

RE E V = + + ,                                             (3.38) 

where R  is the radial vibronic frequency. It can be accepted as equal to local 

trigonal-type vibrational frequency  . In our calculation, we used 
1100 cmR −=  
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as in [37]. The force constant KT  is defined by the product of 2

R  and the reduced 

mass of the CrF8  complex 23 :8  ( ) (/   8 6.43 10 g)Cr F Cr FM m m m m . The 

ratio of the primary force constants should match the relation between 

corresponding symmetry elastic moduli 

11 12
44/

2

E

T

K c c
c

K

− 
=  

 
.                                                   (3.39) 

In our crystal, 
11 2

11 12.87 10  dyn/cmc , 
11

12 4.7 10  dyn/cmc , 

11 2

44 3.308 10  dyn/cmc  / 0.815E TK K = . As a result, 
41.85 10  dyn/cmTK =   and 

42.29 10  dyn/cmEK =  . 

Positions of orthorhombic global minima can be calculated introducing the 

dimensionless parameters [11]  

ET

E T

W
A

K K
=  ,                                                    (3.40) 

ET E

E T

W F
B

K K
= ,                                                        (3.41) 

where ETW  is the quadratic vibronic coupling constant. Obviously,  

ET E TW A K K= ,                                                (3.42) 

E T

E

K KA

B F
=  .                                                     (3.43) 

The values of A  are defined by the quadratic equation 

( ) ( )

( )

2

2

/ / 1/ 4

1

OR

E

A B A B AE

E A

− +
=

−
.                                 (3.44) 

After calculation of A , B  is derived from equation (3.43). Positions of the first 

orthorhombic minimum is defined as follows 
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( )
( )

( )

( )

2

1 2 2

2 2
,0,0,0,

2 1 2 1

E TOR

E T

F B A F B
Q

K B A K A

 − −
 = − −
 − −
 

 .                       (3.45) 

The other five minima can be obtained according to the Table 3.2. Coordinates of 

the saddle points are given in Tables 3.3 and 3.4. Numerical data which 

characterize the JTE and the APES in SrF2:Cr2+ obtained in our study are given in 

Tables 3.5 and 3.6. 

Table 3.2 ‒ Positions of six orthorhombic minima in coordinates ( ), , , ,Q Q Q Q Q     . 

 Q  Q  Q
 Q

 Q
 

1

ORQ  
0

ORQ 
 0  0  0  0

ORQ 
 

2

ORQ  
0

ORQ 
 0  0  0  0

ORQ −  

3

ORQ  
0

1

2

ORQ −  
0

3

2

ORQ   0  0

ORQ 
 0  

4

ORQ  
0

1

2

ORQ −  
0

3

2

ORQ   0  0

ORQ −  0  

5

ORQ  
0

1

2

ORQ −  
0

3

2

ORQ −
 

0

ORQ 
 0  0  

6

ORQ  
0

1

2

ORQ −  
0

3

2

ORQ −
 

0

ORQ −  0  0  

 

Table 3.3 ‒ Positions of three tetragonal saddle points in coordinates

( ), , , ,Q Q Q Q Q     . 
0 /E

E EQ F K=  

1

EQ  
2

EQ  
2

EQ  

( )0 1,0,0,0,0EQ  
0

1 3
, ,0,0,0

2 2

EQ
 

−  
 

 0

1 3
, ,0,0,0

2 2

EQ
 

− −  
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Table 3.4 ‒ Positions of four trigonal saddle points in coordinates 

( ), , , ,Q Q Q Q Q     . ( )0 2 / 3T

T TQ F K=  

1

TQ  
2

TQ  
3

TQ  
4

TQ  

( )0 0,0,1,1,1TQ  ( )0 0,0, 1,1, 1TQ − −  ( )0 0,0,1, 1, 1TQ − −  ( )0 0,0, 1, 1,1TQ − −  

Table 3.5 ‒ Stabilization energies for tetragonal, trigonal and 

orthorhombic APES extrema. 

EE,  cm-1 ET, cm-1 EOR, cm-1 

225 440 754 

Table 3.6 ‒ Vibronic coupling constants and parameters 
0

ORQ 
, 0

ORQ  , 
0

EQ  and 
0

TQ  

entering Tables 3.2–3.4. Two magnitudes of 0 0,  ,  OR OR

ETW Q Q   for one set of ( EF  , 

 TF ) originate from two solutions of the quadratic equation (3.44) with respect to 

A . 

EF , dyn TF , dyn 
ETW , 

dyn/cm 
0

EQ , Å 
0

TQ , Å 
0

ORQ 
, Å 

0

ORQ  , Å 

5.3∙10-5 5.5∙10-5 -1.3∙104 

 2.3∙104 

0.19 0.16 -0.17 

1.0 

 

0.41 

0.83 

-5.3∙10-5 -5.5∙10-5 -1.3∙104 

 2.3∙104 

-0.19 -0.16 0.17 

-1.0 

 

-0.41 

-0.83 

5.3∙10-5 -5.5∙10-5 -1.3∙104 

  2.3∙104 

0.19 -0.16 1.00 

-0.17 

 

-0.83 

-0.41 

 

-5.3∙10-5 5.5∙10-5 -1.3∙104 

  2.3∙104 

-0.19 0.16 -1.00 

0.17 

 

0.83 

0.41 
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3.4. Conclusion 

1. We have considered a cubic JT complex and have derived the expressions for its 

energy shifted by the additional static deformations.  

2. Analyzing the experimental result obtained in SrF2:Cr2+ single crystal we came 

to the conclusion that the additional static deformations are negligible in this case. 

3. The anomaly which was observed in the temperature dependence of attenuation 

in SrF2:Cr2 was interpreted as due to relaxation in the subsystem of the JT 

complexes 2

8Cr F+ −  subject to the ( )2 2g g gT e t +  JTE problem.  

4. The temperature dependence of relaxation time was obtained and simulated with 

account of three mechanisms. The simulation pointed out the more accurate value 

of the activation energy with respect to published in [37].  

5. Consequently, the magnitudes of the APES global minima, quadratic vibronic 

coupling constants, and positions of the extrema points (orthorhombic minima and 

trigonal and tetragonal saddle points) were calculated more accurately.  
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CHAPTER 4. ADIABATIC POTENTIAL ENERGY SURFACE OF THE 

JAHN-TELLER COMPLEXES IN CaF2:Ni2+ CRYSRAL  

4.1. Temperature dependence of attenuation  

The 44c  and Ec  modes revealed peak which was well described by the equation 

(1.21), as it is shown in Figure 4.1. Figure 4.1a shows the results of the experiment 

for two 44c  modes measured at 17 and 52 MHz: a typical temperature shift of the 

relaxation peak caused by frequency reduction of the wave is clearly seen. 
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Figure 4.1 ‒ Temperature dependences of ultrasonic attenuation: (a) 44c  mode 

measured at 17 and 53 MHz (curves 1 and 2, respectively), (b) ( )11 12 / 2c c−  E- mode 

at 54 MHz (4). Background attenuation is 

4 3 6 93 44.32 10 2 10 1.19 10 3.45 10b

T T T T − − − − −   +   +  =  (3) and 

4 8 3 11 4 15 5 14 60.02 4.2 10 2.19381 10 10 1.1 10 6.135 10b

E T T T T T − − − − −− +   +   +  +   +  =  (5). 

0 0( ) ( ),  5 KT T T     = − = , 44,  E  . 

Anomalies in both 44c  and Ec  modes, according to Table 3.1, indicate the 

orthorhombic symmetry of the APES global minima. It can be only in the case of 
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the quadratic 2( )T e t  JTE problem as it was emphasized before. To obtain the 

JT contribution to the elastic moduli according to equation (3.32), we follow the 

approach given in paragraph 3.2: the background attenuation should coincide with 

the measured dependence ( )a T  at low ( 1T T ) and high ( 1T T  ) temperatures 

(remind, 1T  was introduced as corresponding to the condition 1 ). As it can be 

seen in Figure 4.1, the following expressions match well to this requirement:  

4 3 6 93 44.32 10 2 10 1.19 10 3.45 10b

T T T T − − − − −   +   +  = ,                 (4.1) 

4 8 3

11 4 15 5 14 6

0.02 4.2 10 2.19381 10

       10 1.1 10 6.135 10

b

E T T

T T T

 − −

− − −

− +   +  

+  +  

=

 + 

+
.                              (4.2) 

4.2. Temperature dependence of relaxation time 

The ( )T  dependence was calculated with the use of the data on 
44 ( )T  for 

53 MHz given in Figure 4.1a and equations (3.32), (3.33), and (4.1). The 

obtained dependence 
1( )T  is well simulated by the mentioned above 

mechanisms of relaxation (see Figure 4.2a) although the parameters which 

characterize the mechanisms are different in comparison with the discussed in 

the previous chapter.  
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Figure 4.2 ‒ Temperature dependence of relaxation time determined with the 

use of the data given in Figure 4.1 (curves 2 and 3). Dark circles are 

experimental data, curve 1 is activation relaxation time 1310 exp(570 / )a T −=  , 

curve 2 is tunneling relaxation time 5 18.5 10t T − −=  , curve 3 is relaxation time 

due to  two-phonon mechanism 30.4R T −=  , curve 4 is ( )
1

1 1 1

a t R   
−

− − −= + + . 

Curve 5 represents another variant of fitting, namely, with two activation 

mechanisms 13 1 6 1 1={(10 exp(570/T)) +[2.5 10 exp(12.5/T)] }  

An attempt to simulate the dependence 
1( )T  with the help of two activation-

type mechanisms was performed (see curve 5 in Figure 4.2b). Such simulation 

was done for SrF2:Cr2+ in [37]. In the previous chapter we showed that three-

mechanisms simulation is more appropriate. In the crystal discussed in this 

chapter, we can state the same: the approach, which takes into account the 

activation and tunneling mechanisms, results in a more smooth curve and is in 

a better agreement with the experimental data. 

4.3. Parameters of the adiabatic potential energy surface 

 Reproducing the procedure described by equations (3.34)-(3.45) with the 

following magnitudes of the entering constants: 1145 cmR −=  [79],
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11 2

11 12( ) / 2 5.9 10  dyn/cmc c , 11 2

44 3.58 10  dyn/cmc , 45.28 10  dyn/cmTK = 

48.71 10  dyn/cmEK =  , and 
0 ( 3 / 4)a a , and the lattice parameter 

o

5.46 Aa , we 

obtain the magnitudes of the vibronic coupling constants and  the APES 

parameters presented in Tables 4.1 and 4.2. 

Table 4.1 ‒ Stabilization energies for tetragonal, trigonal and 

orthorhombic APES extrema. 

EE,  cm-1 ET, cm-1 EOR, cm-1 

350 880 1290 

          Table 4.2 ‒ Vibronic coupling constants and parameters 
0

ORQ  , 0

ORQ  , 
0

EQ  and 

0

TQ entering Tables 3.2–3.4. Two magnitudes of 
0 0,  ,  OR OR

ETW Q Q  for one set of ( EF , 

TF ) originate from two solutions of the quadratic equation (3.44) with respect to A  

EF , dyn TF , dyn ETW , 

dyn/cm 
0

EQ ,Å 
0

TQ ,Å 
0

ORQ 
,Å 

0

ORQ  , Å 

1.9∙10-4 1.2∙10-4 -3.3∙104 

5.9∙104 

 

0.125 0.15 -0.20 

0.35 

 

0.35 

0.59 

 

-1.9∙10-4 -1.2∙10-4 -5.9∙104 

3.3∙104 

-0.125 

 

 

-0.15  0.20 

    -0.35 

-0.35 

-0.59 

1.9∙10-4 -1.2∙10-4 -3.3∙104 

5.9∙104 

 

0.125 -0.15 0.35 

-0.20 

 

-0.59 

-0.35 

 

-1.9∙10-4 1.2∙10-4 -3.3∙104 

5.9∙104 

-0.125 0.15 -0.35 

0.20 

0.59 

0.35 

 

One can see that the 2

8Ni F+ −  complexes in CaF2 have larger magnitudes of the 

vibronic coupling constants and deeper extrema of the APES than 2

8Cr F+ −  
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complexes in SrF2 matrix. What is the reason of these distinctions: different 

matrices or different ions? To clarify the situation we have competed the 

investigation of the same ion 
2Cr +

 as in SrF2 but in another matrix, namely, CaF2. 

At the same time it was investigation of another ion (with respect to 
2Ni +

) but in 

the same matrix CaF2. 

4.4. Conclusion 

1. Manifestation of the JTE in CaF2:Ni2+ single crystal proved to be similar to one 

in SrF2:Cr2+, although the JT ions and host crystals are different.  

2. In both the crystals, APES obeys orthorhombic global minima and subject to the 

quadratic 
2( )T e t  JTE problem, the relaxation attenuation peak was observed at 

relatively high temperatures (approximately 56 and 44 K at about 55 MHz, 

respectively).  

3. Higher temperature of the peak location means lower relaxation time and higher 

potential energy barrier (or activation energy provided that the vibronic frequency 

is the same). Comparison of the activation energies reveals confirmation of this 

statement: V0 = 570 and 380 K, respectively.  

4. Besides, the 2

8Ni F+ −  complexes in CaF2 have larger magnitudes of the vibronic 

coupling constants and deeper extrema of the APES than 2

8Cr F+ −  complexes in SrF2 

matrix.  
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CHAPTER 5. ADIABATIC POTENTIAL ENERGY SURFACE OF THE 

JAHN-TELLER COMPLEXES IN CaF2:Cr2+ CRYSRAL  

5.1. Temperature dependence of attenuation  

 Figures 5.1 and 5.2 show the temperature dependences of the 44c  and 

44 11 12( ) / 2Lc c c c  modes.  A distinctive feature of the curves shown in this 

Figure with respect to ones in Figures (3.1), (3.2), and (4.1), which present ( )T  

for  SrF2:Cr2+ and CaF2:Ni2+, is considerably lower position of the relaxation peak 

in T-scale  (8.7 K at 54 MHz) and, what is also important, the dependences do not 

reach their asymptotic low temperature limit.  
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Figure 5.1 ‒ Temperature dependence of attenuation coefficient of ultrasonic 

transverse wave associated with the trigonal modulus 44c  measured at ω/2π = 39 

MHz in CaF2:Cr (curve 1) and in nominally pure CaF2 (curve 2, ω/2π = 56 MHz). 

The reference temperature 0 100 KT  for both the dependences. In the inset, curve 3 

represents the temperature dependence of attenuation coefficient of transverse 

wave associated with the tetragonal modulus cE = (c11 − c12) /2 measured at ω/2π = 

55 MHz in CaF2:Cr; 
0( ) ( )T T ,  β = 44 or E, 

0 65 KT . The square 

symbols correspond to the condition ωτ = 1. 
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This circumstance clearly points out higher than in the previous crystals relaxation 

rate (which means as well lower potential energy barriers). In essence, it means 

that we face the situation with noticeable magnitude of the low temperature limit of 

attenuation. In this case, the condition ( 0) ( 0)ba T a T  used above for 

determining the JT contribution ( )JT T  is not correct. Therefore we should apply a 

new approach for ( )b T determination.  Common feature of the JTE manifestation 

in all the studied crystals is observation of the peak in 44c  and Ec  modes (and 

besides in and Lc  also) indicating the same orthorhombic global minima of the 

APES and the 
2( )T e t  JTE problem of the 2

8Cr F+ −  complexes in CaF2 matrix.  
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Figure 5.2 ‒ Temperature dependence of attenuation coefficient of ultrasonic 

longitudinal wave associated with the modulus cL = c44 + (c11 + c12) /2 measured in 

CaF2:Cr (curve 1) and in nominally pure CaF2 (curve 2). Wave vector kL is parallel 

to the [110] crystallographic axis. ω/2π = 54 MHz, 0( ) ( )L L LT T ,
0 100 KT . 

The square symbol corresponds to the condition ωτ = 1. 
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5.2. JT contribution to the elastic moduli  

In chapter 4, the following requirement for ( )b T  was formulated. First: it should 

coincide with the measured dependence ( )a T  at low ( 1T T ) and high ( 1T T  ). 

Second: the isothermal moduli have the inverse temperature dependence of the 

isothermal moduli as it can be seen in Table 3.1. This statement is correct 

irrespectively to the position of the relaxation peak in T-scale. We will use it here. 

Besides, we will use the proposition that the background attenuation is equal to 

attenuation of the waves in the nominally pure crystal shown by the curves 2 in 

Figures. 5.1 and 5.2. Therefore, the curves were presented so that the dependences 

( )a T  and ( )b T  do coincide at 0 100 KT T  and the JT contributions are 

( ) ( )JT bT T  , where ( )b T  are the curves corresponding to the nominally 

pure crystal (here , 44,E L  ). In the previous chapters we discussed the 44c  and 

Ec modes. Here the mode 
44 11 12( ) / 2Lc c c c  will be used. It is the longitudinal 

wave which propagates along the [110] axis. The isothermal modulus relating to 

the orthorhombic global minima of the APES is 

2
2 20 4 1

( )
9 216

JT T

L T E

B

na
c F F

k T
 .                                       (5.1) 

One can see that this modulus depends upon both linear vibronic coupling 

constants. Thus, either after calculation of 2

EF  using JT

E
 (equation (3.36)) we can 

determine 2

TF , or after calculation of 2

TF  using JT

T
 (equation (3.37)) we can 

determine 2

EF . One more specificity of the attenuation dependences in CaF2:Cr is 

the  broad high-temperature shoulder of the relaxation peak. We can propose that it 

is determined by another contribution to attenuation. Seen in all the modes, it can 

be attributed to one or more JT subsystems with the triply degenerate orbital states 

which have larger relation rates and, therefore, possess larger values of 1T  

(certainly, at the same frequency of the generated wave). For this reason, we will 

simulate the temperature dependence of attenuation with the use of three 
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mechanisms meaning that the agreement with the experimental curve can be 

expected only at low temperatures.  
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Figure 5.3 ‒ Temperature dependence of the JT contribution to attenuation JT

L
 of 

the mode Lc  measured at 54 MHz (curve 1 shown by the circles) and fitting curves 

m

L
 (curve 2) defined by equation (5.2) with  1

1 1( ) 28.9 K Np cmJT

L T T  and 

relaxation time   shown in Figure 5.4. See the magnitudes of fitting parameters 

in the text. Curve 3 is the difference JT JT m

L L L
 (in this case m

L
 is represented 

by the curve 2). 

During attestation of the samples, no impurities were detected of a comparable 

with Cr concentration. Therefore, we can accept that the shoulder is formed by the 

subsystem of Cr3+ ions in cation lattice positions. Cr3+ ion has the ground orbital 

triplet 
4 2

1 2( )g g gT t e  in high spin configuration (see Table 1 in [33]). A nonlocal or 

local charge compensator is requires for aliovalent substitution. In the latter case, 

compensation is carried out by a fluorine vacancy near the impurity ion or by 

introducing an excess fluorine ion into the nearest interstitial position. The fluorine 

vacancies seem unlikely in the presence of fluorine in the crystal growth 

atmosphere. The anomaly caused by 3

8Cr F  complexes overlaps with the region of 

activation relaxation of the 2

8Cr F  sub-system. By analogy with Cr3+ in SrF2 matrix 
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[80] we propose that in our crystal, every 3

8Cr F  complex is distorted along one of 

the tetragonal axes due to F− compensator located in the neighboring cubic cave. 

This distortion has electrostatic, non-JT nature but lead to elongation (contraction) 

of the edges and diagonals of the complexes. The expressions for the energy 

changes caused by the additional non-JT deformations were presented in chapter 3 

(see equations (3.1)-(3.18)). As a result, instead of one well-resolved peak (which 

occurs when deformations of the complexes have only JT origin) a number of 

attenuation maxima can be formed in a certain temperature range. In a sense, this 

phenomenon is similar to off-center problem (see [81, 82] and references therein).  

To determine the activation energy for the 2

8Cr F  complexes, we have 

performed a simulation of contribution of the JT sub-system to ultrasonic 

attenuation with account of all three mechanisms of relaxation and have derived 

the magnitude of  0V   with the help of fitting procedure. The result of such fitting is 

shown in Figure 5.3. Contribution to attenuation of the Lc  mode, JT

L
 (curve 1),  

was defined as the difference between the measured attenuation ( )L T  in CaF2:Cr 

and in CaF2 (presented by the curves 1 and 2 in Figure 5.2, respectively). The 

model dependence was taken in the form of  

( )

( )
1 1

2
2

1

JT

JT
T T

T





 





=

+
,                                             (5.2) 

which follows from equation (1.21) with ( )
1

1 1 1

a t R   
−

− − −= + +  and L  . The fitting 

parameters which characterize the mechanisms of relaxation are  13

0 3 10  s , 

0 132 KV , 1 71.9 10  s KB , and 2 1 6 3( / ) 3.1 10  s KB .   
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Figure 5.4 ‒ Relaxation time as the result of ( )JT

L T  fitting presented in Figure 5.3.  

( )
1

1 1 1

a t R   
−

− − −= + + , ). Curve 1 represents ( )
1

1 1 1

a t R   
−

− − −= + + , curve 2 is 

133 10 exp(132 / )a T −=  , curve 3 is 7 11.9 10t T − −=  and curve 4 is 6 33.1 10R T − −=   . 

The result of fitting (1/ )T  is shown in Figure 5.5. Curve 6 represents 

simulation with account of only the tunneling mechanisms: one can see that this 

curve describes well the experimental dependence only below 9 K. Curve 2 

calculated with account of all three mechanisms using 0 132 KV  coincides with the 

experimental curve below 10.5 K. It is the most wide temperature interval among 

all the model curves. Thus, we can state that activation energy can be accepted as  

0 132 7 KV . 
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Figure 5.5 ‒ Temperature dependence of the JT contribution to attenuation JT

L
  of 

the Lc  mode measured at 54 MHz and fitting curves defined by equation (5.2) with 

1

1 1( ) 28.9 K Np cmJT

L T T . The curves (1 and 2) are the same as in Figure 5.2. 

Curves 4 and 5 are described as curve 2 but with 0 124 KV  and 144 K, 

respectively. Curve 6 calculated without account of activation mechanism, e.g., 

( )
1

1 1

t R  
−

− −= + . 

5.3. Concentration of the 2

8Cr F  complexes  

The magnitude of concentration of the JT complexes is required for 

calculation of the linear vibronic coupling constants EF  [equation (3.36)] and TF  

[equation (3.37)] or  

 

1/2
2

0 1 1

2

0 0

( )
9

96

JT

B L E
T

c k T T F
F

na k
,                                        (5.3) 

provided EF  is determined already. In the case of CaF2:Cr the attestation procedure 

provides the total amount of the chromium ions 19 34.74 0.03( 10  cm)n . We 

propose that our specimen contains only Cr2+ and Cr3+. To estimate the content of 

Cr3+   ions we carried out a simulation of  the high temperature contribution of the 
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3

8Cr F  subsystem to the longitudinal wave attenuation (denoted as JT

L
 and 

defined in caption of  Figure 5.3) assuming that low-temperature contribution 

initiated by the tunneling mechanisms are negligible due to high-temperature 

position of the anomalies (with respect to ones caused by  the 2

8Cr F  subsystem). 

Simulation of the JT

L
 was done with the help of 4 summands defined as  

( )
( )

( )
1 1

2
2

1

JT

LJT i
L ii

i

T T
T k

T

 





  = 

+
,                                     (5.4) 

where 1,2,3,4i , ( )1 1

JT

L T T   is the measured values relating to the low-temperature 

anomaly (caused by 2

8Cr F  subsystem). Since the tunneling mechanisms are less 

effective at high temperatures in comparison with the thermal activation, we took 

into account only activation mechanism: 

0 0exp( / )i i iV T = .                                                      (5.5) 

The parameters 0i  and 0iV  define the position of the peaks in T-scale, while the 

coefficients ik  determine their peak value, indicate the difference of a certain peak 

with respect to the anomaly caused by the Cr2+ centers  and depend on the 

isothermal modulus as follows  

(3 ) 3 2 (3 ) 2
(3 )

(2 ) (2 ) 2 2 (2 ) 2

( ) 96( )( )

( ) 96( )( )

JT t
E TL

i
JT t

E TL

F Fc n
k

n F Fc
 .                                  (5.6) 

The subscripts (2 )  or (3 )  indicate the chromium ion charge to which the 

parameter relates. The magnitudes of the peaks were chosen according to the 

requirement: the model attenuation curve being the sum of four contributions 

(curve 2 in Figure 5.6) should oscillate over curve 1 which is the difference 

between the attenuation caused by both 
2

8Cr F  8 and 3

8Cr F  sub-systems (curve 1 in 

Figure 5.3) and attenuation caused by the Cr2+ centers (curve 2 in Figure 5.3). We 

assumed that account of distribution of the static distortions (or oscillations of the 

interstitial fluorine ion in the cave) should make the model curve more smooth and 
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should approach it the curve 13 in Figure 5.3 (i.e., the square under the curve 2 

should be constant). 
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Figure 5.6 ‒ Temperature dependence of JT JT m

L L L
  at ω/2π = 54MHz (curve 

1, in Figure 5.3 it is curve 3) and model curve (2) which summands are given by 

the symbols and defined by equations (5.3)-(4.4) with ( )1

1

1 28.9 K Np cmJT

L T T −  = . 

Open circles: k1 = 2/3, τ1 = 10−13 exp(150/T);  squares: k2= 2/3, τ2 = 5∙10−13 

exp(240/T); triangles: k3= 1/2, τ3 = 3∙10−12 exp(350/T); filled circles : k4= 1/4, τ4 = 

6∙10−12 exp(550/T). 

If we propose that the vibronic coupling constants of Cr2+ and Cr3+ centers are 

equal, our model calculations points out the relation between the Cr2+ and Cr3+ 

concentrations ( ) (2 3 )/ 1/ 2n n   (where 
4

3 ( )( ) 3

1

i

i

n n ). However, we must take into 

account the following: shift of the relaxation peak to higher temperatures indicates 

reduction of relaxation rate. The latter evidences deeper global minima of the 

3

8Cr F  APES that can be only due to higher vibronic coupling constants. So, we 

assume that the vibronic coupling constants of the Cr3+ centers exceed ones of the 

Cr2+ centers by the factor of 2  . As a result, we come to the conclusion about 
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approximate equal concentration of both the ions in the crystal. Thus, we used 

( )2 / 2n n  in our further calculations.  

We would like to emphasize an importance of such account of concentration 

of the JT centers. The high-temperature shoulder of the attenuation peak is not high 

and, at the first glance, could be caused by a subsystem of much lower 

concentration than 
( )2n . But (i) it is broad enough, so its integral contribution is 

not small; (ii) the shoulder is observed at higher temperatures that (iii) compels us 

to assume higher magnitude of the vibronic constants of the 3

8Cr F  complexes and 

(iv) results in reduction of its contribution by the factor 1/T [see equation (5.4)]. 

Therefore, the visually small anomaly proved to be caused by the subsystem of a 

comparable concentration of the JT centers. Neglecting the 3

8Cr F subsystem and 

assuming  
( )2n n  would lead to underestimating the vibronic coupling constants 

by the factor of 2  [see equations (3.36), (3.37), (5.3)] and the JT stabilization [see 

equations (3.34) and (3.35)] by the factor of  2. 

5.4. Parameters of the adiabatic potential energy surface 

 Now we can reproduce once more the procedure described by equations (3.34)-

(3.45) with the following magnitudes of the entering constants: 1145 cmR −=  [79],

11 2

11 17.4 10  dyn/cmc , 11 2

12 5.6 10  dyn/cmc  , 11 2

44 3.593 10  dyn/cmc  measured at 

4.2 KT  [83]. The linear vibronic coupling constants and the JT stabilization 

energies calculated with 23 :8  ( ) (/   8 6.43 1) 0Cr F Cr FM m m m m g ,

44.84 10  dyn/cmTK =  , 48.14 10  dyn/cmEK =  , and 
o

0 2.36 Aa  [79]. As a result, we 

obtain the magnitudes of the vibronic coupling constants and the APES parameters 

presented in Tables 5.1 and 5.2. We believe that the main contribution to the error 

caused by the measurement procedure contributes ( )T  (see paragraph 2.2). 

However, even more uncertainty is introduced by the concentration of Cr2+ ions, 

( )2n . Therefore, the magnitudes given in Tables 5.1-5.2 should be accepted as 

estimates. 
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Table 5.1 ‒ Stabilization energies for tetragonal, trigonal and 

orthorhombic APES extrema.  

EE,  cm-1 ET, cm-1 EOR, cm-1 

208 538 697 

 

 

Table 5.2 ‒ Vibronic coupling constants and parameters 
0

ORQ  , 0

ORQ  , 
0

EQ  and 
0

TQ  

entering Tables 3.2–3.4. Two magnitudes of 0 0,  ,  OR OR

ETW Q Q  for one set of ( EF , TF ) 

originate from two solutions of the quadratic equation (3.44) with respect to A . 

EF , dyn TF , dyn ETW , 

dyn/cm 
0

EQ , Å 
0

TQ , Å 
0

ORQ 
, Å 

0

ORQ 
, Å 

8.2∙10-5 8.8∙10-5 -2.6∙104 

5.2∙104 

 

0.10 0.12 -0.13 

0.22 

 

0.25 

0.42 

 

-8.2∙10-5 -8.8∙10-5 -2.6∙104 

5.2∙104 

 

-0.10 

 

 

-0.12  0.13 

    -0.22 

-0.25 

-0.42 

8.2∙10-5 -8.8∙10-5 -2.6∙104 

5.2∙104 

 

0.10 -0.12 -0.13 

0.22 

-0.42 

-0.25 

 

-8.2∙10-5 8.8∙10-5 -2.6∙104 

5.2∙104 

-0.10 0.12 0.13 

  -0.22 

0.25 

0.42 

 

 

 

 

 



58 
 

5.5. Conclusion 

1. In CaF2:Cr2+ single crystal, manifestation of the JTE proved to be similar to one 

in SrF2:Cr2+ and CaF2:Ni2+, although the JT ions or host crystals are different.  

2. In all the crystals, APES obeys orthorhombic global minima and subject to the 

quadratic 
2( )T e t  JTE problem. 

3. The relaxation attenuation peak was observed at relatively low temperatures 

(approximately 8.7 K at about 54 MHz) in CaF2:Cr2+. Lower temperature of the 

peak location means higher relaxation rate and lower potential energy barrier (or 

activation energy).  

4. The potential energy barrier increased with increase of ionic radius of the dopant 

( 2 2Cr Ni+ +→ ) and with increase of ionic radius of the matrix cation ( 2 2Ca Sr+ +→ ). In 

this context, another 3d ion in CaF2 crystal is interesting to investigate.  
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CHAPTER 6. ADIABATIC POTENTIAL ENERGY SURFACE OF THE 

JAHN-TELLER COMPLEXES IN CaF2:Cu2+ CRYSRAL  

6.1. Temperature dependences of dynamic elastic moduli 

In this chapter, we will show how the procedures of the APES parameters 

determination can be performed with the use of the experimental data on both 

dissipation and dispersion. The procedures will be realized which are based on the 

data on temperature dependence of attenuation and on the data on temperature 

dependence phase velocity. These two approaches represent the results of quite 

different independent experiments. They can serve as verification of the validity of 

both the methods. For more convenient presentation of the experimental data we 

will discuss the properties of the JT subsystem in terms of real and imaginary parts 

of the dynamic (i.e., frequency dependent) elastic moduli. Equation (1.21) shows 

how parts of a modulus relate to the phase velocity and attenuation of a wave.  
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Figures 6.1 and 6.2 show the temperature dependences the longitudinal 

44 11 12( ) / 2Lc c c c  and tetragonal 11 12( ) / 2Ec c c  moduli in CaF2:Cu2+. These 

moduli are associated with the normal modes which propagate along the 110  

crystallographic axis, polarization of the shear mode is along the 110  axis.  One 

can see the typical for the JTE manifestation anomaly of relaxation nature. 

Relaxation-nature anomalies were observed in the 44c  mode also. Therefore, we 

can conclude that the Cu2+F8 JT complex possesses the orthorhombic global 

minima of the APES and subject to quadratic 
2( )T e t  JTE problem, like all the 

other complexes studied in our dissertation. 
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Figure 6.1 ‒ Temperature dependences of the imaginary (curve 1) and real (2) 

parts of the elastic modulus 44 11 12( ) / 2Lc c c c  measured at 55.8 MHz  in 

CaF2:Cu2+ crystal. The same dependences but measured 55.5 MHz  in nominally 

pure CaF2 are shown by the curves 3 and 4. 
0( )L Lc c T c  , 

0 0( )Lc c T  , 0 4.2 KT . 

The squares correspond to 1. 
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Figure 6.2 ‒ Temperature dependences of the imaginary (curve 1) and real (2) 

parts of the elastic modulus 11 12( ) / 2Ec c c  measured at 59.6 MHz  in CaF2:Cu2+ 

crystal. The same dependences but measured 57.1 MHz  in nominally pure CaF2 are 

shown by the curves 3 and 4. 
0( )E Ec c T c  , 

0 0( )Ec c T  , 0 4.2 KT . 

6.2. JT contribution to the elastic moduli  

The contribution of the JT subsystem to the elastic moduli manifests itself as 

a peak in the imaginary part and a minimum in the real part in the vicinity of 1T  as 

it can be seen in Figures 6.1 and 6.2. Remind, the temperature T1 is determined 

from the condition 1( ) 1T . As follows from Table 1, the isothermal elastic 

moduli are inversely proportional to the temperature. Therefore, the position of the 

peak in 
0Im ( ) /c T c  , in fact, does not coincide with 1T . However, the value of 1T  

can be determined from the maximum of the function 0Im ( ) /c T c T  like it was 

done in section 3.2 respectively 44 ( )JT T T  (see also Figure 3.3). To use this 

approach we must define the JT contribution to the elastic moduli. Taking into 

account the 1T  definition, the equation (1.21) can be transformed into 
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( )

( )

( )

( )

1 11 1

2 2

0 0 0

Re Im1
2 2

1 1

JT JTJT c T c Tc T T
i

c c T c T

  

 

      = +
+ +

,               (6.1) 

Moreover, it follows from the equation (1.21) that 

( ) ( )1 1Re ImJT JTc T c T 
   = −    ,                                                 (6.2) 

The JT anomalies in CaF2:Cu2+ are observed at lower temperatures in comparison 

with ones in CaF2:Ni2+. Lower potential energy barriers can be expected in this 

case, higher level of the low temperature attenuation and, therefore, we must apply 

the approach described in chapter 5, i.e., simulation of the temperature dependence 

of 0Im ( ) /c T c  with account of the temperature dependence of the background 

contribution to ( )c T  and simulation of the dependence with the use of three 

mechanism of relaxation given by the equations (3.28) - (3.30). So, (i) the 

background contributions (which are the temperature dependences of the moduli of 

the CaF2 crystal) should be extracted from the measured 
0( ) /c T c  in CaF2:Cu2+ 

and (ii) the low-temperature limit of 0Im ( ) /c T c  should be added to 
0Im ( ) /c T c  

since the variation of the modulus but not the modulus itself is measured in an 

experiment. In the process of simulation, the following fitting parameters were 

used:  
1 1 0Re ( ) /JTc T T c  ,  

1 1 0Im ( ) /JTc T T c , 0  , 
0V  , B  , 2/B  . The first two fitting 

parameters define the scale of variation of JTc  (its real and imaginary parts) and 

must correspond to equation (6.2). The remaining ones specify the functional 

dependence of relaxation time  

( )
1

1 1 1

a t R   
−

− − −= + +  .                                                (6.3) 

 The experimental data (presented in Figure 6.2) multiplied by T are shown in 

Figure 6.3 (curves 1 and 2). Both the model curves 3 and 4 are calculated with the 

same relaxation time ( )T . The experimental and model curves coincide at the 

temperature below 30 K. They diverge at higher temperatures. There are some 
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reasons for such discrepancy. The expression for the relaxation time written by 

taking into account the three mechanisms corresponds to low temperatures, when 

the JT complexes are at the lowest energy levels at the APES minima. As the 

temperature rises, higher-energy levels [which are ignored in equations (3.1)-

(3.18)] begin to be populated, and there will be no longer such simple expressions 

for both the relaxation time and the isothermal elastic moduli.  

1 1 0Re ( ) /JT

Lc T T c  and 
1 1 0Im ( ) /JT

Lc T T c  slightly differ in absolute value, though they 

must be equal. This difference can be explained by the fact that the temperature 

dependence of the background attenuation (corresponding to a nominally pure 

crystal) is weak, especially at low temperatures, while the relaxation attenuation is 

much larger. Therefore, the error in determining the background attenuation affects 

insignificantly the result. In contrast, the real parts of the elastic moduli referring to 

the impurity and pure crystals have temperature changes comparable in magnitude, 

which, naturally leads to a larger error. 
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Figure 6.3 ‒ Temperature dependences of the imaginary (curve 1) and real ( 2) 

parts of 
0( ) /JT

Lc T T c  (curve 1) and real (curve 2) parts of 

0 0( ) / ( ) ( ) Im ( 0) /JT b JT

L L L Lc T T c c T c T i c T T c  , where 
0( ) /b

Lc T c  relates to the elastic 

modulus of the nominally pure crystal. Curves 3 and 4 represent the model curves 

obtained at 
1 1 0Re ( ) / 0.429 KJT

Lc T T c , 
1 1 0Im ( ) / 0.562 KJT

Lc T T c , 123 10 exp(170 / ) sa T  

, 76.5 10 /  st T  ,  3 32 10 /  sR T . 

Using fitting, which results are presented in Figure 6.3, we determine all of 

the parameters that characterize the relaxation time. The activation energy 0V  , 

which specifies the potential barrier between the APES minima, is the most 

significant of them. Therefore, it is important to make sure that our modeling is 

reliable, inspite of the large number of fitting parameters. Having determined the 

low-temperature JT contribution to the elastic moduli using only two parameters 

for this purpose, 1 1 0Im ( ) /JT

Lc T T c  and B  (or, more precisely, their product, i.e., 

actually one parameter), we can construct the temperature dependence of the 

relaxation time and determine 0V  from it.  
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Note that the temperature dependence of the relaxation time can also be 

derived from the data on 
0Re ( ) /JTc T c  by measuring the ultrasound velocity 

0( ) /v T v  in the doped and nominally pure crystals. They have comparable 

temperature changes, which affects the accuracy of determining  0Re ( ) /JTc T T c  

and, hence, τ(T).  

The optimal variant is to construct the temperature dependence of the 

relaxation time both from the data on attenuation and from the data on dispersion. 

These are completely independent measurements. Moreover, the results are 

processed using different formulas, which give a good tool for verifying the 

obtained results. 

6.3. Temperature dependence of relaxation time 

The starting point for derivation the expressions for the relaxation time basing 

on the data on  
0/JTc c
 is equation (6.1) which can be presented in the form of 

( ) ( )

( )

1 1

2

0 0

Re 1
Re 2

1

JTJT c Tc T T

c c T





  =
+

,                             (6.4) 

( ) ( )

( )

1 1

2

0 0

Im
Im 2

1

JTJT c Tc T T
i

c c T

 



  =
+

,                            (6.5) 

These equations can be solved with respect to  :  

( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

1 1 1 1Im Im1
1

Im Im

JT JT

JT JT

c T T c T T
T

c T T c T T

 

 




 
   

=  −  
    

 

,                  (6.6) 

( )
( ) ( )

( ) ( )
1 1Re1

1
Re

JT

JT

c T T
T

c T T








  
= − 

  

.                                           (6.7) 

The dependences τ(T) calculated with the use of equations (6.6) and (6.7) written 

for L  are shown in Figure 6.4. It can be seen that both the dependences almost 

coincide at temperatures below 25 K. Differences arise at higher temperatures, and 
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the causes of these differences are the same as those in the case of a difference 

between the experimental dependences of the components of the elastic moduli and 

the model curves that take into account only the energy of the ground states at the 

APES minima and the transition processes between them (shown in Figure 6.3). 
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Figure 6.4 ‒ The relaxation time versus inverse temperature, 

based on 0Re ( ) /JT

Lc T c  (brown symbols) and 
0Im ( ) /JT

Lc T c  (blue open circles) at  55.8 

MHz . The dashed curve indicates the result of modeling the relaxation time 

( )
1

1 1 1

a t R   
−

− − −= + +    taking into account the three mechanisms characterized by the 

relaxation times a  , t , and R  which values are given in the caption to  

Figure 6.3. The square symbol corresponds to the condition  1. 
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Figure 6.5 ‒ Temperature dependences of the JT contribution to the 

0Im ( ) /JT

Lc T c : curve 1 is model calculation with the use of  equation  (6.5) and the 

entering values 
1 1 0Im ( ) / 0.562 KJT

Lc T T c , 123 10 exp(170 / ) sa T , 76.5 10 /  st T ,  

3 32 10 /  sR T , / 2 55.8 MHz  ; curve 2 is the experimental curve 0Im ( ) /Lc T c ; 

dashed curve 3 is the difference between these dependences. The square symbol 

corresponds to the condition 1. 

To make sure that the parameters describing the low-temperature relaxation 

were chosen correctly, Figure 6.5  presents the model curve 
0(I /)m  JT

L mod
c T c   (curve 

1) calculated using equation (6.5) and  the values for 1 1 0Im ( ) /JT

Lc T T c  and the 

expressions for a  , t , and R  given in the captions to Figure 6.3, curve 2 is 

0Im ( ) /Lc T c , i.e., the temperature dependence of the JT contribution to the imaginary 

component of the longitudinal elastic modulus, which is the experimental 

dependence 0Im ( ) /Lc T c  shifted by 0(m  0 /)I JT

L mod
c T c , and the dashed curve 3 is 

the difference between these dependences. It can be seen that at temperatures 

below 25 K the difference between the experimental and model curves is minimal, 
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suggesting that the assertion about the three relaxation mechanisms at low 

temperatures is valid and that the choice of the parameters characterizing these 

mechanisms is correct. 

6.4. Parameters of the adiabatic potential energy surface  

Equations (3.36), (3.37), and (5.3) rewritten for Im  ( )JTc T discussed in this 

chapter instead ( )JT T  have the following form 

1 12 0

2

0 0

Im ( )
144

JT

EE B
E

E

c T Tc k
F

na c
,                                            (6.7) 

 
1 12 0

2

0 0

Im ( )9

2

JT

TT B
T

T

c T Tc k
F

na c
,                                              (6.8) 

2
1 12 0

2

0 0

Im ( )9

2 96

JT

LL B E
T

L

c T Tc k F
F

na c
,                                        (6.9) 

where 
0 0( )c c T , , ,E T L . The JT stabilization energies corresponding to 

tetragonal 
EE  and trigonal 

TE  saddle points are determined using equations (3.34) 

and (3.35). It is assumed that the primary force constants can be specified as 

2  T RK M with the reduced mass  :8  /  ( ) (  8 )Cu F Cu FM m m m m ,  radial vibronic 

frequency 1145 cmR
 [79], and  EK calculated with the use of equation 

(3.39). 11 2

11 17.4 10  dyn/cmc , 11 2

12 5.6 10  dyn/cmc , 11 2

44 3.593 10  dyn/cmc  measured 

at 4.2 KT  [83]. The linear vibronic coupling constants were calculated with 

o

0 2.36 Aa  [79] and the JT stabilization energies 
EE  and TE  with 

46.12 10  dyn/cm EK and 43.64 10  dyn/cmTK . Reproducing the procedure 

described by equations (3.34)-(3.45), we obtain the magnitudes of the vibronic 

coupling constants and  the APES parameters presented in Tables 6.1 and 6.2.  
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Table 6.1 ‒ Stabilization energies for tetragonal trigonal and 

orthorhombic APES extrema. 

EE,  cm-1 ET, cm-1 EOR, cm-1 

479 31.11 10  
31.30 10  

 

Table 6.2 ‒ Vibronic coupling constants and parameters 0

ORQ  , 0

ORQ  ,  0

EQ  and 0

TQ   

entering Tables 3.2–3.4. Two magnitudes of 0 0,  ,  OR OR

ETW Q Q   for one set of 

( EF , TF )  originate from two solutions of the quadratic equation (3.44) with respect 

to A . 

EF , dyn TF , dyn ETW , 

dyn/cm 
0

EQ , Å 
0

TQ , Å 
0

ORQ 
, Å 

0

ORQ  , Å 

1.08∙10-4 1.10∙10-4 -1.55∙104 

3.38∙104 

 

0.176 0.201 -0.184 

0.300 

 

0.380 

0.61 

 

-1.08∙10-4 -1.10∙10-4 -1.55∙104 

3.85∙104 

 

-0.176 

 

 

-0.201 0.184 

-0.300 

-0.380 

-0.618 

1.08∙10-4 -1.10∙10-4 -3.85∙104 

1.55∙104 

 

0.176 -0.201 0.300 

-0.184 

-0.618 

-0.380 

 

-1.08∙10-4 1.10∙10-4 -3.85∙104 

1.55∙104 

-0.176 0.201 -0.300 

0.184 

0.618 

0.380 

 

6.5. Conclusion 

1. In CaF2:Cu2+ single crystal, manifestation of the JTE proved to represent an 

intermediate case between CaF2:Cr2+ on one hand and SrF2:Cr2+ with CaF2:Ni2 on 

another hand, meaning that the relaxation anomalies are observed at approximately 
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24 K (at about 56 MHz) in comparison with CaF2:Cr2+  (8.7 K)  SrF2:Cr2+ (56 K)  

and CaF2:Ni2+ (44 K).  

2. In all the studied crystals, APES obeys orthorhombic global minima and subject 

to the quadratic 2( )T e t  JTE problem.   

3. Comparison of most of the parameters which characterize the JT complex is 

sophisticated by their some indeterminacy that is initiated by the uncertainty in 

determination of the concentration value. The method used in our research defines 

the total concentration of the impurity ions regardless their charge state. Whereas 

the expressions for calculation of the vibronic coupling constants and the JT 

stabilization energies contain concentration of definite ions. One more source of 

the error is inhomogeneity of the dopand distribution over the crystal. These two 

factors reduce the possible accuracy of the JTE parameters evaluation and further 

comparison of different complexes in various matrices.  

4. Some parameters can be found which are not depend upon concentration. They 

are relaxation time and the ratio of the linear vibronic coupling constants. The first 

one is determined from the shape of the attenuation or dispersion curves but not on 

the scale of their variation. The second parameter is concentration independent 

since both the coupling constants have linear dependence on concentration of the 

JT complexes and their ratio does not depend on it.  

5. Table 6.3 give an opportunity to compare 0V  and /T EF F  derived in our study. 

Besides, the modulus of TF  is also present in the table keeping in mind that the 

accuracy of its determination can be lower than of  0V  and of /T EF F . 

6. Analyzing the data given in the Table 6.3, one can conclude: (i) the linear 

vibronic coupling constants characterizing the JT centers are approximately equal 

if to speak about their absolute values; (ii) activation energy characterizing the 

studied crystals is in the range of 90-400 cm-1 ; (iii) the order of the absolute value 

of the linear vibronic coupling constants EF  and TF  is 10-4 dyn. 
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Table 6.3. Activation energies and the linear vibronic constants of the JT 

complexes in the studied crystals 

Crystal 
Configu-

ration 

Ground 

state 
0V  , cm-1 /T EF F   

TF , dyn 

CaF2:Cr2+ [A2] 4d   
( )5 2 2

2 2g g gT e t

 
91.7  1.07  40.88 10  

CaF2:Cu2+ [A3] 9d  ( )2 4 5

2 2g g gT e t   118  1.02  41.1 10  

SrF2:Cr2+ [A5] 4d  
( )5 2 2

2 2g g gT e t

 
264  1.04  40.55 10  

CaF2:Ni2 [A1] 8d  ( )3 4 4

1 2g g gT e t  394  1.07  41.2 10  
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CONCLUSION 

We have investigated the crystals with the fluorite structure with cation 

substitution by 3d ions: CaF2:Cr2+, CaF2:Cu2+, CaF2:Cu2+, and CaF2:Ni2+ with the 

use of ultrasonic technique. Temperature dependences of attenuation and phase 

velocity were measured in the range of 4-170 K. Relaxation anomalies caused by 

the subsystem of the cubic JT complexes 3d2+F8 were observed in all the studied 

normal modes revealing the quadratic 2( )T e t  JTE problem and the APES with 

the orthorhombic global minima.  

We have considered a cubic JT complex with additional static non-JT 

deformations and have derived the expressions for its energy shifts caused by 

them. On the basis of the analysis of the obtained experimental data, we came to 

the conclusion that the additional static deformations are negligible for the 

isovalent substitution in our crystals. 

The temperature dependence of relaxation time was obtained and simulated with 

account of three mechanisms. The simulation pointed out the more accurate value 

of the activation energy with respect to the data published earlier.  

Manifestation of the JTE in CaF2:Ni2+ single crystal proved to be similar to one 

in SrF2:Cr2+, although the JT ions and host crystals are different. In both the  

crystals,  the relaxation anomalies were observed at relatively high temperatures 

(approximately 56  and  44 K at about 55 MHz, respectively). Higher temperature 

of the peak location means lower relaxation rate and higher potential energy barrier  

(or activation energy provided that the vibronic frequency is the same). 

Comparison of the activation energies (570 and 380 K, respectively) supports this 

statement. The 2

8Ni F+ −  complexes in CaF2 have larger magnitudes of the vibronic 

coupling constants and deeper extrema of the APES than 
2

8Cr F+ −
 complexes in 

SrF2 matrix.  

In CaF2:Cr2+ single crystal, the relaxation attenuation peak was observed at 

relatively low temperatures (approximately 8.7 K at about 54 MHz). Lower 
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temperature of the peak location means higher relaxation rate and lower potential 

energy barrier (or activation energy).  

In CaF2:Cu2+ single crystal, manifestation of the JTE proved to represent an 

intermediate case between CaF2:Cr2+ on one hand and SrF2:Cr2+ with CaF2:Ni2 on 

another hand, meaning that the relaxation anomalies are observed at approximately 

24 K (at about 56 MHz)  in comparison with CaF2:Cr2+ (8.7 K)  SrF2:Cr2+ (56 K) 

and CaF2:Ni2+ (44 K).  

Comparison of most of the parameters which characterize the JT complex is 

sophisticated by their some indeterminacy that is initiated by the uncertainty in 

determination of the concentration value. The method used in our research defines 

the total concentration of the impurity ions regardless their charge state. Whereas 

the expressions for calculation of the vibronic coupling constants and the JT 

stabilization energies contain concentration of definite ions. One more source of 

the error is inhomogeneity of the dopant distribution over the crystal. These two 

factors reduce the possible accuracy of the JTE parameters evaluation and further 

comparison of different complexes in various matrices.  

However, we have found the parameters which are not depend upon 

concentration. These parameters are relaxation time and the ratio of the linear 

vibronic coupling constants. The first one is determined from the shape of the 

attenuation or dispersion curves but not on the scale of their variation. The second 

parameter is concentration independent since both the coupling constants have 

linear dependence on concentration of the JT complexes and their ratio does not 

depend on it.  

Finally, one can conclude that in the studied crystals: (i) the linear vibronic 

coupling constants characterizing the JT centers are approximately equal if to 

speak about their absolute values; (ii) activation energy characterizing the crystals 

is in the range of 90-400 cm-1 ; (iii) the order of the absolute value of the linear 

vibronic coupling constants EF  and TF  is 10-4 dyn. 
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Further prospects for the development of the topic 

Further developments lie both in the field of fundamental and applied research. 

The unsolved fundamental problem is the study of the APES in other fluorite-type 

matrices with more heavy cations, namely, CdF2 and BaF2 doped with 3d metals. 

Finally, the crystal with high barriers and low relaxation rate will be found. Such 

crystal can have practical application as the element basis of quantum computers. 
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